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ABSTRACT 

Lossless audio coding aims at achieving the lowest possible bitrate for transmission or storage of audio without any 
loss of information. This is usually done by first removing redundancy from the audio signal, and then applying 
entropy coding to the residual signal. Linear prediction (LP), when applied to monophonic signals, is a very 
effective way to remove redundancy. It produces minimum-phase predictors that are efficiently compressed by 
combining vector quantization with a meaningful representation of the LP coefficients (such as the LSFs). When 
applied to stereo signals however, joint channel prediction often produces non-minimum-phase predictors, whose 
quantization requires a high bit rate and poses stability problems. In this paper, we show that backward estimation of 
the LP coefficients (where those are estimated on the past decoded signal) solves most of the problems associated 
with the use of joint channel prediction in a lossless audio coder. 

 

1. INTRODUCTION 

The aim of audio coding in general is to reduce the 
amount of data necessary to transmit or store an audio 
signal. Lossy coding schemes are generally based on 
subband or transform coding and provide relatively high 
compression ratios. For example, MPEG audio coders, 
as exemplified by the MP3 format, can achieve 
compression ratios of up to 16 without significant loss 
in perceptual quality. However, there are also a number 
of applications that require perfect reconstruction of the 
original signal, which requires the use of lossless 
compression techniques. 

Lossless audio coders usually work by first removing 
redundancy from the audio signal, then applying 
entropy coding to the residual signal. Linear prediction 
(LP), when applied to monophonic signals, is a very 
effective way to remove redundancy. It produces 
minimum-phase predictors that are efficiently 
compressed by combining vector quantization with a 
meaningful representation of the LP coefficients (such 
as the LSFs [8]). In the case of a stereo signal however, 
approaches such as the "mid/side" (where a standard 
linear predictor is applied to the middle channel, and 
entropy coding is applied both to the residual and side 
signals) or joint stereo coding [6] are generally preferred 
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to joint channel prediction. This is mainly because joint 
channel prediction often gives rise to non-minimum 
phase predictors, whose quantization requires a high bit 
rate and poses stability problems. 

In this paper, we show that backward estimation of the 
LP coefficients solves most of the problems associated 
with the use of joint-channel linear prediction. In the 
backward approach, the LP coefficients are estimated on 
the past decoded signal, and no bit rate is dedicated to 
their transmission. Therefore, it is not necessary 
anymore to make a compromise between the bit rate, the 
order of the predictors (which conditions their gain), 
and the stability of the decoded synthesis filters. As a 
consequence, the compression ratios obtained by the 
lossless audio coder are improved. 

2. LOSSLESS AUDIO CODING 

The general framework for most lossless audio coders is 
shown in Figure 1. The input audio signal is first 
decomposed into consecutive blocks or frames. The 
frame length depends on the algorithm, but it is 
typically comprised between 10 and 80 ms [4]. Constant 
frame lengths are common, but some algorithms use 
variable frame lengths. In that case, the frame length has 
to be transmitted as side information. 

 

 

Figure 1: Basic operations of lossless encoding 

The next step in the encoding process is to remove 
redundancy from the audio signal without removing 
information, so that a minimum amount of data will 
have to be encoded and transmitted or stored. This is 
generally done by decorrelating the audio samples x[n] 
within a frame. Some algorithms use linear transforms 
for that purpose, others use linear prediction. Those two 
approaches are described in more details below. The 
result of the decorrelation is a residual or error signal 
e[n], which forms the input of an entropy coder. The 
error signal e[n] has an average amplitude that is much 
smaller than that of the input signal x[n], and a 
relatively flat power spectral density. A lower amplitude 
means that fewer bits are needed to encode each sample 
e[n]. To be optimal, the choice of the entropy coder 
should depend on the distribution of e[n]. 

