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We consider backward stochastic differential equations with convex
constraints on the gains (or intensity-of-noise) process. Existence and
uniqueness of a minimal solution are established in the case of a drift
coefficient which is Lipschitz continuous in the state and gains processes
and convex in the gains process. It is also shown that the minimal solution
can be characterized as the unique solution of a functional stochastic
control-type equation. This representation is related to the penalization
method for constructing solutions of stochastic differential equations,
involves change of measure techniques, and employs notions and results
from convex analysis, such as the support function of the convex set of
constraints and its various properties.

1. Introduction and summary. The standard theory for stochastic dif-
ferential equations (SDE) of the type

dX�t� = −f�t�X�t��dt+ σ ′�t�X�t��dB�t�� 0 ≤ t ≤ T(1.1)

with initial condition X�0� = x ∈ R, driven by the d-dimensional Brownian
motion B�·�, was developed by Itô (1942, 1946, 1951). It asserts that (1.1) has a
pathwise-unique solution X�·�, a measurable process on the given probability
space �
�� �P� that satisfies

E
[

sup
0≤t≤T


X�t�
2
]
<∞(1.2)

and is adapted to the filtration F generated by the driving Brownian motion
B�·�, provided that the drift f� 0�T� ×R → R and dispersion σ � 0�T� ×R →
R
d coefficients satisfy appropriate Lipschitz and growth conditions; see, for

instance, Karatzas and Shreve (1991), Section 5.2.
In a very interesting paper, Pardoux and Peng (1990) recently developed a

similar theory for equations analogous to (1.1), but in which one specifies a
terminal rather than initial condition. More precisely, with f�·� ·� and σ�·� ·� as
above and with ξ a square-integrable and � �T�-measurable random variable,
they showed that there exists a unique pair of F-adapted processes �X�·��Y�·��
that satisfy (1.2),

E
∫ T

0
�Y�t��2 dt <∞�(1.3)
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as well as the backward stochastic differential equation (BSDE),

X�t� = ξ +
∫ T

t
f�s�X�s��ds

−
∫ T

t
σ�s�X�s�� +Y�s��′ dB�s�� 0 ≤ t ≤ T�

(1.4)

In other words, one tries to “steer” the state process X� 0�T� ×
→ R to the
specified terminal condition X�T� = ξ at time t = T, while keeping it adapted
to the filtration F generated by the driving Brownian motion B�·�. The abilility
to accomplish this depends crucially on the freedom to choose the “gains,” or
intensity-of-noise, process Y� 0�T� × 
 → R

d, again in a nonanticipative
manner. Indeed, one could try to solve the SDE (1.1) using a time reversal,
that is, for the process X̃�s� �=X�T−s�, 0 ≤ s ≤ T, starting with the condition
X̃�0� =X�T� = ξ, but the resulting state process X�·� would then be adapted
to the “reversed-time” filtration �̃ �s� �= σ�W�u�−W�s�� s ≤ u ≤ T�, 0 ≤ s ≤ T,
not to F.

The freedom to choose the “gains” process Y�·� as an element of control, is
the crucial difference between the theory for BSDEs and the more classical Itô
theory for SDEs. Suppose, however, that the controller’s ability to choose this
gains process Y�·� is limited, say, by the requirement that Y�·� take values in
a given nonempty, closed convex set K of R

d. Then it is, generally, no longer
possible to find a pair of F-adapted processes �X�·��Y�·�� that satisfy this
requirement, in addition to (1.2)–(1.4). One needs to give the controller free-
dom to take more swift “corrective action,” captured by an F-adapted process
C� 0�T� ×
→ 0�∞� with increasing, right-continuous paths and

E�C�T��2 <∞�(1.5)

here C�t� represents the cumulative effect of the corrective actions taken by
time t ∈ 0�T�. More precisely, one seeks a triple of F-adapted processes
�X�·��Y�·��C�·�� as above, that satisfies almost surely the analogue

X�t� = ξ +
∫ T

t
f�s�X�s��ds

−
∫ T

t
σ�s�X�s�� +Y�s��′ dB�s� +C�T� −C�t�� 0 ≤ t ≤ T

(1.6)

of the BSDE (1.4), the conditions (1.2), (1.3), (1.5), as well as the constraint

Y�t� ∈K� 0 ≤ t ≤ T�(1.7)

and is the minimal solution of (1.6) with these properties [meaning that for
any other such triple �X̃�·�� Ỹ�·�� C̃�·�� that satisfies the system (1.2), (1.3),
(1.5)–(1.7) we have X�·� ≤ X̃�·�, a.s.].

The constrained backward stochastic differential equation (CBSDE) of (1.6)
and (1.7) is the focus of this paper. In order to simplify things and help focus
attention on the constraint (1.7), we have taken σ ≡ 0 throughout. Using no-
tions, tools and results from convex analysis and ideas from our earlier papers
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[Cvitanić and Karatzas (1992, 1993)] that dealt with constrained optimization
and hedging problems in the special context of mathematical finance, we dis-
cuss first the case of constrained backward stochastic equations (CBSE), that
is, with σ ≡ 0 and f�·� ·� replaced by an F-adapted process g�·� in (1.6) (Sec-
tion 2). Next, we develop in Section 3 the solvability and properties of the
“penalized” version

Xn�t� = ξ +
∫ T

t
f�s�X�s��ds

−
∫ T

t
Yn�s�′ dB�s� +Cn�T� −Cn�t�� 0 ≤ t ≤ T

(1.8)

of (1.6) with σ ≡ 0 and

Cn�t� �= n
∫ t

0
ρ�Yn�s��ds� ρ�y� �= dist�y�K��

again with the help of tools from convex analysis. We then put together the
theory of Section 2 and the properties of the penalization scheme (1.8) to study
the CBSDE (1.6) in the case of a general Lipschitz-continuous drift function
f�t�ω� ·� via martingale and stochastic control methods.

A crucial element of our approach, developed in Section 4, is the functional
stochastic control-type equation

X∗�t� = ess sup
ν∈�

Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]
�

0 ≤ t ≤ T�

(1.9)

which seems to be encountered and studied in this paper for the first time.
Here δ�z� = supy∈K�z′y� is the support function of the set K of (1.7), � is
the class of bounded, F-adapted processes ν�·� with values in the effective
domain K̃ �= �x ∈ R

d / δ�x� < ∞� of δ�·� and Eν denotes expectation with
respect to the auxiliary probability measure Pν�A� �= Eexp�∫ T0 ν′�s�dB�s� −
1
2

∫ T
0 �ν�s��2 ds�1A�� A ∈ � �T� for every “adjoint variable” process ν�·� in

� . We show in Section 4 that (1.9) admits a unique solution X∗�·� with the
property (1.2); this process is dominated by the state process of any solution
to the constrained BSDE of (1.6), (1.7) leading, as we demonstrate, to the
minimal solution of this equation. In Sections 5 and 6 we show how to extend
those results to the case of a drift coefficient f�t� x� y�, which depends also
on the current value Y�t� = y of the gains process, but in a convex fashion,
and to the case of a reflecting lower barrier for the state process X�·�; each of
these cases necessitates the introduction of an additional “adjoint variable” [a
process µ�·� or a stopping time τ, respectively]. In subsequent work we expect
to be able to extend the methodology of this paper to cover the case of general
dispersion σ�t� x� and drift f�t� x� y� coefficients.

Related existence results are obtained by Buckdahn and Hu (1997) for the
special, one-dimensional case (d = 1), in the context of BSDEs with a lower
barrier process (as in our Section 6), driven by both a Brownian motion and
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a Poisson random measure. These authors do not use a stochastic control
approach or representations of the type (1.9).

Backward stochastic differential equations were apparently first studied in
the context of the stochastic version of Pontryagin’s “maximum principle” for
the optimal control of diffusions [see Saksonov (1989), Arkin and Saksonov
(1979), Peng (1990, 1993), Elliott (1990), as well as Haussmann (1986), Ben-
soussan (1981), Bismut (1978), and the references therein, for earlier work].
They also arose in the context of “recursive utility” for mathematical economics
in the work of Duffie and Epstein (1992). Since their formal and systematic
study by Pardoux and Peng (1990) in a general framework, they have found
an enormous range of applications in such diverse fields as partial differential
equations [cf. Peng (1991), Barles, Buckdahn and Pardoux (1997), Darling and
Pardoux (1997)], variational inequalities and obstacle problems [cf. Pardoux
and Tang (1996), El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997)
(abbreviated [EKPPQ]), Ma and Cvitanić (1997)], stochastic PDEs [Pardoux
and Peng (1994)], stochastic control [cf. Peng (1990, 1993), Hamadène and Le-
peltier (1995a)], stochastic games [cf. Hamadène and Lepeltier (1995b),
Cvitanić and Karatzas (1996)] and mathematical finance [cf. Cvitanić and
Karatzas (1993), El Karoui, Peng and Quenez (1997), Buckdahn and Hu (1996,
1997)].

