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Abstract. We revisited the problem of the existence of plasmonic modes guided by metal-

dielectric-metal slot waveguides. For the case of lossless slot waveguides, we classify the guided

modes in the structure with the metal dispersion and found that, in a certain parameter range,

three different guided modes coexist at a fixed frequency, two (symmetric and antisymmetric)

forward propagating modes and the third, backward propagating antisymmetric mode. We study

the properties of the forward and backward plasmonic guided modes in the presence of realistic

losses, and discuss the importance of evanescent modes in lossy structures.
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1 INTRODUCTION
One of the most recent activities of modern optics is associated with the manipulation of light at

the nanoscale. It was shown that optical systems with metallic waveguides can allow miniatur-

izing optical components through excitation of surface plasmon polaritons, or plasmon modes.

Metal-dielectric structures exhibit a wide range of novel physical phenomena which can be

employed for various applications such as sensing, imaging, and waveguiding (for a general

overview, see Refs. 1-3). Most importantly, plasmonic optical elements provide possibilities

to overcome the diffraction limit, and they allow squeezing light to subwavelength dimensions.

One may think of designing optical plasmonic integrated circuits which would allow miniaturiz-

ing devices to increase their functionalities in signal processing [4]. One of the key components

of any integrated circuit is a waveguide, which transfers a signal between the circuit elements.

Thus, the study of plasmonic waveguides is of a fundamental importance for the design of

nanoscale structures and circuits, as well as their future applications.

Optical waveguides guiding surface plasmon polaritons have been a subject of extensive

studies, and different types of metal-dielectric waveguides have been suggested theoretically

and demonstrated experimentally (see, e.g., Refs. 5-8). The simplest plasmonic waveguide is

an interface between metal and insulator which supports plasmon polaritons; however, due to

losses in metal, an excited plasmon can propagate for only a very short distance [5, 9]. In-

troducing a heterostructure such as a three-layer system helps to increase the propagation dis-

tance due to the coupling of plasmons at the neighboring interfaces and the field localization

in dielectric rather than metal [2]. Thus, two basic geometries are being explored for guiding

plasmons, namely, dielectric-metal-dielectric and metal-dielectric-metal structures. In the past

decades, rigorous analysis of these structures has been presented [9–11]. It was found that lay-

ered metal-dielectric structures support TM surface waves which have only one component of

the magnetic field. Applying the continuity of the tangential field component, the dispersion

relations were derived for both dielectric-metal-dielectric and metal-dielectric-metal structures.
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Fig. 1. (a) Schematic of a symmetric plasmonic slot waveguide; (b-d) Magnetic and electric

field profiles calculated in a lossless 40 nm wide slot waveguide for the frequency corresponding

to the free space wavelength of 465 nm for forward propagating (b) symmetric mode and (c)

antisymmetric modes, and (d) backward antisymmetric mode

Detailed analysis of eigenmodes, including radiative waves, in thin metallic films sandwiched

between two semi-infinite dielectrics was presented in Ref. 10. Later, Prade et al. [11] de-

veloped a comprehensive analysis of dispersion relations for three-layer structures and studied

possible plasmonic modes in the slot waveguide geometry (metal-dielectric-metal) as well as

in a thin metal film (dielectric-metal-dielectric). In particular, their analysis suggests that a

symmetric slot waveguide should support only two guided modes for various parameters: sym-

metric and antisymmetric forward propagating modes. However, the losses in metallic layers

were not studied rigorously in early works, and the dispersive nature of dissipation in metals

was not addressed either. Only recent studies provided analysis of waveguides with real metal

losses in the waveguides, see Refs. 5,12 and 13.