2.1. Linear prediction 

Linear prediction is one of the most common techniques 
used in lossless audio coders to decorrelate the audio 
samples [10-12]. Using linear prediction, an estimation 

][ˆ nx  of the present sample x[n] is given by a linear 
combination of the K previous values ]1[ −nx , ]2[ −nx , 
…, ][ Knx −  under the form: 
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The optimal predictor is the set of { }Kkak ≤≤1,  
which minimizes the variance of the prediction error 

][ˆ][][ nxnxne −= . This problem leads to the well-
known Yule-Walker equations, which involve the 
autocorrelations of x[n] and can be resolved by the 
Durbin-Levinson iterative algorithm [7]. 

It can be shown that the optimal linear predictor for a 
given signal x[n] also decorrelates the signal, i.e. that 
the prediction error ][ˆ][][ nxnxne −=  has a relatively 
flat power spectral density provided the order K is 
sufficiently large. The maximum amplitude of the error 
signal e[n] also tends to decrease as the prediction order 
K increases. 

The prediction gain Gp is a measure that quantifies the 
efficiency of a linear predictor [1]. It is defined as: 
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where 2
xσ  is the energy of the signal, and 2

eσ  is the 
energy of the prediction error. 

2.2. Orthogonal transform 

Another way to remove redundancy from the audio 
signal is to encode a first approximation ][ˆ nx of the 
input signal x[n], and then to encode the difference 
between x[n] and ][ˆ nx . The first approximation ][ˆ nx  
can be obtained by transform coding of x[n] [4]. 
Transform coders generally use an orthogonal transform 
- such as the MDCT (modified discrete cosine 
transform) - to obtain a spectral representation X[k]. The 
coefficients X[k] are quantized efficiently using a 
perceptually relevant bit allocation procedure. The 
temporal signal ][ˆ nx  is recovered by computing the 
inverse transform of a quantized version ][ˆ kX  of X[k]. 

Multichannel 
audio signal 

Framing Entropy 
coding 

Intra and/or 
interchannel 
decorrelation 

x[n] e[n] Compressed 
signal 
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The quantization process has introduced some noise. 
However, if the difference e[n] between x[n] and ][ˆ nx  
is also transmitted, and provided that this error is 
encoded without any loss (as in Figure 1), then the 
original signal can also be recovered exactly without 
any loss of information. This approach can be seen as an 
embedded coder, with two levels of transmitted 
information: 1) the approximation from the transform 
coder, and 2) the error signal. The main advantage of 
this approach is that ][ˆ nx  is a low bit rate representation 
of x[n] with a certain level of preserved subjective 
quality. This feature may be useful in some applications. 
However, this approach is generally computationally 
more expensive than other approaches based merely on 
linear prediction plus entropy coding. Furthermore, 
embedded solutions are generally less efficient than 
non-embedded ones in terms of bit rate and compression 
ratio. 

Since our goal here is to achieve the highest possible 
compression ratios, we do not consider embedded 
solutions. In what follows, we assume that linear 
prediction is used for decorrelation in the lossless 
coding algorithm. 

2.3. Entropy coding 

The linear prediction error is known to approximately 
follow a Laplace distribution [10]. Golomb-Rice codes 
[3,9] are variable-length codes that are very well suited 
for that kind of distribution. 

Golomb-Rice codes make use of the fact that low-level 
samples need fewer bits to be represented. Since there 
are much more low-level samples than high-level 
samples in the linear prediction error, this results in a 
reduction in bit rate. For example, let us consider the 
sequence of values 9, -12, -15 and 56. When the signal 
is encoded with 16 bits per sample, which is standard 
for most audio signals, 4*16=64 bits in total are 
required to represent the 4 samples. It would be more 
effective to encode each of the samples separately using 
the minimum necessary number of bits. In that case, 
only 5 bits (including the sign) for the first three values 
and 7 for the last one would be necessary. This makes a 
total of 22 bits which is much lower that 64. However, 
without any side information, the decoder would be 
unable to separate the 4 codes and to interpret the 
sequence of bits correctly. Golomb codes make it 
possible to use different code lengths for each sample, 
while allowing the decoder to identify the beginning, 

the end and the structure of each code. Specifically, an 
integer n is represented by a three-field code that 
consists of: 

1. a sign bit; 

2. a prefix, which is the unary code for the 
quotient of the integer division “n\b” of n by b, 
where b is the Golomb parameter (i.e., a 
sequence of n\b 1's followed by a 0); 

3. a suffix, composed of the log2b bits required to 
represent the remainder of n\b. 

