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Abstract

Financial risk model evaluation or backtesting is a key part of the internal model’s approach

to market risk management as laid out by the Basle Commitee on Banking Supervision (1996).

However, existing backtesting methods such as those developed in Christoffersen (1998), have

relatively small power in realistic small sample settings. Methods suggested in Berkowitz (2001)

fare better, but rely on information such as the shape of the left tail of the portfolio return

distribution, which is often not available. By far the most common risk measure is Value-at-Risk

(V aR), which is defined as a conditional quantile of the return distribution, and it says nothing

about the shape of the tail to the left of the quantile. Our contribution is the exploration of a

new tool for backtesting based on the duration of days between the violations of the V aR. The

chief insight is that if the one-day-ahead V aR model is correctly specified for coverage rate, p,

then, every day, the conditional expected duration until the next violation should be a constant

1/p days. We suggest various ways of testing this null hypothesis and we conduct a Monte Carlo

analysis which compares the new tests to those currently available. Our results show that in

realistic situations, the duration based tests have better power properties than the previously

suggested tests. The size of the tests is easily controlled using the Monte Carlo technique of

Dufour (2000).



1 Motivation

Financial risk model evaluation or backtesting is a key part of the internal model’s approach to

market risk management as laid out by the Basle Committee on Banking Supervision (1996).

However, existing backtesting methods such as those developed in Christoffersen (1998), have

relatively small power in realistic small sample settings. Methods suggested in Berkowitz (2001)

fare better, but rely on information such as the shape of the left tail of the portfolio return

distribution, which is often not available. By far the most common risk measure is Value-at-Risk

(V aR), which is defined as a conditional quantile of the return distribution, and it says nothing

about the shape of the tail to the left of the quantile.

We will refer to an event where the ex-post portfolio loss exceeds the ex-ante V aRmeasure as a

violation. Of particular importance in backtesting is the clustering of violations. An institution’s

internal risk management team as well as external supervisors explicitly want to be able to detect

clustering in violations. Large losses which occur in rapid succession are more likely to lead to

disastrous events such as bankruptcy.

In the previous literature, due to the lack of real portfolio data, the evaluation of V aR

techniques were largely based on artificial portfolios. Examples in this tradition include Beder

(1995), Christoffersen, Hahn and Inoue (2001), Hendricks (1996), Kupiec (1995), Marshall and

Siegel (1997), and Pritsker (1997). But recently, Berkowitz and O’Brien (2002) have reported

on the performance of actual V aR forecasts from six large (and anonymous) U.S. commercial

banks.1 Figure 1 reproduces a picture from their paper which shows the V aR exceedences from

the six banks reported in standard deviations of the portfolio returns. Even though the banks

tend to be conservative—they have fewer than expected violations—the exceedences are large and

appear to be clustered in time and across banks. The majority of violations appear to take

place during the August 1998 Russia default and ensuing LTCM debacle. From the perspective

of a regulator worried about systemic risk, rejecting a particular bank’s risk model due to the

clustering of violations is particularly important if the violations also happen to be correlated

across banks.

The detection of violation clustering is particularly important because of the widespread

reliance on V aRs calculated from the so-called Historical Simulation (HS) technique. In the

HS methodology, a sample of historical portfolio returns using current portfolio weights is first

constructed. The V aR is then simply calculated as the unconditional quantile from the historical

sample. The HS method thus largely ignores the last 20 years of academic research on conditional

asset return models. Time variability is only captured through the rolling historical sample. In

spite of forceful warnings, such as Pritsker (2001), the model-free nature of the HS technique

1Barone-Adesi, Giannopoulos and Vosper (2002) provides another example using real-life portfolio returns.
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is viewed as a great benefit by many practitioners. The widespread use of HS the technique

motivates us to focus attention on backtesting V aRs calculated using this method.

While alternative methods for calculating portfolio measures such as the V aR have been inves-

tigated in for example Jorion (2000), and Christoffersen (2003), available methods for backtesting

are still relatively few. Our contribution is thus the exploration of a new tool for backtesting

based on the duration of days between the violations of the risk metric. The chief insight is that

if the one-day-ahead V aR model is correctly specified for coverage rate, p, then, every day, the

conditional expected duration until the next violation should be a constant 1/p days. We sug-

gest various ways of testing this null hypothesis and we conduct a Monte Carlo analysis which

compares the new tests to those currently available. Our results show that in many realistic

situations, the duration based tests have better power properties than the previously suggested

tests. The size of the tests is easily controlled using the Monte Carlo testing approach of Dufour

(2000). This procedure is described in detail below.

We hasten to add that the sort of omnibus backtesting procedures suggested here are meant

as complements to—and not substitutes for—the statistical diagnostic tests carried out on various

aspects of the risk model in the model estimation stage. The tests suggested in this paper can

be viewed either as a final diagnostic for an internal model builder or alternatively as a feasible

diagnostic for an external model evaluator for whom only limited, aggregate portfolio information

is available.

Our paper is structured as follows: Section 2 outlines the previous first-order Markov tests,

Section 3 suggests the new duration-based tests, and Section 4 discusses details related to the

implementation of the tests. Section 5 contains Monte Carlo evidence on the performance of the

tests. Section 6 considers backtesting of tail density forecasts, and Section 7 concludes.

2 Extant Procedures for Backtesting Value-at-Risk

Consider a time series of daily ex-post portfolio returns, Rt, and a corresponding time series

of ex-ante Value-at-Risk forecasts, V aRt(p) with promised coverage rate p, such that ideally

Prt−1 (Rt < −V aRt(p)) = p. The negative sign arises from the convention of reporting the V aR

as a positive number.

