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Abstract: This paper deals with a simple mathematical model for the transmission dynamics of a vector-borne disease that incorporates
both direct and indirect transmission. The model is analyzed using dynamical systems techniques and it reveals the backward bifurcation
to occur for some range of parameters. In such cases, the reproduction number does not describe the necessary elimination effort of
disease rather the effort is described by the value of the critical parameter at the turning point. The model is extended to assess
the impact of some control measures, by re-formulating the model as an optimal control problem with density-dependent demographic
parameters. The optimality system is derived and solved numerically to investigate that there are cost effective control efforts in reducing
the incidence of infectious hosts and vectors.
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1. Introduction

Vector-borne disease such as dengue fever, West Nile virus,
viral encephalitis and malaria result from an infection trans-
mitted to humans and other animals by blood-feeding arthro-
pods. The arthropods (insects or arachnids) that most com-
monly serve as vectors include blood sucking insects such
as, mosquitoes, ticks, lice, and biting flies [2]. The ma-
jority of vector-borne diseases survive in nature by uti-
lizing animals as their vertebrate hosts, and are therefore
zoonoses. For a small number of zoonoses, such as malaria
and dengue, humans are the major host, with no signifi-
cant animal reservoirs. The vector receives the pathogen
from an infected host and transmits it either to an inter-
mediary host or directly to the human host. Vector-borne
diseases are prevalent in the tropics and subtropics and are
relatively rare in temperate zones, although climate change
could create conditions suitable for outbreaks of diseases
such as lyme disease, malaria, dengue fever, and viral en-
cephalitis in temperate regions. The literature dealing with
the mathematical theory on vector-borne diseases is quite

extensive. To date, many mathematical models of vector-
borne disease have been developed in the literature [6–8]

Recently, the phenomenon of the backward bifurca-
tions has arisen the interests in disease control (see [10,
11]). In this case, the basic reproduction number cannot
describe the necessary disease eradication effort any more.
Backward bifurcation in models, reveals that it is not suf-
ficient to consider the dynamics based only on the basic
reproduction number. Control measures for vector-borne
diseases are important because most are zoonoses that are
maintained in nature in cycles involving wild animals and
are not amenable to eradication. Therefore, control meth-
ods generally focus on targeting the arthropod vector. These
include undertaking personal protective measures by es-
tablishing physical barriers such as house screens and bed
nets; wearing appropriate clothing (boots, apparel that over-
lap the upper garments, head nets, etc.); and using insect
repellents. A lot of effort on controlling the diseases with
administration of antiviral treatment and vaccination has
been taken up over the years. Mathematical models have
been used to help understanding the dynamics of infec-
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tion and its control (see [3,12]). We obtain the backward
bifurcations results by an elementary approach and avoid
the center manifold theorem. However, the center manifold
approach remains essential for more complicated models
because of the technical complications of an elementary
approach.

In this paper, a basic model [1] is considered to in-
corporate some important epidemiological features. Anal-
ysis of the model reveals that the model exhibits the phe-
nomenon of backward bifurcation with standard incidence.
Then the model is further extended taking into account
the density-dependent demographic parameters and con-
trol functions to asses the impact of some control measures
by using optimal control techniques. The model will then
be used to determine cost-effective strategies for combat-
ting the spread of vector borne infection in a given commu-
nity. Finally, the optimality is taken to be to minimize the
number of infected hosts and the total number of vectors
population. In order to do this, we first show the existence
of an optimal control for the optimal control problem and
then we derive the optimality system. The optimality sys-
tem is solved numerically by using an efficient numerical
method.

The paper is organized as follows. In Section 2, we
present a formulation of the mathematical model. The ex-
istence of backward bifurcation is analyzed in Section 3.
In Section 4, the control problem is formulated. The neces-
sary conditions for an optimal control and the correspond-
ing states are derived using Pontryagin’s Maximum Prin-
ciple in Section 5. In Section 6, we solve the resulting op-
timality system numerically. Finally, the conclusions are
summarized in Section 7.