Rice codes are a special case of Golomb codes where b 
is a power of 2. This property allows for many 
simplifications in the encoding and decoding processes. 
The value of b that provides maximum coding 
efficiency depends on the distribution of the input. 
Since speech and audio signals are non-stationary by 
nature, this parameter should be updated regularly. 

3. JOINT CHANNEL PREDICTION 

Stereo audio signals generally exhibit correlation both 
within and between channels. Some lossless audio 
codecs work separately on the left and the right 
channels, they therefore do not take advantage of the 
correlation between channels. Other codecs encode 
separately the sum and the difference between the 
channels. When the two channels are highly correlated, 
the difference is small and can be encoded at a lower bit 
rate. Yet other coders encode only two of the following 
signals: left channel, right channel, and difference 
between channels. The two signals are chosen such as to 
minimize the bit rate. 

In [1] and [5], joint-channel stereo linear prediction was 
proposed in order to perform simultaneously both intra 
and interchannel decorrelation. We follow this approach 
here. We call x1[n] the samples from the left channel, 
and x2[n] the samples from the right channel. Each 
sample from the left channel x1[n] is estimated by a 
linear combination of the Ka past values x1[n-k] and the 
Kb past values x2[n-k], as given by 
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where the set of {ak} is called the autopredictor and the 
set of {bk} is called the crosspredictor. As in classical 
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monophonic linear prediction, we want to minimize the 
variance of the prediction error ][ˆ][][ 111 nxnxne −= . 
Minimizing this error with respect to ak (and bk) leads to 
(4) (and (5)), respectively: 
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where rpq[k]=E{xp[n]xq[n-k]} is the correlation function 
between signals xp[n] and xq[n]. Equations (4) and (5) 
can be rearranged in a matrix form: 
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with the correlations and coefficients vectors: 
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The autocorrelation matrices R11 and R22 and the 
crosscorrelation matrices R12 and R21 are Toeplitz and 
symmetric matrices. The optimal autopredictor and 
crosspredictor are given by inverting the 
(Ka+Kb)×(Ka+Kb) matrix R1 in the linear system given in 
Equation (6). In the special case where Ka=Kb, it is 
possible to use the multichannel Durbin-Levinson 
algorithm [7]. When Ka≠Kb, the symmetry of the matrix 
allows the use of the Cholesky decomposition [5]. 

On the right channel, as both channels are interleaved, 
the new sample on the left channel x1[n] can be used to 
predict the value of x2[n] [1,5]. The crosspredictor {ck} 
consequently starts at index 0 rather than at index 1, as 
shown in the following equation expressing the intra 
and inter prediction for the right channel: 
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Minimization of the variance of the prediction error 
with respect to ck and dk leads to a set of equations 
similar to (6). These equations can be expressed in a 
matrix form involving a matrix R2. As for the left 
channel, R2 is symmetric and can be inverted using the 
Cholesky decomposition. 

In [5], some compression ratios were given for a 
lossless audio coder using such forward-estimated joint-
channel stereo linear predictors. The prediction 
coefficients were encoded by scalar quantization with 
12 bits per coefficient. This is much more than what is 
needed to quantize a monophonic linear predictor, using 
line spectral pairs (LSPs) for example [8]. In fact, 
simulations showed that the resolution of (6) does not 
always lead to minimum-phase synthesis filters. 
Therefore, efficient quantization techniques such as 
those combining the LSP representation with vector 
quantization cannot be used. Furthermore, the 
quantization noise should stay low enough to guarantee 
the stability of the decoded synthesis filter. Therefore, 
the bit rate required to transmit forward-estimated joint-
channel stereo linear predictors is necessarily high. This 
puts this technique at a serious disadvantage. 