Define the hit sequence of V aRt violations as

It =

(
1, if Rt < −V aRt (p)

0, else
. (1)

Notice that the hit sequence appears to discard a large amount of information regarding the

size of violations etc. Recall, however, that the V aR forecast does not promise violations of a
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certain magnitude, but rather only their conditional frequency, i.e. p. This is a major drawback

of the V aR risk measure which we will discuss in Section 6.

Christoffersen (1998) tests the null hypothesis that

It ∼ i.i.d. Bernoulli(p)

against the alternative that

It ∼ i.i.d. Bernoulli(π)

and refers to this as the test of correct unconditional coverage (uc)

H0,uc : π = p (2)

which is a test that on average the coverage is correct. The above test implicitly assumes that

the hits are independent an assumption which we now test explicitly. In order to test this

hypothesis an alternative is defined where the hit sequence follows a first order Markov sequence

with switching probability matrix

Π =

"
1− π01 π01

1− π11 π11

#
(3)

where πij is the probability of an i on day t − 1 being followed by a j on day t. The test of

independence (ind) is then

H0,ind : π01 = π11. (4)

Finally one can combine the two tests in a test of conditional coverage (cc)

H0,cc : π01 = π11 = p (5)

The idea behind the Markov alternative is that clustered violations represent a signal of risk

model misspecification. Violation clustering is important as it implies repeated severe capital

losses to the institution which together could result in bankruptcy.

Notice however, that the Markov first-order alternative may have limited power against gen-

eral forms of clustering. The first point of this paper is to establish more general tests for clus-

tering which nevertheless only rely on information in the hit sequence. Throughout the paper we

implicitly assume that the V aR is for a one-day horizon. To apply this backtesting framework

to an horizon of more than one day, we would have to use non-overlapping observations.2

2We implicitly assume that we observe the return process as least as frequently as we compute the V aR.
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3 Duration-Based Tests of Independence

The above tests are reasonably good at catching misspecified risk models when the temporal

dependence in the hit-sequence is of a simple first-order Markov structure. However we are

interested in developing tests which have power against more general forms of dependence but

which still rely on estimating only a few parameters.

The intuition behind the duration-based tests suggested below is that the clustering of vio-

lations will result in an excessive number of relatively short and relatively long no-hit durations,

corresponding to market turbulence and market calm respectively. Motivated by this intuition

we consider the duration of time (in days) between two V aR violations (i.e. the no-hit duration)

as

Di = ti − ti−1 (6)

where ti denotes the day of violation number i.3

Under the null hypothesis that the risk model is correctly specified, the no-hit duration should

have no memory and a mean duration of 1/p days. To verify the no memory property note that

under the null hypothesis we have the discrete probability distribution

Pr (D = 1) = p

Pr (D = 2) = (1− p) p

Pr (D = 2) = (1− p)2 p

...

Pr (D = d) = (1− p)d−1 p.

A duration distribution is often best understood by its hazard function, which has the intuitive

definition of the probability of a getting a violation on day D after we have gone D − 1 days
without a violation. The above probability distribution implies a flat discrete hazard function

as the following derivation shows

λ (d) =
Pr (D = d)

1−Pj<d Pr (D = j)

=
(1− p)d−1 p

1−Pd−2
j=0 (1− p)j p

= p.

The only memory free (continuous)4 random distribution is the exponential, thus we have
3For a general introduction to duration modeling, see Kiefer (1988) and Gourieroux (2000).
4Notice that we use a continuous distribution even though we are counting time in days. This discreteness bias

will be acounted for in the Monte Carlo tests. The exponential distribution can also be viewed as the continuous

time limit of the above discrete time process. See Poirier (1995).
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that under the null the distribution of the no-hit durations should be

fexp (D; p) = p exp (−pD) . (7)

In order to establish a statistical test for independence we must specify a (parsimonious)

alternative which allows for duration dependence. As a very simple case, consider the Weibull

distribution where

fW (D; a, b) = abbDb−1 exp
¡−(aD)b¢ . (8)

The Weibull distribution has the advantage that the hazard function has a closed form rep-

resentation, namely

λW (D) ≡ fW (D)

1− FW (D)
= abbDb−1 (9)

where the exponential distribution appears as a special case with a flat hazard, when b = 1. The

Weibull will have a decreasing hazard function when b < 1, which corresponds to an excessive

number of very short durations (very volatile periods) and an excessive number of very long

durations (very tranquil periods). This could be evidence of misspecified volatility dynamics in

the risk model.

Due to the bankruptcy threat from V aR violation clustering the null hypothesis of indepen-

dence is of particular interest. We therefore want to explicitly test the null hypothesis

H0,ind : b = 1. (10)

We could also use the Gamma distribution under the alternative hypothesis. The p.d.f. in

this case is

fΓ (D; a, b) =
abDb−1 exp (−aD)

Γ (b)
(11)

which also nests the exponential when b = 1. In this case we therefore also have the independence

test null hypothesis as

H0,ind : b = 1. (12)

The Gamma distribution does not have a closed-form solution for the hazard function, but the

first two moments are b
a
and b

a2
respectively, so the notion of excess dispersion which is defined as

the variance over the squared expected value is simply 1
b
. Note that the average duration in the

exponential distribution is 1/p, and the variance of durations is 1/p2, thus the notion of excess

dispersion is 1 in the exponential distribution.
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3.1 A Conditional Duration Test