Our recent study of guided modes in a nonlinear slot waveguide [14] suggested that not

all regimes of the plasmon propagation were analyzed previously even in the linear case. In

particular, in the lossless regime it was found that the asymmetric mode degeneracy may occur

for some particular values In this paper, we elaborate on this finding further and show that for

certain parameters and at a fixed frequency, a symmetric slot waveguide can support simulta-

neously three guided plasmonic modes, that is in contradiction to the accepted knowledge and

the results obtained earlier by Prade and coauthors [11]. We demonstrate that in addition to the

forward propagating symmetric and antisymmetric modes in a symmetric slot waveguide, there

exists a backward propagating antisymmetric guided mode. Backward modes in plasmonic

waveguides are of a particular interest due to their key role played for negative refraction at

optical frequencies [15, 16]. The studies of negative index and backward waves was presented
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Fig. 2. Dispersion diagrams for slot waveguides: (a) d = 15 nm, (b) d = 40 nm, (c) d =
100nm. Symmetric and antisymmetric modes are marked on the figures with ”a” and ”s”,

respectively. Numbered dots on the plot (b) indicate the modes which will be studied further

in the paper: (1) backward antisymmetric mode with index of 4.43, (2)- forward antisymmetric

mode with effective index 9.34, and (3) - symmetric mode with effective index 11.07. Modes

(1-3) co-exist at the same frequency.

in Ref. 13, where authors showed the regions where the backward modes may exist. However,

the mechanism of losses and the regime of three simultaneous guided waves was not studied.

2 WAVEGUIDING STRUCTURES AND BASIC EQUATIONS
We study the guided modes in a symmetric metal-dielectric-metal plasmonic waveguide of the

width d, which is schematically shown on Fig. 1(a). The variation of the dielectric permittivity

across the structure can be presented in the form,

ε(x) =

{
εm(ω) = ε′m + jε′′m, |x| > d/2,

εd, |x| < d/2,

where d is the slot width, εm(ω) and εd are dielectric permittivities of metal and insulator,

respectively. In our work we use the Drude-Lorentz model to describe dielectric constant of

metal, εm(ω) � ε∞ + Σ[αi/(ω2 − 2jγiω − ω2
i )], that agrees well with the experimental

data [2, 17, 18]. We take into account 6 resonant terms (i = 1, ..., 6), with resonant frequencies

ωi and collision frequencies γi.

It is known that planar metal-dielectric structures support surface TM waves, with the field

structure H = (0, Hy, 0) and E = (Ex, 0, Ez) [2, 10, 11]. Applying boundary conditions

of continuity of the tangential field components, Hy and Ez , at the interfaces, we obtain the

following well-known dispersion relation [10, 11]:

tanh
(

1
2
κdd

)
= −

⎧⎪⎨
⎪⎩

εd

εm

κm

κd
, (symmetric),

εm

εd

κd

κm
, (antisymmetric),

(1)

where κm =
√

β2 − εm and κd =
√

β2 − εd, β - guide index. Note that we use the coordinates

normalized to ω/c.

The dispersion relation (1) splits into two separate equations describing symmetric and an-

tisymmetric modes with respect to the magnetic field, due to the symmetry of the structure.

Since in general case the permittivity is complex, εm = ε′m + jε′′m, with the imaginary part

describing losses in metal, the solutions of dispersion relation (1) would be complex as well,

β = β′ + jβ′′. However, for simple analysis of modes and their propagation, the losses are

usually neglected [11, 14], ε′′m, γi → 0, and only real value propagation constants, β = β′, are
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Fig. 3. Magnetic field distribution in lossless case for 40 nm slot waveguide for the free space

wavelength λ = 465nm: (a) backward antisymmetric mode,(b) forward antisymmetric, and (c)

symmetric modes.

taken into account corresponding to the guided or propagating modes of the waveguide. This

analysis has quite limited applicability due to high losses in metals.