2. Backward stochastic equations with constraints. On a given,
complete probability space �
�� �P�, let B�·� = �B1�·�� � � � �Bd�·��′ be a
standard d-dimensional Brownian motion over the finite interval 0�T�, and
denote by F = �� �t��0≤t≤T the augmentation of the natural filtration FB

generated by B�·�, namely � B�t� = σ�B�s�� 0 ≤ s ≤ t�, 0 ≤ t ≤ T. We shall
need the following notation: for any given n ∈ N, let us introduce the spaces:

L2
n of � �T�-measurable random variables ξ� 
→ R

n with E��ξ�2� <∞;
H2
n of F-progressively measurable processes ϕ� 0�T� × 
 → R

n with∫ T
0 E�ϕ�t��2 dt <∞;

Skn of F-progressively measurable processes ϕ� 0�T� × 
 → R
n with the

property E�sup0≤t≤T �ϕ�t��k� <∞, k ∈ N;
A2
i of RCLL, F-adapted, predictable increasing processes A� 0�T� × 
 →

0�∞� with A�0� = 0, E�A2�T�� <∞.

Finally, we shall denote by � the σ-algebra of predictable sets in 0�T�×
.
Suppose now that we are given a random variable ξ� 
→ R in the space L2

1,
as well as a process g� 0�T� ×
→ R in the space H2

1. Suppose also that we
are given a closed, convex set K ⊂ R

d which contains the origin, with support
function

δ�z� �= sup
y∈K

�y′z�� z ∈ R
d�(2.1)

which is bounded on compact subsets of its effective domain

K̃ �= �x ∈ R
d / δ�x� <∞��(2.2)
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the “barrier cone” of the set K [cf. Rockafellar (1970), page 114]. Here and in
the sequel, y′x denotes the inner product of the vectors y and x.

We shall denote by � the class of F-progressively measurable processes
ν� 0�T�×
→ K̃ withE

∫ T
0 �ν�t��2 dt <∞; for every ν�·� ∈ � , the exponential

process

Zν�t� �= exp
{∫ t

0
ν′�s�dB�s� − 1

2

∫ t

0
�ν�s��2 ds

}
� 0 ≤ t ≤ T(2.3)

is a local martingale and a supermartingale; it is a martingale if and only if
EZν�T� = 1, in which case

Pν�A� �= EZν�T�1A�� A ∈ � �T�(2.4)

is a probability measure. In particular, this is the case for every process ν�·�
in the space

� =
∞⋃
n=1

�n�

�n �=
{
ν ∈ � / �ν�t�ω�� ≤ n for a.e. �t�ω� ∈ 0�T� ×
}

(2.5)

of bounded processes in � . [For the unconstrained case K = R
d we have

trivially K̃ = �0�; then � contains only the evanescent processes ν�·� ≡ 0, a.e.
on 0�T� ×
 and P0 = P.]

We first consider the problem of a backward stochastic equation (BSE) with
constraints on the “gains” or “intensity-of-noise” process; the solution for this
problem was provided in a slightly different context by Cvitanić and Karatzas
(1993), hereafter abbreviated [CK93].

Problem 2.1. Find a triple of F-progressively measurable processes �X�·��
Y�·��C�·�� with X�·� ∈ S2

1, Y�·� ∈ H2
d, C�·� ∈ A2

i , such that the backward
stochastic equation (BSE)

X�t�= ξ+
∫ T

t
g�u�du−

∫ T

t
Y′�u�dB�u�+C�T�−C�t�� 0≤ t≤T(2.6)

and the constraint

Y�t� ∈K for λ-a.e. t ∈ 0�T�(2.7)

hold almost surely, and such that for any other triple �X̃�·�� Ỹ�·�� C̃�·�� ∈ S2
1 ×

H2
d ×A2

i that satisfies (2.6) and (2.7) we have

X�t� ≤ X̃�t�� 0 ≤ t ≤ T

almost surely. Here and in the sequel, λ denotes Lebesgue measure on 0�T�.
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In the interest of readability and completeness, we recall here the main re-
sults from [CK93] related to this problem, modified and adapted to our frame-
work. First, we notice that for any solution to the BSE of (2.6), we have

X�t� = E

[
ξ +

∫ T

t
g�u�du+C�T� −C�t� 
 � �t�

]

−E
[∫ T

t
Y′�u�dB�u� 
 � �t�

]

≥ E

[
ξ +

∫ T

t
g�u�du 
 � �t�

]
=�X0�t�� 0 ≤ t ≤ T�

(2.8)

This process X0�·� is the solution of the unconstrained version

X0�t� = ξ +
∫ T

t
g�u�du−

∫ T

t
Y′

0�u�dB�u�� 0 ≤ t ≤ T

of (2.6), withC0�·� ≡ 0 and with a suitable processY0�·� ∈ H2
d that takes values

in R
d (unconstrained); the existence and uniqueness of such a process Y0�·�

follows from the integral representation property for square-integrable mar-
tingales of the Brownian filtration [cf. Karatzas and Shreve (1991), pages 182–
184]. Furthermore, let us notice that the process X�·� + ∫ •

0 g�s�ds dominates
the square-integrable, P-martingale

X0�t� +
∫ t

0
g�u�du = E

[
ξ +

∫ T

0
g�u�du

∣∣∣ � �t�
]

= E

[
ξ +

∫ T

0
g�u�du

]

+
∫ t

0
Y′

0�u�dB�u�� 0 ≤ t ≤ T�

(2.9)

Moreover, for every ν�·� ∈ � we know from Girsanov’s theorem [e.g., Karatzas
and Shreve (1991), Section 3.5] that the process

Bν�t� �= B�t� −
∫ t

0
ν�s�ds� 0 ≤ t ≤ T(2.10)

is Brownian motion under the probability measure Pν of (2.4).

Proposition 2.1. For any triple �X�·��Y�·��C�·�� that solves the con-
strained BSE of Problem 2.1, the process

X�t� +
∫ t

0
g�u� − δ�ν�u���du� 0 ≤ t ≤ T(2.11)

is a Pν-supermartingale with RCLL paths.
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Proof. It is easily seen from (2.6) and (2.10) that

X�t� +
∫ t

0
g�u� − δ�ν�u��du+

[
C�t� +

∫ t

0
�δ�ν�u�� − ν′�u�Y�u��du

]

=X�0� +
∫ t

0
Y′�u�dBν�u��

(2.12)

for all 0 ≤ t ≤ T. The stochastic integral on the right-hand side is a
Pν-martingale by virtue of the Burkholder–Davis–Gundy inequalities [cf.
Karatzas and Shreve (1991), Theorem 3.3.28], since we have

Eν

(∫ T

0
�Y�u��2 du

)1/2

≤
(
EZ2

ν�T� ·E
∫ T

0
�Y�u��2du

)1/2

<∞�

we are using here the boundedness of the process ν�·�, the assumption Y�·� ∈
H2
d and the Cauchy–Schwarz inequality. Here and in the sequel, Eν denotes

the expectation operator under the probability measure Pν of (2.4). The state-
ment of the proposition follows then from (2.12), after noting that C�·� +∫ •

0δ�ν�u�� − ν′�u�Y�u��du is an increasing process. ✷

Proposition 2.2. For any triple �X�·��Y�·��C�·�� that solves the con-
strained BSE of Problem 2.1, we have

X�t� ≥ X̂�t� �= ess sup
ν∈�

Eν

[
ξ +

∫ T

t
g�u� − δ�ν�u��du

∣∣∣ � �t�
]

a.s.(2.13)

for every t ∈ 0�T�.

Proof. From Proposition 2.1 we have

X�t� ≥ Eν

[
X�T� +

∫ T

t
g�u� − δ�ν�u���du

∣∣∣ � �t�
]

a.s.

for every ν�·� ∈ � , and we are done, because X�T� = ξ. ✷

It is clear now that, in order to find the minimal solution to the constrained
BSE of Problem 2.1, it suffices to show that there exist processes Ŷ�·� ∈ H2

d and
Ĉ�·� ∈ A2

i such that �X̂�·�� Ŷ�·�� Ĉ�·�� is a solution. Then this triple has to be
the minimal solution, and the processes ν�·� ∈ � are seen [by comparing (2.13)
with (2.9)] to play the role of “adjoint variables” that enforce the constraint
Ŷ�·� ∈K. We shall do this by imposing the following, very mild assumption.

Assumption 2.1. There exists at least one solution �X̃�·�� Ỹ�·�� C̃�·�� ∈ S2
1×

H2
d ×A2

i to the constrained BSE of Problem 2.1; or equivalently, we have

ξ +
∫ T

0
g�u�du ≤ η a.s.(2.14)

for some random variable η ∈ L2
1�
� that can be represented in the form

η = c+ ∫ T
0 Y′

η�u�dB�u� for suitable c ∈ R and Yη�·� ∈ H2
d (thus c = Eη) such

that PYη�t� ∈K, λ-a.e. t ∈ 0�T�� = 1.
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Let us show that the two assumptions are indeed equivalent. If �X̃�·�� Ỹ�·��
C̃�·�� is a solution of Problem 2.1, then we can take η �= X̃�0�+∫ T

0 Ỹ′�u�dB�u�
and obtain the inequality (2.14) from (2.6) with t = 0� Conversely, given η as in
the inequality (2.14), we can define X̃�t� �= Eη+ ∫ t

0 Y
′
η�u�dB�u�−

∫ t
0 g�u�du

and C̃�t� �= 0 for 0 ≤ t < T, as well as X̃�T� �= ξ and C̃�T� �= X̃�T−�−ξ ≥ 0�
it is easily seen that �X̃�·��Yη�·�� C̃�·�� is then a solution of Problem 2.1.