The above duration tests can potentially capture higher order dependence in the hit sequence by

simply testing the unconditional distribution of the durations. Dependence in the hit sequence

may show up as an excess of relatively long no-hit durations (quiet periods) and an excess of

relatively short no-hit durations, corresponding to violation clustering. However, in the above

tests, any information in the ordering of the durations is completely lost. The information

in the temporal ordering of no-hit durations could be captured using the framework of Engle

and Russel’s (1998) Exponential Autoregressive Conditional Duration (EACD) model. In the

EACD(1,0) model, the conditional expected duration takes the following form

Ei−1 [Di] ≡ ψi = ω + αDi−1 (13)

with α ∈ [0, 1) . Assuming an underlying exponential density with mean equal to one, the condi-
tional distribution of the duration is

fEACD (Di|ψi) =
1

ψi

exp

µ
−Di

ψi

¶
. (14)

The null of independent no-hit durations would then correspond to

H0,ind : α = 0. (15)

Excess dispersion in the EACD(1,0) model is defined as

V [Di]/E[Di]
2 =

1

1− 2α2 (16)

so that the ratio of the standard deviation to the mean duration is above one if α > 0.

In our test specifications, the information set only contains past durations, but it could be

extended to include all the conditioning information used to compute the V aR for example. This

would translate into adding variables other than Di−1 into the right-hand side of equation (13).

4 Test Implementation

We will first discuss the specific implementation of the hit sequence tests suggested above. Later,

we will simulate observations from a realistic portfolio return process and calculate risk measures

from the popular Historical Simulation risk model, which in turn provides us with hit sequences

for testing.
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4.1 Implementing the Markov Tests

The likelihood function for a sample of T i.i.d. observations from a Bernoulli variable, It, with

known probability p is written as

L (I, p) = pT1 (1− p)T−T1 (17)

where T1 is the number of ones in the sample. The likelihood function for an i.i.d. Bernoulli

with unknown probability parameter, π1, to be estimated is

L (I, π1) = πT11 (1− π1)
T−T1 . (18)

The ML estimate of π1 is

π̂1 = T1/T (19)

and we can thus write a likelihood ratio test of unconditional coverage as

LRuc = −2 (lnL (I, π̂1)− lnL (I, p)) . (20)

For the independence test, the likelihood under the alternative hypothesis is

L (I, π01, π11) = (1− π01)
T0−T01 πT0101 (1− π11)

T1−T11 πT1111 (21)

where Tij denotes the number of observations with a j following an i. The ML estimates are

π̂01 = T01/T0 (22)

π̂11 = T11/T1 (23)

and the independence test statistic is

LRind = 2 (lnL (I, π̂01, π̂11)− lnL (I, π̂1)) . (24)

Finally the test of conditional coverage is written as

LRcc = 2 (lnL (I, π̂01, π̂11)− lnL (I, p)) . (25)

We note that all the tests are carried out conditioning on the first observation. The tests are

asymptotically distributed as χ2 with degree of freedom one for the uc and ind tests and two for

the cc test. But we will rely on finite sample p-values below.

Finally, as a practical matter, if the sample at hand has T11 = 0, which can easily happen in

small samples and with small coverage rates, then we calculate the first-order Markov likelihood

as

L (I, π01, π11) = (1− π01)
T0−T01 πT0101 (26)

and carry out the tests as above.
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4.2 Implementing the Weibull and EACD Tests

In order to implement our tests based on the duration between violations we first need to trans-

form the hit sequence into a duration series Di. While doing this transformation we also create

the series Ci to indicate if a duration is censored (Ci = 1) or not (Ci = 0). Except for the first

and last duration the procedure is straightforward, we just count the number of days between

each violation and set Ci = 0. For the first observation if the hit sequence starts with 0 then

D1 is the number of days until we get the first hit. Accordingly C1 = 1 because the observed

duration is left-censored. If instead the hit sequence starts with a 1 thenD1 is simply the number

of days until the second hit and C1 = 0.

The procedure is similar for the last duration. If the last observation of the hit sequence is

0 then the last duration, DN(T ), is the number of days after the last 1 in the hit sequence and

CN(T ) = 1 because the spell is right-censored. In the same manner if the last observation of the

hit sequence is a 1 then DN(T ) = tN(T ) − tN(T )−1 and CN(T ) = 0.

The contribution to the likelihood of an uncensored observation is its corresponding p.d.f.

For a censored observation, we merely know that the process lasted at least D1 or DN(T ) days so

the contribution to the likelihood is not the p.d.f. but its survival function S(Di) = 1− F (Di).

Combining the censored and uncensored observations, the log-likelihood is

lnL(D;Θ) = C1 lnS(D1) + (1− C1) ln f(D1) +

N(T )−1X
i=2

ln(f(Di)) (27)

+CN(T ) lnS(DN(T )) + (1− CN(T )) ln f(DN(T )). (28)

Once the durations are computed and the truncations taken care of, then the likelihood

ratio tests can be calculated in a straightforward fashion. The only added complication is that

the ML estimates are no longer available in closed form, they must be found using numerical

optimization.5 For the unrestricted EACD likelihood this implies maximizing simultaneously over

two parameters, α and ω. For the unrestricted Weibull likelihood, we only have to numerically

maximize it over one parameter since for a given value of b, the first order condition with respect

to a as an explicit solution:6

â =

Ã
N(T )− C1 − CN(T )PN(T )

i=1 Di
b

!1/b
. (29)

5We have also investigated LM tests which require less numerical optimization than do LR tests. However, in

finite sample simulations we found that the power in the LM tests were lower than in the LR tests, thus we only

report LR results below.
6For numerical stability, we recommend working with ab instead of a, since b can take values close to zero.