2. Model frame work

The total population sizes at timet for the humans hosts
and mosquitoes vector are denoted byNh(t) andNv(t),
respectively. The population of sizeNh(t) is divided into
three distinct classes: the susceptible population of size
Sh(t), the infectious population of sizeIh(t) and the re-
covered (or removed) population of sizeRh. ThusNh(t) =
Sh(t) + Ih(t) + Rh(t). The mosquitoes vector popula-
tion Nv(t) has the subclasses denoted bySv(t), andIv(t)
for the susceptible and infected classes, respectively. Thus,
Nv(t) = Sv(t) + Iv(t). The compartmental determinis-
tic mathematical model can be represented analytically by

the following nonlinear system of five ordinary differential
equations:

dSh

dt
= b1 −

β1ShIh
Nh

−
β2ShIv
Nh

− µhSh,

dIh
dt

=
β1ShIh
Nh

+
β2ShIv
Nh

− γhIh − δhIh − µhIh,

dRh

dt
= γhIh − µhRh,

dSv

dt
= b2 −

β3SvIh
Nh

− µvSv,

dIv
dt

=
β3SvIh
Nh

− δvIv − µvIv,

(1)

with initial conditions

Sh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Sv(0) ≥ 0, Iv(0) ≥ 0.(2)

The human host population is recruited (assumed suscepti-
ble) at a constant birth rateb1, β1 is the rate of direct trans-
mission of the disease,β2 is the vector mediated transmis-
sion rate,µh is the natural mortality rate of human. In-
fectious humans recover at a rateγh and suffer disease-
induced death at a rateδh. It is assumed that recovered
individuals acquire lifelong immunity against re-infection.
Similarly b2 is the constant recruitment rate of susceptible
vectors population by birth and susceptible mosquitoes be-
come infected by biting infected humans at a rateβ3, µv is
the natural mortality rate of vectors population. Infectious
vectors die due to disease at a rateδv [3].

The model (1) extends the model studied in [1] by in-
cluding the disease-induced mortality in humans and vec-
tors populations denoted by the parametersδh andδv re-
spectively, and standard incidence rate represented in the
system (1).

As Sh + Ih + Rh = Nh, so for convenience in cal-
culations we consider the following system of differential
equation for further analysis:

dSh

dt
= b1 −

β1ShIh
Nh

−
β2ShIv
Nh

− µhSh,

dIh
dt

=
β1ShIh
Nh

+
β2ShIv
Nh

− γhIh − δhIh − µhIh,

dNh

dt
= b1 − µhNh − δhIh,

dSv

dt
= b2 −

β3SvIh
Nh

− µvSv,

dIv
dt

=
β3SvIh
Nh

− δvIv − µvIv,

(3)

and determiningRh from Rh = Nh − Sh − Ih or from
dRh

dt = γhIh − µhRh.
Thus, in our proposed model the host and vector pop-

ulations satisfy the following linear equations

dNh

dt
= b1 − µhNh − δhIh, (4)
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and

dNv

dt
= b2 − µvNv − δvIv. (5)

It follows from (4) and (5) that

dNh

dt
≤ b1 − µhNh,

dNv

dt
≤ b2 − µvNv. (6)

Then

lim
t→∞

SupNh ≤
b1
µh

and lim
t→∞

SupNv ≤
b2
µv

. (7)

Thus the feasible region for the system (3) is

Ω = {(Sh, Ih, Nh, Sv, Iv) ∈ R5
+, Nh ≤

b1
µh

, Nv ≤
b2
µv

}.

Furthermore, the model (3) is well-posed epidemiolog-
ically and mathematically. Hence, it is sufficient to study
the dynamics of this basic model inΩ. The disease-free
equilibrium for the system (3) is,Ef = ( b1

µh

, 0, b1
µh

, b2
µv

, 0).
In epidemiological models, the basic reproduction num-

ber denoted byR0 is a key concept and is defined as the av-
erage number of secondary infection arising from a single
infected individual introduced into the susceptible class
during its entire infectious period in a totally susceptible
population [9]. The dynamics of the model (3) is analyzed
by R0 given by

R0 =
µhb2β2β3

µvb1(δv + µv)(γh + δh + µh)
+

β1

γh + δh + µh
.(8)

The threshold quantityR0 is the basic reproduction num-
ber of the disease. It can be derived from the Jacobian ma-
trix of the system (3) at the disease-free equilibriumEf

together with the assumption of local asymptotical stabil-
ity of Ef .