Assumption 2.1 is satisfied, in its form (2.14), for example if both ξ and g�·�
are bounded. Many more examples can be found in [CK93] and in Broadie,
Cvitanić and Soner (1996).

We state now a result which is analogous to Proposition 6.3 of [CK93] and
has a similar proof (sketched in the Appendix).

Proposition 2.3. The process X̂�·� of (2.13) can be considered in its RCLL

modification; then the process X̂�t� + ∫ t
0 g�u� − δ�ν�u���du, 0 ≤ t ≤ T is a

Pν-supermartingale with RCLL paths for every ν�·� ∈ � , and we obtain the
stronger version

PX�t� ≥ X̂�t� ∀ 0 ≤ t ≤ T� = 1(2.15)

of the result in Proposition 2.2.

Next, we have the following result.

Proposition 2.4. The process

Q̂�t� �= X̂�t� +
∫ t

0
g�u�du� 0 ≤ t ≤ T(2.16)

belongs to the space S2
1, that is, Esup0≤t≤T�Q̂�t��2� <∞.

Proof. From (2.13) we have

Q̂�t� ≥ E

[
ξ +

∫ T

0
g�u�du

∣∣∣ � �t�
]
� 0 ≤ t ≤ T�

The process on the right-hand side is a martingale in the space S2
1, by Doob’s

maximal inequality. On the other hand, (2.13) and Assumption 2.1 imply

Q̂�t� ≤ X̃�t� +
∫ t

0
g�u�du� 0 ≤ t ≤ T�

The process on the right-hand side is also in S2
1, and we are done. ✷

Corollary 2.1. For every given ν�·� ∈ � , the process

X̂�t� +
∫ t

0
g�u� − δ�ν�u���du = Q̂�t� −

∫ t

0
δ�ν�u��du =� Q̂ν�t�� 0 ≤ t ≤ T

is a supermartingale of class � �0�T�� under Pν; in other words, the family

�Q̂ν�τ��τ∈�0�T
is Pν-uniformly integrable, where �0�T is the set of all F-stopping

times τ� 
→ 0�T�.
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Proof. Since the support function δ�·� is bounded on compact subsets of
its effective domain K̃, and the process ν�·� is bounded, it suffices to show
Eνsup0≤t≤T 
Q̂�t�
� < ∞. But this follows from Proposition 2.4, the Cauchy–
Schwarz inequality and the boundedness of the process ν�·�. ✷

From Corollary 2.1, we have for every ν�·� ∈ � the Doob–Meyer decomposi-
tion

X̂�t�+
∫ t

0

(
g�u�− δ�ν�u��)du = Q̂�t�−

∫ t

0
δ�ν�u��du

= X̂�0�+M�ν��t�−A�ν��t�� 0≤ t≤T�
(2.17)

Here A�ν��·� is an F-predictable process with increasing, right-continuous
paths and A�ν��0� = 0, EνA�ν��T� < ∞. On the other hand, M�ν��·� is a
uniformly integrable Pν-martingale of the Brownian filtration F; as such, it
can be represented in the form

M�ν��t� =
∫ t

0

(
Y�ν��u�)′ dBν�u�� 0 ≤ t ≤ T(2.18)

for some process Y�ν�� 0�T� × 
 → R
d which is F-progressively measur-

able and satisfies
∫ T

0 �Y�ν��t��2 dt < ∞ a.s. [cf. Karatzas and Shreve (1991),
page 375].

The proof of the following proposition proceeds along lines similar to those
in the proof of Theorem 6.4 in [CK93]; we sketch its main arguments in the
Appendix.

Proposition 2.5. The integrand

Ŷ�·� �= Y�0��·� ≡ Y�ν��·�(2.19)

of (2.18) does not depend on the process ν�·� ∈ � , and neither does the pre-
dictable increasing, right-continuous process

Ĉ�·� �= A�0��·� ≡ A�ν��·� −
∫ •

0
δ�ν�u�� − ν′�u�Ŷ�u��du�(2.20)

Furthermore, we have

X̂�t�= ξ+
∫ T

t
g�u�du−

∫ T

t
Ŷ′�u�dB�u�+ Ĉ�T�− Ĉ�t�� 0 ≤ t ≤ T(2.21)

and

Ŷ�t� ∈K for λ-a.e. t ∈ 0�T�(2.22)

almost surely.

Finally, we obtain the following identification of the minimal solution.
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Theorem 2.1. Under Assumption 2.1, the triple �X̂�·�� Ŷ�·�� Ĉ�·��, as de-
fined in (2.13), (2.19) and (2.20) provides the minimal solution of the con-
strained BSE of Problem 2.1.

Proof. It remains to prove

E
[

sup
0≤t≤T

�X̂�t��2
]
<∞�(2.23)

EĈ�T��2 <∞(2.24)

and

E
∫ T

0
�Ŷ�t��2 dt <∞�(2.25)

The inequality (2.23) follows from Proposition 2.4. The inequality (2.25) will
follow from (2.24), because (2.17) with ν�·� ≡ 0 implies then that M�0��·� is a
square-integrable martingale. Thus, it remains to show (2.24).

Let Q∗ �= sup0≤t≤T 
Q̂�t�
, q�t� �= EQ∗
� �t��. Moreover, for every k ∈ N,
let ρk �= inf�t ∈ 0�T�/Ĉ�t� ≥ k� ∧ T. These are F-stopping times, and we
have ρk ↑ T as k→∞, a.s. Clearly,

EĈ�ρk��2 = 2E
∫ ρk

0
Ĉ�ρk� − Ĉ�t��dĈ�t�

= 2E
∫ ρk

0
E
[
Ĉ�ρk� − Ĉ�t�

∣∣ � �t�]dĈ�t�
= 2E

∫ ρk

0
E
[
Q̂�t� − Q̂�ρk� +M�0��ρk� −M�0��t� ∣∣ � �t�]dĈ�t�

= 2E
∫ ρk

0
EQ̂�t� − Q̂�ρk�

∣∣ � �t��dĈ�t�

≤ 4E
∫ ρk

0
q�t�dĈ�t� ≤ 4E

[
sup

0≤t≤T
�q�t�� · Ĉ�ρk�

]

≤ 4
(
E
[

sup
0≤t≤T

q2�t�
]
·EĈ�ρk��2

)1/2
�

Therefore, we have

EĈ�ρk��2 ≤ 16E
[

sup
0≤t≤T

q2�t�
]

for all k ∈ N. Furthermore, by Doob’s maximal inequality and Proposition 2.4,

E
[

sup
0≤t≤T

q2�t�
]
≤ 4Eq2�T� = 4EQ2

∗� = 4E
[

sup
0≤t≤T

�Q̂�t��2
]
<∞�

Thus, letting k ↑ ∞, we obtain

EĈ�T−��2 ≤ 64E
[

sup
0≤t≤T

�Q̂�t��2
]
<∞�
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On the other hand, since
∫ •

0 Ŷ
′�s�dB�s� is continuous, (2.21) implies

Ĉ�T� − Ĉ�T−� = Q̂�T−� − Q̂�T� ∈ L2
1�
��

thus Ĉ�T� ∈ L2
1�
� as well, and we are done. ✷

3. Penalization and BSDEs with constraints. Suppose now that the
process g�·� ∈ H2

1 is replaced by the random field f� 0�T� × 
 × R → R, a
given � ⊗��R�-measurable mapping that satisfies

E
∫ T

0
f2�t�ω�0�dt <∞�(3.1)

as well as


f�t�ω� x� − f�t�ω� x′�
 ≤ κ
x− x′
(3.2)

for all �t�ω� ∈ 0�T�×
 and �x� x′� ∈ R
2, for some 0 < κ <∞. Thus, instead of

the constrained BSE of Problem 2.1, our focus now is the following constrained
backward stochastic differential equation (CBSDE) problem.

Problem 3.1. Find a triple of F-progressively measurable processes �X�·��
Y�·��C�·�� with X�·� ∈ S2

1, Y�·� ∈ H2
d, C�·� ∈ A2

i , such that the backward
stochastic differential equation (BSDE)

X�t� = ξ +
∫ T

t
f�u�X�u��du

−
∫ T

t
Y′�u�dB�u� +C�T� −C�t�� 0 ≤ t ≤ T

(3.3)

and the constraint

Y�t� ∈K for λ-a.e. t ∈ 0�T�(3.4)

hold almost surely, and such that for any other solution �X̃�·�� Ỹ�·�� C̃�·�� ∈
S2

1 ×H2
d ×A2

i satisfying (3.3) and (3.4), we have

X�t� ≤ X̃�t�� 0 ≤ t ≤ T

almost surely.