8



4.3 Finite Sample Inference

While the large-sample distributions of the likelihood ratio tests we have suggested above are

well-known,7 they may not lead to reliable inference in realistic risk management settings. The

nominal sample sizes can be reasonably large, say two to four years of daily data, but the scarcity

of violations of for example the 1% V aR renders the effective sample size small. In this section,

we therefore introduce the Dufour (2000) Monte Carlo testing technique.

For the case of a continuous test statistic, the procedure is the following. We first generate

N independent realizations of the test statistic, LRi, i = 1, . . . , N . We denote by LR0 the test

computed with the original sample. Under the hypothesis that the risk model is correct we

know that the hit sequence is i.i.d. Bernoulli with the mean equal to the coverage rate in our

application. We thus benefit from the advantage of not having nuisance parameters under the

null hypothesis.

We next rank LRi, i = 0, . . . , N in non-decreasing order and obtain the Monte Carlo p-value

p̂N(LR0) where

p̂N(LR0) =
NĜN(LR0) + 1

N + 1
(30)

with

ĜN(LR0) =
1

N

NX
i=1

1 (LRi > LR0) (31)

where 1 (∗) takes on the value 1 if ∗ is true and the value 0 otherwise.
When working with binary sequences the test values can only take a countable number of

distinct values. Therefore, we need a rule to break ties between the test value obtained from

the sample and those obtained from Monte Carlo simulation under the null hypothesis. The

tie-breaking procedure is as follows: For each test statistic, LRi, i = 0, . . . , N , we draw an

independent realization of a Uniform distribution on the [0; 1] interval. Denote these draws by

Ui, i = 0, . . . , N . The Monte-Carlo p-value is now given by

p̃N(LR0) =
NG̃N(LR0) + 1

N + 1
(32)

with

G̃N(LR0) = 1− 1

N

NX
i=1

1 (LRi < LR0) +
1

N

NX
i=1

1 (LRi = LR0)1 (Ui ≥ U0) . (33)

There are two additional advantages of using a simulation procedure. The first is that possible

systematic biases arising from the use of continuous distributions to study discrete processes are

7Testing α = 0 in the EACD(1,0) model presents a potential difficulty asymptotically in that it is on the

boundary of the parameter space. However, the MC method we apply is valid even in this case. See Andrews

(2001) for more details.
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accounted for. They will appear both in LR0 and LRi. The second is that Monte-Carlo testing

procedures are consistent even if the parameter value is on the boundary of the parameter space.

Bootstrap procedures on the other hand could be inconsistent in this case.

5 Backtesting V aRs from Historical Simulation

We now assess the power of the proposed duration tests in the context of a Monte Carlo study.

Consider a portfolio where the returns are drawn from a GARCH(1,1)-t(d) model with an asym-

metric leverage effect, that is

Rt+1 = σt+1
p
((d− 2) /d)zt+1, with

σ2t+1 = ω + ασ2t

³p
((d− 2) /d)zt − θ

´2
+ βσ2t

where the innovation zt+1s are drawn independently from a Student’s t (d) distribution. Notice

that the innovations have been rescaled to ensure that the conditional variance of return will be

σ2t+1.

In the simulations below we choose the following parameterization

α = 0.1

θ = 0.5

β = 0.85

ω = 3.9683e− 6
d = 8

where ω is set to target an annual standard deviation of 0.20. The parameters imply a daily

volatility persistence of 0.975, a mean of zero, a conditional skewness of zero, and a conditional

(excess) kurtosis of 1.5. This particular DGP is constructed to form a realistic representation of

an equity portfolio return distribution.8

The risk measurement method under study is the popular Historical Simulation (HS) tech-

nique. It takes the V aR on a certain day to be simply the unconditional quantile of the past Te
daily observations. Specifically

V aRp
t+1 = −Percentile({Rτ}tτ=t−Te+1 , 100p).

From the return sample and the above V aR, we are implicitly assuming that $1 is invested

each day. Equivalently, the V aR can be interpreted as being calculated in percent of the portfolio

value.
8The parameter values are similar to estimates of this GARCH model on daily S&P500 returns (not reported

here), and to estimates on daily FX returns published in Bollerslev (1987).
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In practice, the sample size is often determined by practical considerations such as the amount

of effort involved in valuing the current portfolio holdings using past prices on the underlying

securities. For the purposes of this Monte Carlo experiment, we set Te = 250 or Te = 500

corresponding to roughly one or two years of trading days.

In practice the V aR coverage rate, p, is typically chosen to be either 1% or 5%, and below

we assess the power to reject the HS model using either of those rates. Figure 2 shows a return

sample path from the above GARCH-t(d) process along with the 1% and 5% V aRs from the HS

model (with Te = 500). Notice the peculiar step-shaped V aRs resulting from the HS method.