3. The endemic equilibria and backward
bifurcation

In order to find positive solutions of the system (3), the
following steps are taken. LetE1 = (S∗

h, I
∗

h, N
∗

h , S
∗

v , I
∗

v )
represents any arbitrary endemic equilibrium of the model
(3). Solving the equations in (3) at steady state gives,

S∗

h =
b1 − (γh + δh + µh)I

∗

h

µh
, N∗

h =
b1 − δhI

∗

h

µh
,

S∗

v =
b2(b1 − δhI

∗

h)

µhβ3I∗h + µv(b1 − δhI∗h)
,

I∗v =
µhb2β3I

∗

h

(µv + δv)
(

µhβ3I∗h + µv(b1 − δhI∗h)
) ,

whereK1 = (γh + δh + µh) andK2 = (µv + δv).
SubstitutingS∗

h, N
∗

h andI∗v into the second equation
of the system (3) to give an equation of the form

g(Ih) = AI∗2h +BI∗h + C = 0, (9)
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Figure 1 Bifurcation diagram of (1) showing a backward bi-
furcation. We considerb1 = 6, β1 = 0.01, β3 = 0.00072,
µh = 0.1, γh = 0.0004, δh = 0.01, b2 = 50, µv = 0.02, and
δv = 0.001 for numerical simulation.

with

A = K1K2

(

µhβ3(β1 − δh) + µvδh(δh − β1)
)

,

B = K1K2(µvb1β1 − 2µvb1δh + µvb1β3)+

K2b1β1(µvδh − µhβ3) +K1µhb2β2β3,

C = µvb
2
1K1K2(1−R0).

(10)

We note thatC < 0 if R0 > 1, C = 0 if R0 = 1,
andC > 0 if R0 < 1. If R0 = 1, thenC = 0 and there
is a unique nonzero solution of (9)Ih = −B/A which is
positive if and only ifA > 0 andB < 0 or A < 0 and
B > 0. Now, depending upon the signs ofA, B andC,
we may have unique, two or no positive roots. Thus, the
following result is established.

Theorem 2.1 The system (3) has a backward bifurcation
at R0 = 1 if and only if A > 0 andB < 0 provided
B2 − 4AC > 0.

If C > 0 and eitherB ≥ 0 or B2 < 4AC, there are
no positive solutions of (9) and thus there are no endemic
equilibria. Equation (9) has two positive solutions, corre-
sponding to two endemic equilibria, if and only ifC > 0,
orR0 < 1, andB < 0, A > 0, B2 > 4AC.

4. Optimal control of extended model

In this section, we extend the model (1) by including density-
dependent mortality rates in the vector and host popula-
tions, defined byµh = µ1 + µ2Nh andµv = µ3 + µ4Nv,
whereµ1 ≥ 0 andµ3 ≥ 0 are density-independent death
rates in the host and the vector populations, respectively,
and using mass action type incidence rate. Also,µ2 ≥ 0
andµ4 ≥ 0 are proportionality constants. These types of
per capita death rates are used in [5].

Similarly, the recruitment rate in each susceptible pop-
ulation is modified to include density effects. To do this,
we replace the previous recruitment rates byb1 → b1 +
αhNh and b2 → b2Nv, whereαh is the proportionality
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constant showing the impact of density on the recruitment
rate. In general, the inclusion of density-dependent recruit-
ment and death rates in population models tend to result
in different dynamical features. Average recruitment and
death rates are considered in most cases to reduce compli-
cations while analyzing the resulting models [15].