4. BACKWARD ANALYSIS 

We saw in the previous section that the transmission of 
joint-channel predictors estimated using the forward 
approach poses a number of problems related to 
efficiency and stability. To get around these problems, 
we propose to use the backward approach that was first 
introduced in order to limit the algorithmic delay of a 
lossy speech coder [2]. In the backward approach, the 
prediction coefficients are estimated from the past 
decoded signal, which is available both at the encoder 
and the decoder. More specifically, the prediction 
coefficients are estimated on the past frame of audio 
signal instead of current frame, but the resulting 
predictor is applied to the current frame. Since the 
encoder and the decoder can perform exactly the same 
operation on the past audio signal, there is no need to 
quantize and transmit the prediction coefficients as in 
the forward approach. Consequently, there is also no 
need to limit the prediction orders Ka, Kb, Kc, and Kd as 
in the forward approach (except of course for the sake 
of computational complexity). 
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4.1. Correlations estimates 

As mentioned in section 3, two matrices of 
autocorrelation and crosscorrelation R1 and R2 are 
inverted in order to obtain the stereo linear prediction 
coefficients. In the forward approach, the correlation 
matrices are typically estimated on a segment of audio 
samples weighted by a data window, this window being 
centered on the analysis frame. In the backward 
approach, such a weighting puts too much emphasis on 
the value of older samples [2], and an asymmetric 
window that favors more recent samples is preferable. 
In the present work, the hybrid data window represented 
on Figure 2 is used to compute the correlations. The left 
part of the window is the first half of a Hamming 
window. The right part of the window is a quarter 
period of a cosine function, characterized by a shorter 
and faster decrease. In our implementation, the data 
window is 25 ms long and the cosine section takes only 
5% of this length. Note that this window is highly 
asymmetrical, its maximum value being much closer to 
the end of the window. 

 

 

 

 

Figure 2: The hybrid data window used for 
backward LP analysis 

As in conventional LP analysis, a lag window is applied 
to the autocorrelation sequences, and a noise floor at      
-40 dB is added on both channels in order to make sure 
that the correlation matrices are invertible. 

4.2. Subframes analysis 

Since the prediction coefficients are not transmitted 
anymore in the backward approach, the LP analysis can 
be performed more frequently than in the forward 
approach. Frequent adaptation has a positive impact on 
the compression ratio because the LP model is more 
closely adapted to the audio signal. The only negative 
impact is on complexity. In our implementation, the 
frames are 20 ms long, and the LP adaptation rate is 
once every 5 ms. The linear predictors are kept constant 
over a 5 ms subframe.  

The encoder and decoder use exactly the same scheme 
to compute the predictors on each channel. 

5. RESULTS 

In this section, the impact of backward analysis on the 
prediction gain and on the compression ratio of a 
lossless stereo encoder is quantified. 

Table 1 gives the prediction gains obtained by the 
forward and backward approaches on various audio 
signals. The autoprediction and interprediction orders 
are Ka=Kd=20 and Kb=Kc=10 for both approaches. The 
forward prediction coefficients are computed using a 
symmetric Hamming window centered on the frame, 
and they are updated once every 20 ms. Note that they 
are not quantized in that experiment. This means that 
the prediction gains reported for the forward approach 
are the best achievable gains for the orders under 
consideration. It is clear that quantizing the predictors 
would result in a reduction of the prediction gain, the 
magnitude of which depends on the number of bits used. 

 
J.S. Bach [14] Forward Backward  
Left channel 30.68 dB 30.54 dB 

Right channel 31.83 dB 31.69 dB 

S. Vega [20]   

Left channel 22.44 dB 22.12 dB 

Right channel 30.08 dB 29.93 dB 

E. Clapton [16]   

Left channel 25.38 dB 24.98 dB 

Right channel 27.71 dB 27.16 dB 

Table 1: Prediction gains for the forward and 
backward approaches 

Table 2 gives the compression ratios obtained by the 
forward and backward approaches on the same signals. 
In this experiment, the forward prediction coefficients 
are scalarly and uniformly quantized using 11 bits per 
coefficient. Since there are 60 prediction coefficients, 
11*60 = 660 bits must be sent for each 20 ms frame. 
This represents a significant overhead for the forward 
approach, but as it was said above this overhead is quite 
unavoidable. 