Our study is based on the reciprocity of the system. We consider that fields are represented

as F = 1/2(F̂exp[−j(ωt−β′z)]exp(−β′′z)+c.c.), and guide index β′ is assumed to be always

positive, for the simplicity of our analysis. In this case, the Poynting vector S = Ŝexp(−2β′′z)
should decay along the propagation direction, thus the imaginary part of the guide index β′′

should be positive for forward waves, z · S > 0, and negative, for backward waves, z · S < 0;

this formalism differs slightly from the approach employed in Ref. 13, however the physical

meaning of the obtained results does not change.

3 LOSSLESS SLOT WAVEGUIDES
First, we start with the simplest case of nonabsorbing metal, i.e. ε′′m ≡ 0, and discuss only

propagating waves β = β′. Prade et al. [11] have presented a detailed study of the dispersion

relation (1) in this case. It was shown that for δ = εd/|εm| ≥ 1 (ω ≥ ωspp) there exists

only one antisymmetric mode, and this mode has a cutoff for larger slot widths. For δ < 1
two modes were found, one symmetric without cutoff and one antisymmetric with lower width

cutoff. However, the analysis of the dispersion relation (1) for different slot widths shows novel

features not discussed in the previous works.

To be more specific, we consider dielectric with refractive index n = 2.5 sandwiched be-

tween thick silver plates, described by Drude-Lorentz model for metal permittivity, εm, with

zero losses, ε′′m, γi → 0. We solve dispersion relation taking into account only propagating

waves, β′′ = 0, and plot dispersion curves for this structure, see Fig. 2(a-c). For very narrow

slot widths, d = 15nm, we observe the regime predicted by Prade et. al., where for δ > 1 only

one antisymmetric mode exists and for δ < 1 only symmetric mode is observed, see Fig. 2(a).

For relatively wide slot waveguides, e.g. for 100nm, we found symmetric and antisymmetric

modes [see Fig. 2(c)] which exist only for |εm| > εd, as it was predicted earlier [11]. Note

that for all slot widths, in case of lossless metal, when the |εm| = εd the plasmon propagation

constant for both modes becomes infinitely large, β → ∞, corresponding to surface plasmon-

polariton resonance, ω = ωspp, [2].

In the case of a waveguides with the slot width varying in range 35 � d � 50nm we re-

veal a new regime where three modes, symmetric, antisymmetric and backward antisymmetric,

coexist as shown in Fig. 2(b), for frequencies below surface plasmon resonance, δ > 1. The

backward mode is characterized by a negative slope of the corresponding dispersion curve. The

minimum on the dispersion curve corresponds to the region where the plasmon group veloc-

ity, conventionally defined in the structure without dissipation vg = ∂ω/∂k, approaches zero.

The profiles of all three modes, for the frequency corresponding to the free-space wavelength

λ = 465 nm, are presented on the Figs. 1(b-d). We also have presented the field profiles of

various modes in the system, see Fig. 3. The backward antisymmetric mode is less confined to
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Fig. 4. Dispersion diagrams for 40nm slot waveguide: (a) Dispersion of real part of propagation

constant in lossless case, ε′′m = 0. Dashed line corresponds to evanescent mode marked ea.

Inset shows the magnified dashed region with merging propagating and evanescent modes; (b)

Decay factor (imaginary part of wavenumber) dispersion, ε′′m = 0; (c,d) Same as (a) and (b) but

with small losses described by reduced collision frequencies γi/10.

the interfaces, since it has smaller propagation constants, β, and its field is concentrated mainly

in metal, rather than in dielectric. The backward nature of this mode is due to the fact that

the energy flow in metallic slabs is dominant in relation to dielectric layer energy flow. This

condition gives the region of existence of such solutions:

< z · Sdiel >|x|<d/2

| < z · Smetal >|x|>d/2 | =
A2βεdκ

−3
d [sinh(κdd)− κdd] /2

|εm|βκ−3
m exp(−κmd)

=
κ2

m

κ2
d

(
1− κdd

sinh(κdd)

)
< 1

where < · >x stands for averaging across the structure, A = e−κmd/2 cosh−1(κdd/2).
In this case the total energy of the mode is transferred in the direction opposite to the prop-

agation direction of the phase fronts, the analogous condition was discussed in Ref. 13.