In the human host population, the associated forces
of infection are reduced by factors of

(

1 − u1(t)
)

and
(

1 − u2(t)
)

, respectively, whereu1(t) measures a basic-
practice blood-donation procedure that disallows the do-
nations of infected donors andu2(t) measures the level of
successful prevention efforts. The controlu1(t) represents
the implementation of a basic-practice blood-donation pro-
cedure that disallows the donations of infected donors [4].
The controlu2(t) represents the use of alternative preven-
tive measures to minimize or eliminate mosquito-human
contacts (such as the use of insect repellents or bed nets).
In most cases, vectors, such as, mosquitoes use favorable
climatic conditions to flourish [13]. Combating efforts of
vector-borne diseases are more effective and economical
if they are in phase with climatic changes. Thus, a time-
dependent mosquito control, preferably applied in seasons
favorable for mosquito outbreak, is considered. The con-
trol function u3(t) represents the level of larvacide and
adulticide used for mosquito control administered at mosquito
breeding sites to eliminate specific breeding areas. Con-
sequently, the reproduction rate of the mosquito popula-
tion is reduced by a factor of(1 − u3(t)) [14]. Also, it is
assumed that the mortality rate of vectors population in-
creases at a rate proportional tou3(t), wherer0 > 0 is a
rate constant. Taking into account the above assumptions
and extensions, we formulate an optimal control model for
a vector-borne disease in order to derive optimal preven-
tion and treatment strategies with minimal implementation
cost. The dynamics of the system (1) are governed by the
following system of five equations:

dSh

dt = b1 + αhNh − β1ShIh(1− u1)

−β2ShIv(1− u2)− (µ1 + µ2Nh)Sh,

dIh

dt = β1ShIh(1− u1) + β2ShIv(1− u2)− γhIh

−δhIh − (µ1 + µ2Nh)Ih,

dRh

dt = γhIh − (µ1 + µ2Nh)Rh,

dSv

dt = b2Nv(1− u3)− β3SvIh(1− u2)

−(µ3 + µ4Nv)Sv − r0u3Sv,

dIv

dt = β3SvIh(1− u2)− δvIv − (µ3 + µ4Nv)Iv

−r0u3Iv,

(11)

with initial conditions (2). Our objective functional for the
above state system is given by

J(u1, u2, u3) =

∫ T

0

(

A1Ih +A2Nv +
1

2
(B1u

2
1 +B2u

2
2

+B3u
2
3)
)

dt, (12)

subject to the state system given by (11). In the objective
functionalA1, represents the weight constant of infected
human andA2 represents the weight constant of the total
vectors population.B1, B2 andB3 are weight constants
for blood donor screening, personal protection (reduction
of vectors and human contacts) and vector control, respec-
tively. The terms1/2B1u

2
1, 1/2B2u

2
2 and1/2B3u

2
3 de-

scribe the costs associated with the blood donor screen-
ing, prevention of vector-host contacts and vector control,
respectively. The main objective in this optimal control
problem is to minimize the number of people who become
infected, the total number of vectors and the cost of im-
plementing the control by using possible minimal control
variablesui for i = 1, 2, 3. The cost associated with the
first control could come from donor screening systems.
Similarly, the cost associated with second control could
come from costs of vaccination, mosquito repellents, and
supply of basic needs. The cost associated with third con-
trol could come from applying pesticides. We assume that
the costs are proportional to the square of the correspond-
ing control function. Our aim is to find control functions
such that

J(u∗

1, u
∗

2, u
∗

3) = min
(u1,u2,u3)∈U

J(u1, u2, u3),

subject to the system (11), where the control set is de-
fined as

U = {(u1, u2, u3)|ui(t) is Lebesgue measurable on

[0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}. (13)

In order to find an optimal solution, first we should
find the Lagrangian and Hamiltonian for the optimal con-
trol problem(11) − (12). The Lagrangian of the optimal
problem is given by

L = A1Ih +A2Nv + 1/2(B1u
2
1 +B2u

2
2 +B2u

2
3).

We seek for the minimal value of the Lagrangian. To ac-
complish this, we define the HamiltonianH for the control
problem as follows:

H = L(Ih, Nv, u1, u2, u3) + λ1
dSh

dt + λ2
dIh
dt

+λ3
dRh

dt + λ4
dSv

dt + λ5
dIv
dt .