In order to solve Problem 3.1, we introduce the penalized BSDE

Xn�t� = ξ +
∫ T

t
f�u�Xn�u�� + nρ�Yn�u���du

−
∫ T

t
Y′
n�u�dB�u�� 0 ≤ t ≤ T

(3.5)

for every n ∈ N, where ρ�y� �= inf ξ∈K �y − ξ� denotes the distance of the
vector y ∈ R

d to the set K. Since the function y �→ ρ�y� satisfies the Lipschitz
condition


ρ�y� − ρ�z�
 ≤ 
y− z
 ∀�y� z� ∈ �Rd�2�
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(3.5) has a unique solution �Xn�·��Yn�·�� ∈ S2
1 × H2

d, by the standard theory
of Pardoux and Peng (1990). We have the following characterization of this
solution.

Proposition 3.1. The solution Xn�·� of the penalized BSDE (3.5) satisfies
the following stochastic equation

Xn�t� = ess sup
ν∈�n

Eν

[
ξ +

∫ T

t
f�u�Xn�u�� − δ�ν�u���du

∣∣∣ � �t�
]
�

0 ≤ t ≤ T

(3.6)

almost surely.

In order to prove this result, we need a property of the support function
δ�·� in (2.1).

Lemma 3.1.

sup
y∈R

d

ν′y− nρ�y�� =
{
δ�ν�� ν ∈ K̃ ∩Bn�

∞� ν /∈ K̃ ∩Bn�
(3.7)

where Bn �= �ν ∈ R
d� �ν� ≤ n�.

Proof. For every ν ∈ K̃, we have

δ�ν� = sup
y∈K

�ν′y� = sup
y∈K

�ν′y− nρ�y�� ≤ sup
y∈R

d

�ν′y− nρ�y���

If, moreover, �ν� ≤ n, and we denote by yK the projection of y on K [i.e.,
ρ�y� = �y− yK�], we get

ν′y− nρ�y� = ν′yK + ν′�y− yK� − n�y− yK�
≤ δ�ν� + �y− yK���ν� − n� ≤ δ�ν�

for all y /∈K. For y ∈K, we have clearly ν′y− nρ�y� ≤ δ�ν� again, and thus

δ�ν� = sup
y∈R

d

ν′y− nρ�y�� for ν ∈ K̃ ∩Bn�

Next, for any ν ∈ R
d and k ∈ N with �ν� > n + ε for some ε > 0, there exists

y ∈ R
d, such that ν′�y/�y�� ≥ n+ ε and �y� ≥ k. Thus,

ν′y− nρ�y� = �y�
[
ν′

y

�y� − n
ρ�y�
�y�

]

≥ �y�
[
ε+ n

(
1− ρ�y�

�y�
)]

≥ ε�y� ≥ εk�

and letting k ↑ ∞ we obtain supy∈R
dν′y− nρ�y�� = ∞, for all ν /∈ Bn.

Finally, for ν /∈ K̃, we have supy∈R
dν′y−nρ�y��≥ supy∈K�ν′y�= δ�ν�=∞. ✷
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Proof of Proposition 3.1. Let ν�·� ∈ �n and t ∈ 0�T�. From the BSDE
(3.5) and Lemma 3.1, we have

Xn�t� +
∫ T

t
δ�ν�s��ds = ξ +

∫ T

t
f�s�Xn�s��ds−

∫ T

t
Y′
n�s�dBν�s�

+
∫ T

t
nρ�Yn�s�� −Y′

n�s�ν�s� + δ�ν�s���ds

≥ ξ +
∫ T

t
f�s�Xn�s��ds−

∫ T

t
Y′
n�s�dBν�s��

(3.8)

By analogy with the proof of Proposition 2.1, the stochastic integral In�·� =∫ •
0 Y

′
n�s�dBν�s� is a Pν-martingale. Hence EνIn�T� − In�t�
� �t�� = 0 and,

after taking conditional expectations in (3.8), we obtain

Xn�t� ≥ Eν

[
ξ +

∫ T

t
f�s�Xn�s�� − δ�ν�s���ds

∣∣∣ � �t�
]

almost surely. On the other hand, because the function nρ�·� is Lipschitz-
continuous and convex, we conclude as in page 36 of El Karoui, Peng and
Quenez (1997) (hereafter abbreviated [EPQ]) that there exists a process ν̂n�·� ∈
�n with

nρ�Yn� −Y′
nν̂n + δ�ν̂n� ≡ 0 a.e. on 0�T� ×
�(3.9)

Setting ν�·� = ν̂n�·� in (3.8) we get equality there, and therefore also

Xn�t� = Eν̂n

[
ξ +

∫ T

t
f�s�Xn�s�� − δ�ν̂n�s���ds

∣∣∣ � �t�
]
�

almost surely. Thus we obtain the a.s. equality of (3.6), first for fixed t ∈ 0�T�
and then for all 0 ≤ t ≤ T simultaneously, from the continuity of its left-
hand side Xn�·� and the right continuity of its right-hand side [recall (3.5)
and Proposition 2.3, respectively]. ✷

We now embark on the problem of finding and characterizing the limit of
the sequence �Xn�·��n∈N. The standard comparison theorem for BSDEs (see
[EPQ], page 23) implies that

Xn�t� ≤Xn+1�t�� 0 ≤ t ≤ T(3.10)

holds almost surely for all n ∈ N, since nρ�·� ≤ �n+1�ρ�·�. We also impose the
following analogue of Assumption 2.1.

Assumption 3.1. There exists at least one solution �X̃�·�� Ỹ�·�� C̃�·�� to the
constrained BSDE of Problem 3.1.

Unlike the situation with Assumption 2.1, we do not have conditions on
the data ξ, f, K of Problem 3.1, which are both necessary and sufficient for
the validity of Assumption 3.1. See, however, Section 7 for discussion and
sufficient conditions.
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Lemma 3.2. Let Assumption 3.1 hold and �X̃�·�� Ỹ�·�� C̃�·�� be any solution
to the constrained BSDE of Problem 3.1. Then, we have

Xn�t� ≤ X̃�t�� 0 ≤ t ≤ T

almost surely, for every n ∈ N.

Proof. Choose ν̂n�·� as in the proof of Proposition 3.1 so that, by (3.8), the
process Xn�·� satisfies the BSDE

Xn�t� = ξ +
∫ T

t
f�s�Xn�s�� − δ�ν̂n�s���ds−

∫ T

t
Y′
n�s�dBν̂n

�s�� 0 ≤ t ≤ T�

We also observe from (3.3) and (2.10) that X̃�·� satisfies the BSDE

X̃�t� = ξ +
∫ T

t
f�s� X̃�s�� − Ỹ′�s�ν̂n�s��ds

+ C̃�T� − C̃�t� −
∫ T

t
Ỹ′�s�dBν̂n

�s�� 0 ≤ t ≤ T�

However, 0 ≤ C̃�T� − C̃�·� and −δ�ν̂n�·�� ≤ −Ỹ′�·�ν̂n�·�, so that the comparison
theorem for BSDEs ([EPQ], page 23) applies again to give Xn�·� ≤ X̃�·�. [Note
that, even though these BSDEs are driven by Bν̂n

�·� rather than by B�·�, the
comparison theorem cited earlier is still valid because the stochastic integrals∫ t

0 Y
′
n�s�dBν̂n

�s�, ∫ t0 Ỹ′�s�dBν̂n
�s�, 0 ≤ t ≤ T are Pν̂n -martingales.] ✷

We conclude from (3.10) and Lemma 3.2 that the limit

X∗�t� �= lim
n→∞Xn�t�� 0 ≤ t ≤ T(3.11)

exists almost surely. In the next section we prove that the limit process X∗�·�
leads to the minimal solution of the constrained BSDE of Problem 3.1.

4. Constrained BSDE and a stochastic equation. We shall impose As-
sumption 3.1 throughout this section and establish with its help the following
main result.

Theorem 4.1. The process X∗�·� of (3.11) is the unique solution, in the
space S2

1, of the stochastic equation

X∗�t� = ess sup
ν∈�

Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]
�

0 ≤ t ≤ T�

(4.1)

Corollary 4.1 (Existence and uniqueness for Problem 3.1). There exist
processes Y∗�·� ∈ H2

d and C∗�·� ∈ A2
i such that the triple �X∗�·��Y∗�·��C∗�·�� is

the minimal solution to the constrained BSDE of Problem 3�1.
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Proof of Corollary 4.1. Since Xn�·� ≤ X∗�·� ≤ X̃�·�, we have X∗�·� ∈
S2

1. From this, and from Theorem 4.1, it is easily checked that the analogue
of Proposition 2.4 holds, with X̂�·� replaced by X∗�·� and g�·� replaced by
f�·�X∗�·��. Then, using the theory developed in Section 2, one constructs pro-
cesses Y∗�·� ∈ H2

d and C∗�·� ∈ A2
i such that the triple �X∗�·��Y∗�·��C∗�·�� is

a solution to the constrained BSDE of Problem 3.1. From Lemma 3.2 we also
conclude that this solution is minimal. ✷

The following “change of variable” result will be needed in the proof of
Theorem 4.1.