Notice also the infrequent changes in the 1% V aR.9

The 1% V aR exceedences from the return sample path are shown in Figure 3 reported in

daily standard deviations of returns. The simulated data in Figure 3 can thus be compared with

the real-life data in Figure 1, which was taken from Berkowitz and O’Brien (2002). Notice that

the simulated data shares the stylized features with the real-life data in Figure 1.10

Before calculating actual finite sample power in the suggested tests we want to give a sense

of the appropriateness of the duration dependence alternative. To this end we simulate one very

long realization (5 million observations) of the GARCH return process and calculate 1% and

5% V aRs from Historical Simulation with a rolling set of 500 in-sample returns. The zero-one

hit sequence is then calculated from the ex-post daily returns and the ex-ante V aRs, and the

sequence of durations between violations is calculated from the hit sequence. From this duration

sequence we fit a Weibull distribution and calculate the hazard function from it. We also estimate

nonparametrically the empirical hazard function of the simulated durations via the Kaplan-Meier

product-limit estimator of the survival function (see Kiefer, 1988). These Weibull and empirical

hazards are estimated over intervals of 10 days so if there is a probability p of getting a hit at

each day then the probability that a given duration will last 10 days or less is

10X
i=1

Pr(D = i) =
10X
i=1

(1− p)i−1p

= 1− (1− p)10.

For p equal to 1% and 5% we get a constant hazard of 0.0956 and 0.4013 respectively over a

10-day interval.

We see in Figure 4 that the hazards are distinctly downward sloping which corresponds

to positive duration dependence. The relevant flat hazard corresponding to i.i.d. violations is

9When Te = 250 and p = 1%, the VaR is calculated as the simple average between the second and third lowest

return.
10Note that we have simulated 1,000 observations in Figure 3, while Figure 1 contains between 550 and 750

observations per bank.
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superimposed for comparison. Figure 4 also shows that the GARCH and the Weibull hazards are

reasonably close together which suggests that the Weibull distribution offers a useful alternative

hypothesis in this type of tests.

Figure 5 shows the duration dependence via simple histograms of the duration between the

violations from the Historical Simulation V aRs. The top panel again shows the 1% V aR and

the bottom panel shows the 5% V aR.

Data and other resource constraints often force risk managers to backtest their models on

relatively short backtesting samples. We therefore conduct our power experiment with samples

sizes from 250 to 1,500 days in increments of 250 days. Thus our backtesting samples correspond

to approximately one through six years of daily returns.

Below we simulate GARCH returns, calculate HS V aR and the various tests in 5,000 Monte

Carlo replications. We present three types of results. We first present the raw power results,

which are simply calculated as the frequency of rejections of the null hypothesis in the simulation

samples for which we can perform the tests. In order to compute the p-values of the tests

we simulate N = 9999 hit sequence samples under the null hypothesis that the sequences are

distributed i.i.d. Bernoulli(p).

In the simulations, we reject the samples for which we cannot compute the tests. For exam-

ple, to compute the independence test with the Markov model, we need at least one violation

otherwise the LR test is equal to zero when we calculate the likelihood from equation (26). Sim-

ilarly, we need at least one non-censored duration and an additional possibly censored duration

to perform the Weibull11 and EACD independence tests. This of course constitutes a nontrivial

sample selection rule for the smallest sample sizes and the 1% V aR coverage rate in particular.

We therefore also present the sample selection frequency, i.e. the fraction of simulated samples

for which we can compute each test. Finally we report effective power, which corresponds to

multiplying the raw power by the sample selection frequency.

5.1 Results

The results of the Monte Carlo simulations are presented in Tables 1 through 6. We report the

empirical rejection frequencies (power) for the Markov, Weibull and EACD independence tests for

various significance test levels, V aR coverage rates, and backtesting sample sizes. Table 1 reports

power for a Historical Simulation risk model with Te = 500 observations in the rolling estimation

samples. Table 2 gives the sample selection frequencies, that is, the fraction of samples drawn

which were possible to to use for calculating the tests. Table 3 reports effective power which

11The likelihood of the Weibull distribution can be unbounded when we have only one uncensored observation.

When this happens we discard the sample.
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is simply the power entries from Table 1 multiplied by the relevant sample selection frequency

in Table 2. Tables 4 through 6 shows the results when the rolling samples for V aR calculation

contains Te = 250 observations. Notice that we focus solely on the independence tests here

because the historical simulation risk models under study are correctly specified unconditionally.

The results are quite striking. The main result in Table 1 is that for inference samples of 750

days and above the Weibull test is always more powerful than the Markov and EACD tests in

rejecting the HS risk models. This result holds across inference sample sizes, V aR coverage rates

and significance levels chosen. The differences in power are sometimes very large. For example in

Table 1 using a 1% significance level, the 5% V aR in a sample of 1,250 observations has a Weibull

rejection frequency of 69.2% and a Markov rejection frequency of only 39.5%. The Weibull test

clearly appears to pick up dependence in the hit violations which is ignored by the Markov test.

For an inference sample size 500 the ranking of tests depends on the inference sample size,

V aR coverage rate and significance level in question. Typically either the Markov or the EACD

test performs the best.

For an inference sample size of 250, the power is typically very low in any of the three tests.

This is a serious issue as the backtesting guide for market risk capital requirements uses a sample

size of one year when assessing model adequacy.12 The EACD test is often the most powerful in

the case of 250 inference observations, which is curious as the performance of the EACD test is

quite sporadic for larger sample sizes. Generally, the EACD appears to do quite well at smaller

sample sizes but relatively poorly at larger sample sizes. We suspect that the nonlinear estimate

of the α parameter is poorly behaved in this application.

Table 2 shows the sample selection frequencies corresponding to the power calculations in

Table 1. As expected the sample rejection issue is the most serious for inference samples of 250

observations. For inference samples of 500 and above virtually no samples are rejected.