(14)

We prove the existence of an optimal control for system
(11) and then derive the optimality system.

5. Existence of control problem

For the existence of our control problem we state and prove
the following theorem.

Theorem 5.1 There exists an optimal controlu∗ = (u∗

1, u
∗

2, u
∗

3) ∈
U such that

J(u∗

1, u
∗

2, u
∗

3) = min
(u1,u2,u3)∈U

J(u1, u2, u3),

subject to the control system (11) with the initial condi-
tions (2).
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Proof. To prove the existence of an optimal control pair
we use the result in [16]. Note that the control and the state
variables are nonnegative values. In this minimizing prob-
lem, the necessary convexity of the objective functional in
u1, u2 andu3 are satisfied. The set of all the control vari-
ables(u1, u2, u3) ∈ U is also convex and closed by defi-
nition. The optimal system is bounded which determines
the compactness needed for the existence of the optimal
control. In addition, the integrand in the functional (12),
A1I(t) +A2Nv(t) + 1/2(B1u

2
1 +B2u

2
2 +B3u

2
3) is con-

vex on the control setU . Also we can easily see that, there
exist a constantρ > 1 and positive numbersω1, ω2 such
that

J(u1, u2, u3) ≥ ω1(|u1|
2 + |u2|

2 + |u3|
2)ρ/2 − ω2,

because, the state variables are bounded, which completes
the existence of an optimal control.

To find the optimal solution, we apply Pontryagin’s
Maximum Principle [17] to the hamiltonian (14), such that
if (x, u) is an optimal solution of an optimal control prob-
lem, then there exists a non trivial vector functionλ =
(λ1, λ2, ........, λn) satisfying the following inequalities.

dx
dt = ∂H(t,x,u,λ)

∂λ ,

0 = ∂H(t,x,u,λ)
∂u ,

λ′ = −∂H(t,x,u,λ)
∂x .

(15)

Now we apply the necessary conditions to the Hamiltonian
H in (14).

Theorem 5.2 Let S∗

h, I
∗

h, R
∗

h, S
∗

v , andI∗v be optimal state
solutions with associated optimal control variables(u∗

1, u
∗

2, u
∗

3)
for the optimal control problem (11)-(12). Then there exist
adjoint variablesλi, for i=1, 2...5, satisfying

λ′

1 = −αhλ1 + (λ1 − λ2)
(

β1(1− u1)Ih + β2(1− u2)Iv
)

+(µ1 + µ2Nh)λ1 + µ2λ1Sh + µ2λ2Ih + λ3µ2Rh,

λ′

2 = −αhλ1 −A1 + β1(λ1 − λ2)(1− u1)Sh + µ2λ1Sh

+(γh + δh)λ2 + (µ1 + µ2Nh)λ2 + µ2λ2Ih − γhλ3

+µ2λ3Rh + β3(λ4 − λ5)(1− u2)Sv,

λ′

3 = −αhλ1 + µ2λ1Sh + µ2λ2Ih + (µ1 + µ2Nh)λ3

+µ2λ3Rh,

λ′

4 = −A2 − b2λ4(1− u3) + β3(λ4 − λ5)(1− u2)Ih

+(µ3 + µ4Nv)λ4 + µ4λ4Sv

+γ0λ4u3 + µ4λ5Iv,

λ′

5 = −A2 + β2(λ1 − λ2)(1− u2)Sh − b2λ4(1− u3)

+µ4λ4Sv + λ5δv + (µ3 + µ4Nv)λ5 + µ4λ5Iv

+r0λ5u3.