Even for zero losses, ε′′m = 0, the dispersion relation for guided modes generally has not

only propagating mode solutions, but also solutions corresponding to evanescent modes with

β′′ �= 0 (thus exponentially decaying from the source). Due to a rapid decay of these solu-

tions in lossless structures, corresponding modes are usually not taken into account in the mode

analysis of plasmonic waveguides [19], however such modes are well known in classical elec-

trodynamics being important for the problem of waveguide excitation. In plasmonic systems,

on the other hand, such modes may play a significant role since their decay rate may become

comparable to the decay of the ’main’ modes.

As an example, on the Figs. 4(a,b) we present the real and imaginary wavenumbers of the

plasmons as a function of frequency for several lower order evanescent modes for the case of
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Fig. 5. (a) Motion of the guide indices of the propagating waves on the complex plane (β′, β′′)
for increasing losses (for λ = 465 nm and the slot width of 40 nm). Increasing of the absorption

of metals leads to a shift of the wavenumbers in the direction indicated by arrows. (b-d) Mag-

netic and electric field profiles in lossy 40 nm waveguide at λ = 475 nm: forward propagating

symmetric (b), and antisymmetric modes (c), and (d) backward antisymmetric mode.

40nm wide slot waveguide. The behavior of higher order evanescent modes is also an important

problem which will be studied elsewhere. In our case, lower order evanescent antisymmetric

modes exist in the frequency domain between the light line and the point where propagating

antisymmetric modes merge, see Fig. 4(a). It is clearly seen that both backward and forward an-

tisymmetric modes have solutions continuing into the complex space of propagation constants.

Moreover, the solutions are complex conjugates, and the imaginary propagation constant is neg-

ative for backward antisymmetric branch and positive for forward branch, which as discussed

below defines backward and forward nature of evanescent waves, see Fig. 4(b). We also observe

the increase of decay factors, |β′′|, of evanescent plasmons with the decrease of frequency. In-

troduction of small losses in the structure clearly shows evolution of corresponding modes, as

can be seen in Figs. 4(c,d). All modes now have complex wavenumbers, and antisymmetric

mode dispersion curves merge with corresponding evanescent modes.

Already in this example we can see that the propagation length (1/|β′′|) of the modes, which

are normally not considered in lossless mode analysis, becomes comparable to that of the ’main’

modes of the lossy structure. This is in sharp contrast to optical waveguides, where the effect

of losses is usually considered as a small perturbation to the lossless dispersion properties of

the mode, which manifests itself mainly in slow mode attenuation. Thus, we conclude that the

standard approach to the study of the optical modes is not convenient in plasmonics, and the

full analysis of the dispersion properties of the lossy waveguide modes should be considered.
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4 PLASMONIC SLOT WAVEGUIDES WITH REALISTIC LOSSES
In the previous section, we have discussed the solutions of the dispersion relation (1) in lossless

and low-loss slot waveguides. Continuing our analysis, we consider realistic losses in the struc-

ture. In this case all solutions of the dispersion relation become complex, β = β′ + jβ′′, and

thus we cannot distinguish the propagating and evanescent modes.

As discussed above, introduction of small losses leads to the merging of the propagating

mode solutions with the evanescent branches. One of the antisymmetric branches of evanescent

modes has negative β′′, see Fig. 4(d). In our convention, negative β′′ corresponds to the wave

decaying in (and thus the energy flowing to) negative-z direction. Since the corresponding real

part of the wavenumber is positive, we come to the conclusion that the whole corresponding

mode is backward, despite the fact that the dispersion curve slope is positive for lower frequen-

cies [13,20]. We note that in lossy systems the backward waves can be observed in considerably

lower frequency ranges. The other antisymmetric branch remains forward with loss increase.