Proposition 4.1. For a given process g�·� ∈ H2
1 and random variable ξ ∈

L2
1, let

X̂�t� �= ess sup
ν∈�

Eν

[
ξ +

∫ T

t
g�u� − δ�ν�u���du

∣∣∣� �t�
]
� 0 ≤ t ≤ T

as in (2.13). Then, for any λ ∈ R, we have

eλtX̂�t� = ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
eλuG�u� − δ�ν�u���du

∣∣∣� �t�
]
�

0 ≤ t ≤ T

(4.2)

almost surely, where G�u� �= g�u� − λX̂�u�.

Proof. We recall from (2.21) that the equation

X̂�t� = ξ +
∫ T

t
g�u�du−

∫ T

t
Ŷ′�u�dB�u� + Ĉ�T� − Ĉ�t�

= ξ +
∫ T

t
g�u� − δ�ν�u���du−

∫ T

t
Ŷ′�u�dBν�u� +m�t�T� ν�

holds almost surely for every process ν�·� in � , where we have set

m�t� r� ν� �= Ĉ�r� − Ĉ�t� +
∫ r

t
δ�ν�u�� − Ŷ′�u�ν�u��du� 0 ≤ t ≤ r ≤ T�

Since Ŷ�·� ∈K, the nonnegative random field �t� r� �→m�t� r� ν� is nonincreas-
ing in the first variable (t) and nondecreasing in the second variable (r). As
in [CK93], page 677, there exists a sequence of processes �νn�·��n∈N ⊆ � such
that

X̂�t� = lim
n→∞ Eνn

[
ξ +

∫ T

t
g�u� − δ�νn�u���du

∣∣∣� �t�
]
� 0 ≤ t ≤ T

holds almost surely [in fact, one can take νn�·� ≡ ν̂n�·� as selected in (3.9),
proof of Proposition 3.1]. Recalling that

∫ •
0 Ŷ

′�u�dBν�u� is a Pν-martingale,
we have then

Eνn

[
ξ +

∫ T

t
g�u� − δ�νn�u���du

∣∣∣� �t�
]
= X̂�t� −Mn�t� a.s.(4.3)



BSDES WITH CONSTRAINTS 1537

and

lim
n→∞Mn�t� = 0 a.s.(4.4)

for every fixed t ∈ 0�T�. Here

Mn�t� �= Eνn m�t�T� νn� 
� �t��
= Eνnm�0�T� νn� 
� �t�� −m�0� t� νn�� 0 ≤ t ≤ T

(4.5)

is a nonnegativePνn -supermartingale with RCLL paths [recall Theorem 1.1.13
in Karatzas and Shreve (1991)].

We deduce from (4.3) that the process X̂�t�−Mn�t�+
∫ t

0 g�u�−δ�νn�u���du
is a Pνn -martingale. Therefore, by Itô’s rule on eλtX̂�t�, the process

eλtX̂�t� −
∫ t

0
eλu dMn�u� +

∫ t

0
eλug�u� − λX̂�u� − δ�νn�u���du� 0 ≤ t ≤ T

is also a Pνn -martingale. This implies the equation

Eνn

[
eλTξ +

∫ T

t
eλuG�u� − δ�νn�u���du

∣∣∣� �t�
]

= eλtX̂�t� +Eνn

[∫ T

t
eλu dMn�u�

∣∣∣� �t�
]
�

(4.6)

We want to show that the last term on the right-hand side of (4.6) tends to
zero, as n→∞. First, recall that Mn�·� of (4.5) is an �F�Pνn�-supermartingale
and integrate by parts to obtain

0 ≤ −Eνn

[∫ T

t
eλudMn�u�

∣∣∣� �t�
]

= eλtMn�t� + λEνn

[∫ T

t
eλuMn�u�du

∣∣∣� �t�
]
�

(4.7)

Suppose first that λ ≤ 0; since Mn�·� is nonnegative, the right-hand side of
(4.7) is bounded from above by eλtMn�t�, which converges to zero as n→∞.
On the other hand, if λ > 0, the supermartingale property of Mn�·� gives

λEνn

[∫ T

t
eλuMn�u�du

∣∣∣� �t�
]
≤Mn�t�

∫ T

t
λeλu du ≤ �eλT − 1�Mn�t��

Recalling (4.7) and (4.4), and letting n tend to infinity, we conclude that

lim
n→∞E

νn

[∫ T

t
eλu dMn�u�

∣∣∣ � �t�
]
= 0(4.8)

holds almost surely, for every t ∈ 0�T� fixed, and for any λ ∈ R.
Returning to (4.6), we obtain in conjunction with (4.8) the representation

lim
n→∞E

νn

[
ξeλT +

∫ T

t
eλuG�u� − δ�νn�u���du

∣∣∣ � �t�
]
= eλtX̂�t�
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and thus also

eλtX̂�t� ≤ ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
eλuG�u� − δ�ν�u���du

∣∣∣� �t�
]
�

almost surely. The reverse inequality follows as in the previous section
(first part in the proof of Proposition 3.1), after noting that the triple
�eλtX̂�t�� ∫ t0 eλu dĈ�u�� eλtŶ�t�� solves the BSDE (3.3), with the terminal con-
dition ξ replaced by ξeλT, with f�t� X̂�t�� replaced by eλtG�t�, and with the
constraint Ŷ�t� ∈K replaced by eλtŶ�t� ∈ eλtK, for λ-a.e. t ∈ 0�T�.

We conclude that the representation (4.2) holds almost surely, first for t ∈
0�T� fixed, and then for all 0 ≤ t ≤ T simultaneously, thanks to the RCLL
regularity of both sides in (4.2) (recall Proposition 2.3). ✷

Proof of Theorem 4.1.
Existence. We have to show that the process X∗�·� of (3.11) solves the

stochastic equation (4.1). Fix a process ν�·� in � and select an integer n suffi-
ciently large, so that ν�·� belongs to �n. From Proposition 3.1 we get

X∗�t�≥Xn�t�≥Eν

[
ξ+

∫ T

t
f�u�Xn�u��− δ�ν�u���du

∣∣∣ � �t�
]
� 0≤ t≤T�

The comparison theorem ([EPQ], page 23) implies X�0��·� ≤ Xn�·�, for all
n ∈ N, whereX�0��·� ∈ S2

1 is the state process in the solution �X�0��·��Y�0��·��0�
to the unconstrained version

X�0��t� = ξ +
∫ T

t
f�u�X�0��u��du−

∫ T

t
�Y�0��u��′ dB�u�� 0 ≤ t ≤ T

of the BSDE (3.3). Since we also have Xn�·� ≤ X∗�·� ≤ X̃�·� ∈ S2
1, by the

Lipschitz property of f, we can use the dominated convergence theorem for
conditional expectations to conclude that

X∗�t� ≥ Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]

holds almost surely for all ν�·� ∈ � ; thus

X∗�t� ≥ ess sup
ν∈�

Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]
� 0 ≤ t ≤ T�

In order to prove the reverse inequality, let us observe that the function

F�s� x� �= −λx+ eλsf�s� e−λsx�� 0 ≤ s ≤ T� x ∈ R(4.9)

is nondecreasing in the variable x, provided we select λ = −κ, where κ is the
Lipschitz constant of the function f as in (3.2). Then, using Proposition 3.1
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and the analogue of Proposition 4.1, we get

eλtXn�t�

= ess sup
ν∈�n

Eν

[
ξeλT +

∫ T

t
F�u� eλuXn�u�� − eλuδ�ν�u���du

∣∣∣ � �t�
]

≤ ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
F�u� eλuX∗�u�� − eλuδ�ν�u���du

∣∣∣ � �t�
]

= ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
eλuf�u�X∗�u�� − λX∗�u� − δ�ν�u���du

∣∣∣ � �t�
]

=�X�λ��t��
Therefore, letting n→∞ leads to X∗�t� ≤ e−λtX�λ��t�, 0 ≤ t ≤ T; yet another
application of Proposition 4.1, this time to the process e−λtX�λ��t�, 0 ≤ t ≤ T,
implies

X∗�t� ≤ ess sup
ν∈�

Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

+
∫ T

t
λe−λuX�λ��u� −X∗�u��du

∣∣∣ � �t�
]

≤ ess sup
ν∈�

Eν

[
ξ +

∫ T

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]
�

0 ≤ t ≤ T� ✷

Uniqueness. Let X̃�·� ∈ S2
1 be another solution to the stochastic equa-

tion (4.1). As in Corollary 4.1, there exist processes C̃�·� and Ỹ�·�, such that
�X̃�·�� Ỹ�·�� C̃�·�� is a solution to the BSDE (3.3). In particular then, X̃�·� has
RCLL paths, and Lemma 3.2 implies X∗�·� ≤ X̃�·� a.s. In order to prove the
reverse inequality, let λ = κ, where again κ is the Lipschitz constant of f as
in (3.2), and observe that the function x �→ F�s� x� = −λx + eλsf�s� e−λsx� of
(4.9) is now nonincreasing. Using Proposition 4.1, we obtain

eλtX̃�t� ≥ eλtX∗�t�

= ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
F�u� eλuX∗�u�� − eλuδ�ν�u���du

∣∣∣ � �t�
]

≥ ess sup
ν∈�

Eν

[
ξeλT +

∫ T

t
F�u� eλuX̃�u�� − eλuδ�ν�u���du

∣∣∣ � �t�
]

= eλtX̃�t�� 0 ≤ t ≤ T

almost surely, and uniqueness follows. ✷

5. The case of convex drift f�t���x� •�. In this section we study the case
of a drift random field f which is also a function of the gains process Y�·�.