(16)

with transversality conditions (or boundary conditions)

λi(T ) = 0, i = 1, 2, ..., 5. (17)

Furthermore, optimal controlsu∗

1, u∗

2, andu∗

3 are given as
follows:

u∗

1 = max{min{
β1(λ2 − λ1)S

∗

hI
∗

h

B1
, 1}, 0}, (18)

u∗

2 = max{min{
β2(λ2 − λ1)S

∗

hI
∗

v + β3(λ5 − λ4)S
∗

vI
∗

h

B2
,

1}, 0}, (19)

u∗

3 = max{min{
b2λ4N

∗

v + r0(λ4S
∗

v + λ5I
∗

v )

B3
, 1}, 0}.(20)

Proof. To determine the adjoint equations and the transver-
sality conditions we use the Hamiltonian (14). From set-
ting Sh(t) = S∗

h(t), Ih(t) = I∗h(t), Rh(t) = R∗

h(t),
Sv(t) = S∗

v (t), andIv(t) = I∗v (t), and differentiating the
Hamiltonian (14) with respect toSh, Ih, Rh, Sv, andIv,
respectively, we obtain (16). By solving the equations

∂H

∂u1
= 0,

∂H

∂u2
= 0 and

∂H

∂u3
= 0, (21)

on the interior of the control set and using the optimality
conditions and the property of the control spaceU we can
derive (18)-(20).

Here we call formulas (18)-(20) foru∗ = (u∗

1, u
∗

2, u
∗

3)
the characterization of the optimal control. The optimal
control and the state are found by solving the optimality
system, which consists of the state system (11), the ad-
joint system (16), boundary conditions (1) and (17), and
the characterization of the optimal control (18)-(20). To
solve the optimality system we use the initial and transver-
sality conditions together with the characterization of the
optimal control(u∗

1, u
∗

2, u
∗

3) given by (18)-(20). In addi-
tion, the second derivative of the Lagrangian with respect
to u1, u2 andu3, respectively, are positive, which shows
that the optimal problem is minimum at controlsu∗

1, u∗

2

andu∗

3.

6. Numerical results and discussion

In this section we use an iterative method to find the
numerical solution of our control problem. The numeri-
cal algorithm presented below is a semi-implicit finite dif-
ference method. We discretize the interval[t0, tf ] at the
pointsti = t0+ il (i = 0, 1, ..., n), wherel is the time step
such thattn = tf . Next, we define the state and adjoint
variablesSh(t), Ih(t), Rh(t), Sv(t), Iv(t), λ1(t), λ2(t),
λ3(t), λ4(t), λ5(t) and the controlsu1(t), u2(t), u3(t) in
terms of nodal pointsSi

h, Iih,Ri
h,Si

v, Iiv,λi
1,λi

2,λi
3,λi

4,λi
5,

ui
1, ui

2 andui
3. Now a combination of forward and back-

ward difference approximation is used as follows :

The method, developed by [18] and presented in [19–22],
to adapt the numerical solution of our optimal control prob-
lem is given by:

Si+1
h − Si

h

l
= b1 + αh(S

i+1
h + Iih +Ri

h)
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−β1S
i+1
h Iih(1− ui

1)− β2S
i+1
h Iiv(1− ui

2)

−[µ1 + µ2(S
i+1
h + Iih +Ri

h)]S
i+1
h ,

Ii+1
h − Iih

l
= β1S

i+1
h Ii+1

h (1− ui
1) + β2S

i+1
h Iiv(1− ui

2)

−γhI
i+1
h − δhI

i+1
h − [µ1 + µ2(S

i+1
h

+Ii+1
h +Ri

h)]I
i+1
h ,

Ri+1
h −Ri

h

l
= γhI

i+1
h − (µ1 + µ2(S

i+1
h + Ii+1

h

+Ri+1
h ))Ri+1

h ,

Si+1
v − Si

v

l
= b2(S

i+1
v + Iiv)(1− ui

3)− β3S
i+1
v Ii+1

h (1− ui
2)

−(µ3 + µ4(S
i+1
v + Iiv))S

i+1
v − r0u

i
3S

i+1
v ,

Ii+1
v − Iiv

l
= β3S

i+1
v Ii+1

h (1− ui
2)− δvI

i+1
v

−(µ3 + µ4(S
i+1
v + Ii+1
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3I
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v .