At surface plasmon resonance frequencies, ω = ωspp, the wavevector does not tend to infinity,

as in lossless structures, and this feature was widely discussed in literature [2, 5]. For frequen-

cies approaching the surface plasmon resonance the decay factors of forward waves increase

dramatically, whereas the losses for backward modes decrease. In frequency domain above

ωspp the formation of quasi-bound modes [5] occurs due to the merge between corresponding

propagating and evanescent solutions. The detailed analysis of mode behavior in this frequency

domain will be discussed in further publications.

To further demonstrate the importance of the evanescent modes in the lossy case, we study

the behavior of the plasmon guide indices on the complex plain (β′, β′′) with increase of losses

for the free space wavelength of λ = 465nm, see Fig. 5(a). As it follows from the graph the

roots of dispersion relation, being real lossless case, become complex with loss increase. It is

also clear that backward mode has negative decay factors, which corresponds to the negative

energy flow, discussed in Ref. 13. Note that with loss increase the guide indices of all modes

become smaller, and since the backward antisymmetric is close to light-line in lossless case, it

disappears in some frequency domain in lossy case.

Figure 6 shows the dispersion curves for the structure with realistic losses. Only lower

order modes with smaller imaginary parts of the wavenumber are shown. In contrast to lossless

case, when the propagating waves existed either below or above the surface plasmon resonance

frequency ωspp, the modes are now spread across the whole frequency domain. In narrow

waveguides, i.e. d <∼ 35nm, for lossy systems two coexisting modes are observed - forward

symmetric and backward antisymmetric. For relatively wide slot waveguides, with d ∼ 100nm,

forward symmetric and antisymmetric modes coexist. For moderate slot widths [Fig. 6(b)],

three coexisting modes can be excited: forward symmetric and antisymmetric and backward

antisymmetric waves. Note that at lower frequencies counter-propagating antisymmetric waves

have similar real parts of wavenumbers, β′, which may be used in plasmonic couplers.

For forward waves above the surface plasmon resonance frequency the losses increase dra-

matically, the inverse behavior is observed for backward antisymmetric wave - losses are higher

at low frequencies, see insets on the Figs. 6(a-c).

We study the mode profiles for lossy system for the free space wavelength λ = 475 nm;

the results are presented on the Figs. 5(b-d). Due to losses the propagation constant becomes

complex and thus the mode profiles obtain oscillatory nature, which is clearly observed on the

Fig. 5(d). Also due to decrease of guide indices the modes become less localized compared to

the modes in lossless case.
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Fig. 6. Dispersion diagrams for slot waveguides in real systems: (a) d = 15 nm, (b) d = 40 nm,

(c) d = 100nm. Symmetric and antisymmetric modes are marked on the figures with ’s’ and

’a’, respectively. Numbered dots on the figure (b) indicate modes which will be studied further

in the paper: (1) backward antisymmetric mode with effective index 3.2-1.55j, (2)- forward

antisymmetric mode with effective index 6.8+7j, and (3) - symmetric mode with effective index

7.8+3.5j. Modes (1-3) coexist at the same frequency. Insets show the imaginary part of effective

index.

5 CONCLUSIONS
We have revisited the problem of the existence of plasmonic modes guided by symmetric metal-

dielectric-metal slot waveguides. In addition to the well-known symmetric and antisymmetric

forward propagating guided modes discussed in textbooks, we have revealed that, in a certain

parameter range, three guided modes may exist simultaneously at the frequencies below the

surface plasmon resonance; this includes an additional backward propagating antisymmetric

mode. The new waveguiding regime is interesting not only for the future studies of nonlinear

interactions and phase-matching between the plasmonic modes in slot waveguides, but also for

the realization of the negative refraction regime in planar metal-dielectric structures operating

in visible and at the nanoscale. We have demonstrated that losses may change dramatically the

properties of guided plasmonic modes in slot waveguides, and we have discussed mutual the

transformation of propagating and evanescent modes in lossy waveguides.
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