1540 J. CVITANIĆ, I. KARATZAS AND H. M. SONER

More precisely, we consider a random field f� 0�T� ×
× R× R
d → R which

is � ⊗��R� ⊗��Rd�/��R�-measurable and satisfies

E
∫ T

0
f2�t�ω�0�0�dt <∞�(5.1)

as well as


f�t�ω� x� y� − f�t�ω� x′� y′�
 ≤ κ�
x− x′
 + 
y− y′
�(5.2)

for all �t�ω� ∈ 0�T� × 
, �x� x′� ∈ R
2 and �y�y′� ∈ R

2d, for some 0 < κ < ∞.
Our aim is to study the analogue of Problem 3.1, in which (3.3) is replaced by

X�t� = ξ +
∫ T

t
f�u�X�u��Y�u��du

−
∫ T

t
Y′�u�dB�u� +C�T� −C�t�� 0 ≤ t ≤ T�

(5.3)

We shall refer to this modified problem as Problem 3.1′. We shall be able to
study the modified problem with minimal extra effort, but under the following
assumption.

Assumption 5.1. The function y �→ f�t�ω� x� y� is convex on R
d, for every

�t�ω� x� ∈ 0�T� ×
× R.

Following [EPQ], we introduce for every fixed �t�ω� x� ∈ 0�T� ×
× R the
dual

f̃�t�ω� x�µ� �= sup
y∈R

d

µ′y− f�t�ω� x� y��� µ ∈ R
d(5.4)

of the convex function f�t�ω� x� ·�, as well as its effective domain

Õ �={�t�ω� x�µ� ∈ 0�T� ×
× R× R
d / f̃�t�ω� x�µ� <∞}

�(5.5)

As in [EPQ], one can show that each �t�ω� x�-section of Õ, denoted as Õt�ω� x,
is included in a bounded set R̃ in R

d, independent of �t�ω� x�. Moreover, we
have the following result.

Lemma 5.1. For any given �t�ω� ∈ 0�T�×
, the set Õt�ω� x does not depend
on x.

Proof. Let µ ∈ Õt�ω� x for some �t�ω� x� ∈ 0�T� × 
 × R. Let x′ ∈ R

be arbitrary. There exists a sequence �yn�n∈N ∈ R
d attaining the (possibly

infinite) supremum in the definition of f̃�t�ω� x′� µ�. We have

f̃�t�ω� x′� µ� − f̃�t�ω� x�µ� ≤ lim
n
µ′yn − f�t�ω� x′� yn��

+ lim inf
n

f�t�ω� x� yn� − µ′yn�
≤ κ
x− x′


and thus f̃�t�ω� x′� µ� <∞. ✷
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Consequently, we may omit x in the notation Õt�ω� x, and write Õt�ω instead.
Let us also introduce the class � of F−progressively measurable processes
µ�·�� 0�T� ×
→ R̃ which satisfy E

∫ T
0 f̃2�t�0� µ�t��dt <∞.

Lemma 5.2. For any pair of processes �X�·��Y�·�� ∈ S2
1 ×H2

d, there exists a
process µ�·� ∈ � such that

f�t�X�t��Y�t�� = µ′�t�Y�t� − f̃�t�X�t�� µ�t��� 0 ≤ t ≤ T(5.6)

holds almost surely.

This result is proved in [EPQ]. The proof of Lemma 5.1 also implies the
following.

Lemma 5.3. The function f̃�t�ω� ·� µ� is uniformly Lipschitz in x; more pre-
cisely, there exists a constant C > 0 such that, for any given �t�ω� ∈ 0�T�×
,

�x� x′� ∈ R
2, and µ ∈ Õt�ω, we have

∣∣f̃�t�ω� x�µ� − f̃�t�ω� x′� µ�∣∣ ≤ C
x− x′
�

For any given pair of processes �ν�·�� µ�·�� ∈ � ×� , let us introduce now
the exponential martingale

Zν�µ�t� = exp
{∫ t

0
�ν�s� + µ�s��′ dB�s� − 1

2

∫ t

0
�ν�s� + µ�s��2 ds

}
�

0 ≤ t ≤ T�

(5.7)

as well as the probability measure

Pν�µ�A� �= EZν�µ�T�1A�� A ∈ � �T��(5.8)

under which the process

Bν�µ�t� �= B�t� −
∫ t

0
ν�s� + µ�s��ds� 0 ≤ t ≤ T(5.9)

is Brownian motion. We also denote by Eν�µ the expectation with respect to
the probability measure of (5.8). Moreover, we introduce the penalized BSDEs

Xn�t� = ξ +
∫ T

t
f�u�Xn�u��Yn�u�� + nρ�Yn�u���du

−
∫ T

t
Y′
n�u�dB�u�� 0 ≤ t ≤ T

(5.10)

for every n ∈ N, by analogy with (3.5).
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Proposition 5.1. The solution Xn�·� of the penalized BSDE (5.10) satisfies
the stochastic equation

Xn�t� = ess sup
�ν� µ�∈�n×�

Eν�µ

[
ξ−

∫ T

t

[
f̃�u�Xn�u�� µ�u��+δ�ν�u��

]
du

∣∣∣� �t�
]
�

0 ≤ t ≤ T

(5.11)

almost surely.

The proof is completely analogous to that of Proposition 3.1 and uses Lemma
5.2. In particular, to show that the supremum of (5.11) is attained, we choose
�νn�·�� µn�·�� ∈ �n ×� so as to have nρ�Yn�·�� −Y′

n�·�νn�·� + δ�νn�·�� ≡ 0 and
f̃�·�Xn�·�� µn�·�� ≡ −f�·�Xn�·��Yn�·�� + µ′n�·�Yn�·�, a.e. on 0�T� ×
.

Assumption 5.2. There exists at least one solution �X̃�·�� Ỹ�·�� C̃�·�� to the
constrained BSDE (5.3) of Problem 3.1′.

Under this assumption, one shows as before that the limit

X∗�t� �= lim
n→∞Xn�t�� 0 ≤ t ≤ T(5.12)

exists almost surely and establishes the following analogues of Theorem 4.1
and Corollary 4.1.

Theorem 5.1. Under Assumption 5.2, the process X∗�·� of (5.12) is the
unique solution, in the space S2

1, of the stochastic equation

X∗�t�= ess sup
�ν� µ�∈�×�

Eν�µ

[
ξ−

∫ T

t
f̃�u�X∗�u�� µ�u��+ δ�ν�u���du

∣∣∣� �t�
]
�

0 ≤ t ≤ T�

(5.13)

Corollary 5.1. There exist processes Y∗�·� ∈ H2
d and C∗�·� ∈ A2

i such that
the triple �X∗�·��Y∗�·��C∗�·�� is the minimal solution to the constrained BSDE
(5.3) of Problem 3.1′.

The proofs of these results are parallel to those of Theorem 4.1 and Corol-
lary 4.1, with the help of Lemma 5.2. In particular, the proof of Theorem 5.1
uses the following analogue of Proposition 4.1.

Proposition 5.2. For a given process W�·� ∈ S2
1 and a random variable

variable ξ ∈ L2
1, let

X̂�t� �= ess sup
�ν� µ�∈�×�

Eν�µ

[
ξ −

∫ T

t
f̃�u�W�u�� µ�u�� + δ�ν�u���du

∣∣∣� �t�
]
�

0 ≤ t ≤ T�
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Then, for any λ ∈ R, we have

eλtX̂�t� = ess sup
�ν� µ�∈�×�

Eν�µ

[
ξeλT−

∫ T

t
eλu

[
f̃�u�W�u�� µ�u��

+λX̂�u�+ δ�ν�u��
]
du

∣∣∣� �t�
](5.14)

for all 0 ≤ t ≤ T, almost surely.