By using a similar technique, we approximate the time
derivative of the adjoint variables by their first-order backward-
difference and we use the appropriated scheme as follows
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1
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1 + µ2λ
n−i−1
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n−i−1
1
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The algorithm describing the approximation method for
obtaining the optimal control is the following:

Algorithm

step 1 :
Sh(0) = Sh0, Ih(0) = Ih0, Rh(0) = Rh0, Sv(0) =
Sv0, Iv(0) = Iv0, λi(tf ) = 0 (i=1, ..., 5),u1(0) =
u2(0) = u3(0) = 0.

step 2 :
for i=1, ..., n-1, do :

Si+1
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+µ2N
i+1
h − αh]},
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1
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ui+1
3 = min(1,max(Ri+1

3 , 0)),

end for
step 3 :

for i=1, ..., n-1, writeS∗

h(ti) = Si
h, I∗h(ti) = Iih,

R∗

h(ti) = Ri
h, S∗

v (ti) = Si
v, I∗v (ti) = Iih, u∗

1(ti) = ui
1,

u∗

2(ti) = ui
2, u∗

3(ti) = ui
3.

end for

To compare the disease progression before and after the
controls, we simulate the model using the following pa-
rameters values:b1 = 2.5 × 10−2 day−1, αh = 0.03
day−1, b2 = 0.4 day−1, µ1 = 4 × 10−5 day−1, µ2 =
2×10−7 day−1,µ3 = 0.15 day−1,µ4 = 2.8×10−4day−1,
δh = 0.03 day−1, δv = 0.04 day−1, γh = 3.7 × 10−3

day−1, β1 = 0.0004, β2 = 0.0006, β3 = 0.009, r0 =
0.02.

The graphs from simulation, given below, help to com-
pare the infected host population, the total vector popula-
tion before and after the controls. When viewing the graphs,
remember that each of the individuals without control is
marked by un-dashed lines. The control individuals are
marked by dash-dotted lines. As it is shown in Fig.2, ap-
plication of control reduces the disease burden. The solid
line denotes that there are more infected individuals when
the control is not implemented for the infected individu-
als. The control vanishes in day100 and there remains a
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Figure 2 Simulations of the control problem, illustrating the
populations of infected individualsIh with both controls and
without controls.
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Figure 3 Simulations of the control problem, illustrating the to-
tal vectors populationNv with both controls and without con-
trols.

very small number of infected hosts. Thus, the number of
infected individuals after the control is smaller than thatof
infected individuals before the control. Fig.3 represents
the total vector population in the two systems (1) with-
out controls and (11) with controls. The total host popula-
tion with the controls is more sharply decreased than with-
out controls and becomes very small. The techniques in
[23,24] can be used for solving a wide range of problems
whose mathematical models yield system of nonlinear dif-
ferential equations.

7. Conclusion

In the present manuscript, we extended the model pro-
posed above by taking into account the density-dependent
demographic parameters and control functions to asses the
impact of some control measures by using optimal control
techniques which incorporate some important epidemio-
logical features. The disease propagates from the infected
to the susceptible in two different ways, through horizontal
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transmission or direct contact and through indirect trans-
mission. We have examined the model and have shown by
elementary algebraic means how to analyze the existence
of multiple endemic equilibria when the basic reproduc-
tion number is less than unity. As the model with standard
incidence exhibits backward bifurcation, soR0 < 1 is not
sufficient to eliminate the disease from the population and
we need another threshold less than one andR0 should
be reduced below this threshold to eliminate the disease
from the population. This fact is demonstrated in the back-
ward bifurcation diagram. We also determined the cost-
effective strategies for combatting the spread of a vector
borne infection in some community. By the application of
Pontryagins Maximum Principle, we performed the opti-
mal analysis of the non-autonomous control model con-
sidering three controls, one for mosquito-reduction strate-
gies and the other two for personal (human) protection and
blood screening, respectively. Furthermore, we minimized
the number of infected hosts and the total number of vector
population by using three control variables. We have in-
vestigated the dynamics by an efficient numerical method
based on optimal control to identify the best strategy of a
vector-borne disease in order to reduce infection and pre-
vent vector host as well as direct contacts by using three
controls. The results support the hypothesis that preven-
tive practices are very effective in reducing the incidence
of infectious hosts and vectors.
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