Table 3 reports the effective power calculated as the power in Table 1 multiplied by the

relevant sample selection frequency in Table 2. Comparing Tables 1 and 3 it is clear that test

which has the highest power in any given case in Table 1 also has the highest power in Table

3. But the levels of power are of course lower in Table 3 compared with Table 1 but only

dramatically so for inference samples of 250 observations.

Tables 4 shows the power calculations for the case when the V aR is calculated on 250 in-

sample observations rather than 500 as was the case in Tables 1 through 3. The overall picture

from Table 1 emerges again: The Weibull test is always best for inference samples of 750 obser-

vations and above. For samples of 500 the rankings vary case by case and for 250 observations,

the power is generally very low.

12We thank an anonymous referee for pointing out this important issue.
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Table 5 reports the sample selection frequencies corresponding to Table 4. In this case the

sample selection frequencies are even higher than in Table 2. For a V aR coverage rate of 5% the

rejection frequencies are negligible for all sample sizes.

Table 6 shows the effective power from Table 4. Again we simply multiply the power in Table

4 with the sample selection frequency in Table 5. Notice again that the most powerful test in

Table 4 is also the most powerful test in Table 6. Notice also that for most entries the power

numbers in Table 6 are very similar to those in Table 4.

Comparing numbers across Tables 1 and 4 and across Tables 3 and 6, we note that the HS V aR

with Te = 500 rolling sample observations often has a higher rejection frequency than the HS V aR

with Te = 250 rolling sample observations. This result is interesting because practitioners often

work very hard to expand their data bases enabling them to increase their rolling estimation

sample period. Our results suggest that such efforts may be misguided because lengthening

the size of the rolling sample does not necessarily eliminate the distributional problems with

Historical Simulation.

6 Backtesting Tail Density Forecasts

The choice of Value-at-Risk as a portfolio risk measure can be criticized on several fronts. Most

importantly, the quantile nature of the V aR implies that the shape of the return distribution

to the left of the V aR is ignored. Particularly in portfolios with highly nonlinear distributions,

such as those including options, this shortcoming can be crucial. Theoreticians have criticized

the V aR measure both from a utility-theoretic perspective (Artzner et al, 1999) and from a

dynamic trading perspective (Basak and Shapiro, 2000). Although some of these criticisms have

recently been challenged (Cuoco, He, and Issaenko, 2001), it is safe to say that risk managers

ought to be interested in knowing the entire distribution of returns, and in particular the left

tail. Backtesting distributions rather than V aRs then becomes important.

Consider the standard density forecast evaluation approach13 of calculating the uniform trans-

form variable

Ut = Ft(Rt)

where Ft(∗) is the a priori density forecast for time t. The null hypothesis that the density

forecast is optimal corresponds to

Ut ∼ i.i.d. Uniform(0, 1).

Berkowitz (2001) argues that the bounded support of the uniform variable renders standard

inference difficult. One is forced to rely on nonparametric tests which have notoriously poor
13See for example Diebold, Gunther and Tay (1998).
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small sample properties. He suggests a simple transformation using the inverse normal c.d.f.

Zt = Φ−1 (Ut)

after which the hypothesis

Zt ∼ i.i.d. Normal(0, 1)

can easily be tested.

Berkowitz further argues that confining attention to the left tail of the distribution has par-

ticular merit in the backtesting of risk models where the left tail contains the largest losses that

are most likely to impose bankruptcy risk. He defines the censored variable

Z∗t =

(
Zt, if Rt < V aRt

Φ−1 (V aRt) , else

and tests the null that

Z∗t ∼ Censored Normal(0, 1, V aRt).

We note first that Berkowitz (2001) only tests the unconditional distribution of Z∗t . The

information in the potential clustering of the V aR exceedences is ignored.

Second, note that the censored variable complication is not needed. If we want to test that the

transforms of the 100p percent largest losses are themselves uniform, then we can simply multiply

the subset of the uniform by 1/p, apply the transformation and test for standard normality

again.14 That is

U∗∗i =

(
Ut/p, if Rt < V aRt

Else not defined

We then have that

Z∗∗i = Φ−1 (U∗∗i ) ∼ i.i.d. Normal(0, 1).

Note that due to the censoring there is no notion of time in the sequence Z∗∗i . We might

want to make a joint analysis of both Z∗∗i and the duration between violations Di. To do this

we would like to write a joint density for these two processes under the alternative. We know

that under the null hypothesis that the risk model is correctly specified the Z∗∗i should be i.i.d.

N(0, 1), Di should be i.i.d. exponential with mean 1/p, and the processes should be independent.

The question is how to write a joint density for these two processes as the alternative hypothesis

knowing that, for example, the marginal p.d.f. of Di is a Weibull and some other p.d.f. for Z∗∗i ?

Copulas provide a useful tool for doing so.

A (bivariate) copula is a function C from [0; 1]× [0; 1] to [0; 1] with the following properties:
14We are grateful to Nour Meddahi for pointing this out.
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1. For every u, v in [0; 1],

C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u and C(1, v) = v.

2. For every u1, u2, v1, v2 in [0; 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

In order to explain how copulas can be used we apply Sklar’s theorem (Nelsen, 1998), which

states: Let H be a joint distribution function with margins F and G. Then there exists a copula

C such that for all x, y in R,
H(x, y) = C(F (x), G(y)).

If F and G are continuous then C is unique. Conversely, if C is a copula and F and G are

distribution functions then H is a joint distribution function with marginal densities F and G.