We only sketch the beginning of the proof of this result, since the rest is
similar to that of Proposition 4.1. By analogy with the proof of Proposition
2.5 in the Appendix (and using Lemma 5.2), one shows that the following
analogue of (2.21),

X̂�t� = ξ +
∫ T

t
f�u�W�u�� Ŷ′�u��du−

∫ T

t
Ŷ′�u�dB�u� + Ĉ�T� − Ĉ�t�

= ξ −
∫ T

t
f̃�u�W�u�� µ�u�� + δ�ν�u���du

−
∫ T

t
Ŷ′�u�dBν�µ�u� +m�t�T� ν� µ�� 0 ≤ t ≤ T�

holds almost surely, for some process Ŷ�·� ∈ H2
d taking values in K, some

Ĉ�·� ∈ A2
i and for every pair of processes �ν�·�� µ�·�� in � ×� . Here we have

set

m�t� r� ν� µ� �= Ĉ�r� − Ĉ�t�
+

∫ r

t

[
δ�ν�u�� + f̃�u�W�u�� µ�u��

+ f�u�W�u�� Ŷ�u�� − Ŷ′�u��ν�u� + µ�u��
]
du�

0 ≤ t ≤ r ≤ T�

By the definitions of the functions δ in (2.1) and f̃ in (5.4), the nonnegative
random field �t� r� �→ m�t� r� ν� µ� is nonincreasing in the first variable (t),
and nondecreasing in the second variable (r). Moreover, there is a sequence
�νn�·�� µn�·��n∈N ⊆ � ×� such that

X̂�t� = lim
n→∞ Eνn�µn

[
ξ −

∫ T

t
f̃�u�W�u�� µn�u�� + δ�νn�u���du

∣∣∣� �t�
]
�

0 ≤ t ≤ T

holds almost surely. One can take νn�·� ≡ ν̂n�·�, as in (3.9) in the proof of Propo-
sition 3.1, while µn�·� is selected as in Lemma 5.2, so that f̃�·�Xn�·�� µn�·�� ≡
µ′n�·�Yn�·�−f�·�Xn�·��Yn�·�� a.e. on 0�T�×
. The rest of the proof is similar
to that of Proposition 4.1. ✷
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6. The case of a lower barrier. Let us suppose now that we are given
a process L�·� ∈ S2

1 with continuous paths and L�T� ≤ ξ almost surely, and
consider Problem 2.1 with the a.s. requirement

X�t� ≥ L�t�� 0 ≤ t ≤ T(6.1)

on its state process, in addition to (2.6) and (2.7). Similarly, consider the ana-
logue of Problem 3.1 where, along with (3.3) and (3.4), we impose the lower
bound (6.1) on the state process.

In both these so-modified problems, denoted henceforth as Problem 2.1′′

and Problem 3.1′′, respectively, we treat L�·� as a lower barrier that the state
processX�·� is not allowed to cross on its way to the terminal conditionX�T� =
ξ ≥ L�T�. As before, we seek a minimal solution to each of these problems
(assuming, of course, that at least one solution exists).

For the unconstrained case K = R
d, these problems were discussed thor-

oughly in [EKPPQ]. In our setting, it is not hard to modify the theory developed
in Sections 2–4 in order to take into account the imposition of the lower bound
(6.1). For instance, the minimal solution to Problem 2.1′′ is given as

�2�13�′′
X̂�t� = ess sup

ν∈�
τ∈�t�T

Eν

[
ξ1�τ=T� +L�τ�1�τ<T�

+
∫ τ

t
g�u� − δ�ν�u���du

∣∣∣ � �t�
]

for 0 ≤ t ≤ T, by analogy with Theorem 4.1, where �t�T denotes the class of
F-stopping times τ with values in the interval t�T�.

Notice here the need to introduce a double optimization problem, of mixed
stochastic control–stopping type, in order to represent this minimal solution.
The maximization over control processes ν�·� ensures that the constraint (2.7)
on the gains process is observed; whereas the optimization over stopping times
τ guarantees that the state process X�·� satisfies the constraint (6.1). In other
words, ν�·� and τ play the roles of “dual (adjoint) variables” that enforce the
constraints (2.7) and (6.1), respectively.

By analogy with Theorem 4.1 and Corollary 4.1, there is now a unique
process X∗�·� in the space S2

1 that solves the stochastic functional equation

�4�1�′′
X∗�t� = ess sup

ν∈�
τ∈�t�T

Eν

[
ξ1�τ=T� +L�τ�1�τ<T�

+
∫ τ

t
f�u�X∗�u�� − δ�ν�u���du

∣∣∣ � �t�
]

for 0 ≤ t ≤ T, and this X∗�·� is the state process of the minimal solution to
Problem 3.1′′. As in Section 3, the state process X∗�·� is constructed through
a penalization scheme which now takes a more complicated form due to the
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presence of the “reflecting lower barrier,” namely,

�3�5�′′

Xn�t� = ξ +
∫ T

t
f�u�Xn�u�� + nρ�Yn�u���du

−
∫ T

t
Y′
n�u�dB�u� +Cn�T� −Cn�t��

Xn�t� ≥ L�t�� 0 ≤ t ≤ T�

Cn�·� continuous, increasing and
∫ T

0
Xn�t� −L�t��dCn�t� = 0

almost surely, for a suitable triple �Xn�·��Yn�·��Cn�·�� ∈ S2
1 ×H2

d×A2
i , n ∈ N.

The solvability of the system (3.5)′′ and the a.s. comparison Xn�·� ≤
Xn+1�·�� n ∈ N, are consequences of Theorems 4.1, 5.2 in [EKPPQ]. The state
process of the (unique) solution to (3.5)′′ satisfies the equation

�3�6�′′
Xn�t� = ess sup

ν∈�n

τ∈�t�T

Eν

[
ξ1�τ=T� +L�τ�1�τ<T�

+
∫ τ

t
f�u�Xn�u�� − δ�ν�u���du

∣∣∣ � �t�
]

for 0 ≤ t ≤ T. This supremum is attained by the pair �ν�·�� τ� = �νn�·�� τn�,
where νn�·� satisfies ρ�Yn�·�� − Y′

n�·�νn�·� + δ�νn�·�� = 0 a.e. on 0�T� as in
(3.9) of the proof of Proposition 3.1 and

τn�t� �= inf�u ∈ t�T� / Xn�u� = L�u�� ∧T�(6.2)

namely

Xn�t� = Eνn

[
ξ1�τn�t�=T� +L�τn�t��1�τn�t�<T�

+
∫ τn�t�

t
f�u�Xn�u�� − δ�νn�u���du

∣∣∣ � �t�
]
�

One can also show that the limit process X∗�t� �= limn→∞ ↑Xn�t�, 0 ≤ t ≤ T
is the minimal solution of Problem 3.1′′.

The details of these derivations are more or less straightforward, with the
possible exception of the proof of the change-of-variable formula

�4�2�′′
eλtX̂�t� = ess sup

ν∈�
τ∈�t�T

Eν

[
ξeλT1�τ=T� +L�τ�eλτ1�τ<T�

+
∫ τ

t
eλug�u� − λX̂�u� − δ�ν�u���du

∣∣∣ � �t�
]
�

valid for every λ ∈ R, for the process X̂�·� of (2.13)′′ [analogue of Proposition
(4.1)]. This formula plays again a crucial role in establishing the existence
and uniqueness of the solution to the stochastic functional equation (4.1)′′. We
shall leave these details to the care of the diligent reader. ✷
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7. On Assumption 3.1. In Section 4 we identified the process X∗�·�
of (3.11) as the state process in the minimal solution of the constrained
BSDE Problem 3.1. This identification used Assumption 3.1 only inasmuch
as to guarantee that the sequence �Xn�·�� of “penalized solutions” in (3.5) is
bounded from above by some process in S2

1:

Xn�·� ≤ X̃�·� a.s. for all n ∈ N� some X̃�·� ∈ S2
1�(7.1)

We provide here some sufficient conditions for (7.1)—and thus also for As-
sumption 3.1, as well, since the process X∗�·� of (3.11) leads then to a solution
of Problem 3.1 (as in Corollary 4.1). The first set of sufficient conditions is as
follows.

Assumption 7.1. (i) The drift random field f�t�ω� x� satisfies the condi-
tions of Section 3, including (3.1) and (3.2), as: well as:

f�t�ω� x� ≤ C ∀ �t�ω� x� ∈ 0�T� ×
× R

for some real constant C�
(ii) The terminal random variable ξ satisfies

ξ ≤ C+
∫ T

0
ϕ′�u�dB�u� a.s.(7.2)

for some real constant C, and some process ϕ�·� ∈ H2
d with Pϕ�t� ∈K� λ-a.e.

t ∈ 0�T�� = 1.

Indeed, the expression on the right-hand side of (3.6) admits the a.s. upper
bounds

Eν

[
ξ +

∫ T

t
f�u�Xn�u�� − δ�ν�u���du

∣∣∣ � �t�
]

≤ Eν

[
C+

∫ t

0
ϕ′�u�dB�u� +

∫ T

t
ϕ′�u��dBν�u� + ν�u�du�

+
∫ T

t
C− δ�ν�u���du

∣∣∣ � �t�
]

≤ C′ +
∫ t

0
ϕ′�u�dB�u� +Eν

[∫ T

t
ϕ′�u�dBν�u�

∣∣∣ � �t�
]

= C′ +
∫ t

0
ϕ′�u�dB�u�� 0 ≤ t ≤ T

for every ν�·� ∈ �n, n ∈ N. We have used (2.1), as well as the fact that∫ •
0 ϕ

′�u�dBν�u� is a Pν-martingale (same reasoning as in the proof of Propo-
sition 2.1). Thus (3.6) leads to the a.s. upper bound

Xn�·� ≤ C′ +
∫ •

0
ϕ′�u�dB�u�(7.3)

for all n ∈ N. The process on the right-hand side of (7.3) is in S2
1, and (7.1)

follows.
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The drawback of the conditions of Assumption 7.1 is that they exclude the
case

f�t�ω� x� = α�t�ω� + k�t�ω�x(7.4)

of linear drift. This can be remedied by imposing, instead of conditions (i) and
(ii) of Assumption 7.1, the following assumption.