overlap Frame i-1 Frame i 

Hybrid data window 

cosine Hamming 
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 Forward Backward 
J.S. Bach 2.00 2.10 

S. Vega 2.38 2.50 

E. Clapton 1.52 1.57 

Table 2: Compression ratios obtained by the 
forward and backward approaches 

Table 1 shows that the prediction gain is slightly lower 
with the backward approach than it is with the forward 
approach. However, Table 2 also shows that the bit rate 
reduction due to not transmitting the coefficients in the 
backward case counterbalanced the decrease in 
predictor performance involved by the backward 
approach. Hence, the compression ratios are in the end 
improved by backward estimation. 

A clear advantage of the backward approach is that, 
since it is not necessary anymore to transmit the 
prediction coefficients, one may set higher prediction 
orders without increasing the bit rate. Simulations were 
performed with different orders on a track extracted 
from [20]. The results presented in Table 3 show that: 

• Increasing the prediction orders improves the 
compression ratio; 

• Above a certain order, this improvement is not 
significant anymore and is obtained at the cost of a 
higher computational complexity (the algorithm 
must invert a larger matrix). 

This validates our choice to use 20 for the 
autoprediction orders and 10 for the interprediction 
orders. 

 
Prediction order 

(Ka=Kd) / (Kb=Kc) 

Compression ratio 

20/10 1.4511 

30/10 1.4525 

30/30 1.4534 

40/40 1.4544 

Table 3: Influence of the prediction order on the 
compression ratio 

 

Finally, let us compare the performances of our lossless 
audio coder with the performances of some state of the 
art algorithms on various types of audio signals. We 
choose to use LPAC [12] and Monkeys audio [13] as 
reference codecs, because both of them achieve the 
highest compression ratios on most audio signals. Table 
4 shows again that the backward approach outperforms 
the forward approach in terms of compression ratio. 
Table 4 also shows that the results obtained by our 
coder using backward estimation of the joint-channel 
stereo linear predictors are comparable to the results 
obtained by the reference codecs. 

 
 LPAC Monkeys Forward Backward

Luka 
[20] 

1.422 1.490 1.422 1.452 

Born in the 
USA [19] 1.424 1.461 1.390 1.418 

Training 
[18] 1.582 1.621 1.532 1.568 

Cosmic girl 
[17] 1.521 1.578 1.510 1.540 

Polonaise 
[15] 2.610 2.700 2.200 2.284 

Table 4: Comparison with some state-of-the-art 
lossless audio coders 

Note that our lossless audio coder is composed only of a 
joint-channel stereo linear predictor followed by a Rice 
code. The frame length is fixed, and the Golomb 
parameter is updated once per subframe. Furthermore, 
our coder uses a very straightforward implementation of 
the Rice code. The two only special features that we 
implemented are: 

• Coding of zero subframes (an all-zero subframe is 
indicated by a zero Golomb parameter); 

• Coding of prediction residuals exceeding the 16 bits 
limits (when the absolute value A of a residual 
sample is above 216, it is transmitted as the code for 
216 followed by the code for A-216. 

Obviously, there is still plenty of room for improvement 
in our coder. 
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6. CONCLUSION 

In this paper, we have shown that backward estimation 
of the LP coefficients solves most of the problems 
associated with the use of joint-channel stereo linear 
prediction in a lossless audio coder. In the backward 
approach, the prediction coefficients are estimated on 
the past decoded signal. Since this operation is possible 
both at the encoder and the decoder, no bit rate is 
dedicated to their transmission. Therefore, there is no 
need anymore to make a compromise between the bit 
rate, the order of the predictors (which conditions their 
gain), and the stability of the decoded synthesis filters. 
As a consequence, the compression ratios obtained by 
the lossless audio coder are improved. 
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