So if we have two densities under the alternative (e.g. f(Di) and g(Z∗∗i )) then we can easily

construct a joint density by applying a copula. Suppose the considered bivariate copula C(u, v; θ)

is a function of a unique parameter θ and that we have C(u, v; θ0) = uv and C(u, v; θ) 6= uv for

θ 6= θ0. This gives us a basis for a test because C(F (x), G(y); θ0) = F (x)G(y) means that x and

y are independent.

An example of such a copula is the Ali-Mikhail-Haq family of copulas where

C(u, v; θ) =
uv

1− θ(1− u)(1− v)
; θ ∈ [−1, 1]

and we have C(u, v; θ) = uv if θ = 0. A possible alternative hypothesis could be that Di is i.i.d.

Weibull(a, b), Z∗∗i is i.i.d. N(µ, σ2) and C(u, v; θ) is from the Ali-Mikhail-Haq family of copulas.

We could then test

H0 : a = p, b = 1, µ = 0, σ = 1, θ = 0

H1 : at least one of these equalities does not hold

in a likelihood ratio framework similar to the one considered for the V aR tests above. Another

useful approach could be the graphical procedure proposed by Fermanian and Scaillet (2002).

We plan to the pursue the implementation of this procedure in future work.
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7 Conclusions and Directions for Future Work

We have presented a new set of procedures for backtesting risk models. The chief insight is that if

the one-day V aR model is correctly specified for coverage rate, p, then, every day, the conditional

expected duration until the next violation should be a constant 1/p days. We suggest various

ways of testing this null hypothesis and we conduct a Monte Carlo analysis which compares

the new tests to those currently available. Our results show that in many of the situations

we consider, the duration-based tests have much better power properties than the previously

suggested tests. The size of the tests is easily controlled through finite sample p-values, which

we calculate using Monte Carlo simulation.

The majority of financial institutions use V aR as a risk measure, and many calculate V aR

using the so-called Historical Simulation approach. While the main focus of our paper has thus

been backtesting V aRs from Historical Simulation, we also suggest extensions to density and

density tail backtesting.

The immediate potential extensions to our Monte Carlo results are several. First, it may

be interesting to calculate the power of the tests with different GARCH specifications using for

example Engle and Lee (1999) and Hansen (1994). Second, we could consider structural breaks

in the underlying return models, such as those investigated by Andreou and Ghysels (2002).

Finally, Hamilton and Jorda (2002) have recently introduced a class of dynamic hazard models.

Exploring these for the purpose of backtesting could be interesting.

We could also consider more complicated portfolios including options and other derivatives.

Examining the duration patterns from misspecified risk models in this case could suggest other

alternative hypotheses than the ones suggested here. We leaves these extensions for future work.

Finally we stress that the current regulator practice of requiring backtesting on samples of

only 250 daily observations is likely to prove futile as the power to reject misspecified risk models

is very low in this case.
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Figure 1

Value-at-Risk Exceedences

From Six Major Commercial Banks

Berkowitz and O’Brien (2002)
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Figure 2

GARCH-t(d) Simulated Portfolio Returns with

1% and 5% Value-at-Risk from Historical Simulation with Te = 500
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Figure 3

GARCH-t(d) Simulated Portfolio Returns with

Exeedences of 1% V aRs from Historical Simulation with Te = 500

Reported in Standard Deviations of Returns
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Figure 4

Data-based and Weibull-based Hazard Functions of Durations between V aR Violations.

Historical Simulation Risk Model on GARCH-t(d) Portfolio Returns with Te = 500
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Figure 5

Histograms of Duration between V aR Violations

GARCH-t(d) Portfolio Returns

Historical Simulation Risk Model with Te = 500
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Table 1: Power of Independence Tests. Historical Simulation VaR Calculated on 500 GARCH(1,1)-t(d) Returns.

Significance Level: 1% Significance Level: 5% Significance Level: 10%

Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.060 0.018 0.150 250 0.263 0.104 0.234 250 0.330 0.195 0.278
500 0.105 0.114 0.164 500 0.307 0.267 0.250 500 0.370 0.369 0.303
750 0.157 0.236 0.167 750 0.290 0.415 0.251 750 0.435 0.536 0.311

1000 0.224 0.378 0.159 1000 0.360 0.546 0.253 1000 0.523 0.648 0.303
1250 0.266 0.484 0.145 1250 0.382 0.674 0.237 1250 0.514 0.758 0.291
1500 0.308 0.596 0.132 1500 0.427 0.752 0.222 1500 0.543 0.820 0.271

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.107 0.052 0.159 250 0.205 0.152 0.273 250 0.257 0.235 0.342
500 0.215 0.238 0.324 500 0.296 0.403 0.440 500 0.351 0.509 0.504
750 0.271 0.413 0.389 750 0.367 0.607 0.501 750 0.429 0.706 0.563

1000 0.339 0.546 0.440 1000 0.443 0.734 0.555 1000 0.533 0.810 0.615
1250 0.395 0.692 0.493 1250 0.530 0.833 0.601 1250 0.654 0.895 0.661
1500 0.434 0.750 0.514 1500 0.627 0.882 0.638 1500 0.735 0.927 0.700



Table 2: Sample Selection Frequency.
Historical Simulation VaR Calculated on 500 GARCH(1,1)-t(d) Returns.