Assumption 7.2. (i) The drift random field f�t�ω� x� satisfies the condi-
tions of Section 3, including (3.1) and (3.2), as well as:

• x �→ f�t�ω� x� is convex in R, for every �t�ω� ∈ 0�T� ×
,
and
• the dual function f̃�t�ω� λ� �= supx∈Rλx−f�t�ω� x�� is bounded from below

on its effective domain

Õ �= {�t�ω� λ� ∈ 0�T� ×
× R / f̃�t�ω� λ� <∞}
�(7.5)

(ii) The terminal random variable ξ satisfies

ξ exp
(∫ T

0
λ�s�ds

)
≤ C+

∫ T

0
exp

(∫ u

0
λ�s�ds

)
ϕ′�u�dB�u� a.s.(7.6)

for some C, ϕ�·� as in (7.2), and for every F-progressively measurable process
λ�·�� 0�T� ×
→ R that satisfies E

∫ T
0 �f̃�t� λ�t���2 dt <∞.

We denote by 9 the space of all such processes λ�·�. Every �t�ω�-section of
the set Õ in (7.5) is included in a bounded set R̃ of R (recall Section 5), so
that the elements of 9 are uniformly bounded. By taking ϕ�·� ≡ 0, this implies
that (7.6) is satisfied by every ξ which is a.s. bounded from above by a real
constant. Note also that the conditions of Assumption 7.2(i) are satisfied by
linear drifts of the type (7.4).

The conditions of Assumption 7.2 lead to those of Assumption 3.1. Indeed,
it can be shown then (as in Section 5) that the sequence of “penalized state
processes” �Xn�·�� of (3.5), satisfies the analogue

Xn�t� = ess sup
�ν� λ�∈�n×9

Eν

[
ξ exp

(∫ T

t
λ�u�du

)
−
∫ T

t
exp

(∫ u

t
λ�s�ds

)

×f̃�u� λ�u��+ δ�ν�u���du
∣∣∣� �t�

]
�

0 ≤ t ≤ T

(7.7)

of the a.s. representations (3.6), (5.11). Then an argument similar to that
described above leads to (7.1) as before.

APPENDIX

In this section, we sketch the proofs of Propositions 2.3 and 2.5 by adapting
to our current situation the techniques developed in [CK93] and El Karoui
and Quenez (1995).
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Proof of Proposition 2.3. With the notation gν�·� �= g�·�−δ�ν�·��, let us
start by establishing the equation of dynamic programming,

X̂�t� = ess sup
ν∈�t� θ

Eν

[
X̂�θ� +

∫ θ

t
gν�u�du

∣∣∣ � �t�
]

a.s.,(A.1)

valid for every 0 ≤ t ≤ θ ≤ T. We have denoted by �t� θ the restriction of �
to the set t� θ� ×
; note that (A.1) with θ = T becomes just the definition of
X̂�t� in (2.13), since X̂�T� = ξ. Let us observe also that, for any ν�·� ∈ � and
with the notation Zν�t� θ� �= Zν�θ�/Zν�t� as in (2.3), the random variable

Jν�θ� �= Eν

[
ξ +

∫ T

θ
gν�u�du

∣∣∣� �θ�
]

= E

[
Zν�θ�T�

{
ξ +

∫ T

θ
gν�u�du

} ∣∣∣∣� �θ�
](A.2)

depends only on the restriction of the process ν�·� to θ�T� ×
. In particular,
from (2.13) written in the form

X̂�θ� = ess sup
ν∈�

Jν�θ��(A.3)

we obtain that

X̂�t� = ess sup
ν∈�

Eν

[
Jν�θ� +

∫ θ

t
gν�u�du

∣∣∣� �t�
]

≤ ess sup
ν∈�t� θ

Eν

[
X̂�θ� +

∫ θ

t
gν�u�du

∣∣∣� �t�
]
�

holds almost surely. In order to prove the reverse inequality, it suffices to fix
an arbitrary process µ�·� in � and show that

X̂�t� ≥ Eµ

[
X̂�θ� +

∫ θ

t
gµ�u�du

∣∣∣� �t�
]

(A.4)

holds almost surely, for any 0 ≤ t ≤ θ ≤ T. To this end, notice that the
family of random variables �Jν�θ��ν∈� in (A.2), is directed upward: for any
two processes µ�·� and ν�·� in � , there exists a third process λ�·� ∈ � , such
that Jλ�θ� ≥ max�Jµ�θ��Jν�θ�� holds almost surely. Thus [e.g., Neveu (1975)]
we can write the essential supremum of (A.3) in the form

X̂�θ� = lim
k→∞

↑ Jνk
�θ� a.s.(A.5)

of an increasing limit, for some sequence �νk�·��k∈N of processes in �θ�T; with-
out loss of generality, this sequence can be selected from the class �t� θ �=
�ν�·� ∈ �/ν�·� ≡ µ�·� on t� θ� ×
�. Now we have

X̂�t� ≥ Eν

[
Jν�θ� +

∫ θ

t
gν�u�du

∣∣∣� �t�
]

= Eµ

[
Jν�θ� +

∫ θ

t
gµ�u�du

∣∣∣� �t�
]

a.s.
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for every process ν�·� in �t� θ; thus, by (A.5) and the monotone convergence
theorem, we obtain

X̂�t� ≥ lim
k→∞

↑ Eµ

[
Jνk

�θ� +
∫ θ

t
gµ�u�du

∣∣∣� �t�
]

= Eµ

[
lim
k→∞

↑ Jνk
�θ� +

∫ θ

t
gµ�u�du

∣∣∣� �t�
]

= Eµ

[
X̂�θ� +

∫ θ

t
gµ�u�du

∣∣∣� �t�
]

a.s.

This proves (A.4) and thus also thePµ-supermartingale property of the process
X̂�t� + ∫ t

0 gµ�u�du, 0 ≤ t ≤ T� The RCLL regularity of the process X̂�·� is
then argued as in [CK93], pages 679 and 680.

Proof of Proposition 2.5. For any process µ�·� in the class � of (2.5), we
have from (2.16)–(2.18) and (2.10),

Q̂�t� = X̂�t� +
∫ t

0
g�u�du

= X̂�0� +
∫ t

0
δ�ν�u��du

+
∫ t

0
�Y�ν��u��′dBµ�u� + �µ�u� − ν�u��du� −A�ν��t�

= X̂�0� +
∫ t

0
�Y�ν��u��′ dBµ�u�

+
∫ t

0
δ�ν�u�� + �µ�u� − ν�u��′�Y�ν��u��′�du−A�ν��t�

for 0 ≤ t ≤ T. But again from (2.17), now read with ν�·� replaced by µ�·�, the
process Q̂�·� has the Pµ-supermartingale representation

Q̂�t� = X̂�0� +
∫ t

0
�Y�µ��u��′ dBµ�u� +

∫ t

0
δ�µ�u��du−A�µ��t�� 0 ≤ t ≤ T�

The equality of these two decompositions leads to the identities of (2.19) and
(2.20), whereas (2.21) follows from the P0-decomposition of Q̂�·�.

It remains to prove (2.22). Consider the process ν̂�·� of Lemma A.1 below,
observe that for any k > 0 the process kν̂�·� belongs to � and note that we
have

A�kν̂��T� = Ĉ�T� + k
∫ T

0
�δ�ν̂�t�� − ν̂′�t�Ŷ�t��dt a.s.(A.6)

from (2.20). The integrand on the right-hand side of this expression is non-
positive [a consequence of (A.8), (A.9) in Lemma A.1 below]. Furthermore, if
the product set

Fν̂ �=
{�t�ω� ∈ 0�T� ×
 / δ�ν̂�t�ω�� < ν̂′�t�ω�Ŷ�t�ω�}
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has positive λ⊗P-measure, the right-hand side of (A.6) can be made negative
with positive probability. ButPA�kν̂��T� ≥ 0� = 1, which implies �λ⊗P��Fν̂� =
0� and thus

δ�ν̂�t�� = ν̂′�t�Ŷ�t� for λ-a.e. t ∈ 0�T�
holds almost surely. The conclusion (2.22) follows from this, in conjuction with
(A.8) and (A.9). ✷

We have used the following result from Karatzas and Shreve (1998),
Lemma 5.4.2.

Lemma A.1. For any given F-progressively measurable process Ŷ� 0�T� ×

→ R

d, there exists an F-progressively measurable process ν̂� 0�T� ×
→ K̃
with

�ν̂�t�� ≤ 1� 
δ�ν̂�t��
 ≤ 1 ∀ 0 ≤ t ≤ T(A.7)

valid almost surely and

�Ŷ�t� ∈K� = �ν̂�t� = 0� modP�(A.8)

�Ŷ�t� /∈K� = �δ�ν̂�t�� < ν̂′�t�Ŷ�t�� modP(A.9)

for every t ∈ 0�T�.
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