Coverage Rate: 1% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size
250 0.778 0.589 0.598 250 0.987 0.972 0.974
500 0.956 0.891 0.896 500 1.000 1.000 0.999
750 0.998 0.987 0.986 750 1.000 1.000 1.000

1000 1.000 0.999 0.997 1000 1.000 1.000 1.000
1250 1.000 1.000 1.000 1250 1.000 1.000 1.000
1500 1.000 1.000 1.000 1500 1.000 1.000 1.000



Table 3: Effective Power of Independence Tests. Historical Simulation VaR Calculated on 500 GARCH(1,1)-t(d) Returns.

Significance Level: 1% Significance Level: 5% Significance Level: 10%

Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.047 0.011 0.090 250 0.205 0.061 0.140 250 0.257 0.115 0.167
500 0.100 0.101 0.147 500 0.294 0.238 0.224 500 0.353 0.329 0.271
750 0.156 0.233 0.164 750 0.289 0.410 0.247 750 0.434 0.529 0.307

1000 0.224 0.378 0.158 1000 0.360 0.545 0.253 1000 0.522 0.647 0.302
1250 0.266 0.484 0.145 1250 0.382 0.674 0.237 1250 0.514 0.758 0.291
1500 0.308 0.596 0.132 1500 0.427 0.752 0.222 1500 0.543 0.820 0.271

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.105 0.051 0.154 250 0.203 0.148 0.266 250 0.253 0.229 0.333
500 0.215 0.238 0.324 500 0.296 0.403 0.440 500 0.351 0.509 0.504
750 0.271 0.413 0.389 750 0.367 0.607 0.501 750 0.429 0.706 0.563

1000 0.339 0.546 0.440 1000 0.443 0.734 0.555 1000 0.533 0.810 0.615
1250 0.395 0.692 0.493 1250 0.530 0.833 0.601 1250 0.654 0.895 0.661
1500 0.434 0.750 0.514 1500 0.627 0.882 0.638 1500 0.735 0.927 0.700



Table 4: Power of Independence Tests. Historical Simulation VaR Calculated on 250 GARCH(1,1)-t(d) Returns.

Significance Level: 1% Significance Level: 5% Significance Level: 10%

Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.059 0.005 0.114 250 0.217 0.072 0.195 250 0.285 0.166 0.251
500 0.079 0.053 0.098 500 0.278 0.196 0.183 500 0.336 0.304 0.236
750 0.108 0.133 0.069 750 0.254 0.313 0.132 750 0.401 0.437 0.182

1000 0.153 0.222 0.045 1000 0.290 0.406 0.105 1000 0.467 0.535 0.149
1250 0.203 0.310 0.035 1250 0.305 0.536 0.084 1250 0.463 0.645 0.123
1500 0.230 0.420 0.029 1500 0.321 0.634 0.070 1500 0.459 0.736 0.101

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.115 0.068 0.189 250 0.210 0.169 0.311 250 0.266 0.250 0.380
500 0.212 0.247 0.288 500 0.295 0.421 0.408 500 0.354 0.530 0.475
750 0.244 0.388 0.346 750 0.346 0.603 0.456 750 0.419 0.700 0.517

1000 0.299 0.500 0.345 1000 0.413 0.707 0.480 1000 0.507 0.790 0.553
1250 0.344 0.622 0.394 1250 0.499 0.796 0.497 1250 0.631 0.862 0.569
1500 0.385 0.695 0.393 1500 0.582 0.849 0.537 1500 0.688 0.896 0.606



Table 5: Sample Selection Frequency.
Historical Simulation VaR Calculated on 250 GARCH(1,1)-t(d) Returns.

Coverage Rate: 1% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size
250 0.877 0.695 0.706 250 0.997 0.993 0.993
500 0.994 0.975 0.976 500 1.000 1.000 1.000
750 1.000 0.999 0.999 750 1.000 1.000 1.000

1000 1.000 1.000 1.000 1000 1.000 1.000 1.000
1250 1.000 1.000 1.000 1250 1.000 1.000 1.000
1500 1.000 1.000 1.000 1500 1.000 1.000 1.000



Table 6: Effective Power of Independence Tests. Historical Simulation VaR Calculated on 250 GARCH(1,1)-t(d) Returns.

Significance Level: 1% Significance Level: 5% Significance Level: 10%

Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.051 0.004 0.080 250 0.190 0.050 0.138 250 0.250 0.116 0.177
500 0.078 0.052 0.095 500 0.276 0.191 0.179 500 0.334 0.296 0.230
750 0.108 0.133 0.069 750 0.254 0.313 0.132 750 0.401 0.436 0.181

1000 0.153 0.222 0.045 1000 0.290 0.406 0.105 1000 0.467 0.535 0.149
1250 0.203 0.310 0.035 1250 0.305 0.536 0.084 1250 0.463 0.645 0.123
1500 0.230 0.420 0.029 1500 0.321 0.634 0.070 1500 0.459 0.736 0.101

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%
Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size
250 0.115 0.068 0.187 250 0.209 0.167 0.308 250 0.266 0.248 0.378
500 0.212 0.247 0.288 500 0.295 0.421 0.408 500 0.354 0.530 0.475
750 0.244 0.388 0.346 750 0.346 0.603 0.456 750 0.419 0.700 0.517

1000 0.299 0.500 0.345 1000 0.413 0.707 0.480 1000 0.507 0.790 0.553
1250 0.344 0.622 0.394 1250 0.499 0.796 0.497 1250 0.631 0.862 0.569
1500 0.385 0.695 0.393 1500 0.582 0.849 0.537 1500 0.688 0.896 0.606


