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Abstract

In this article, we describe our approach for

the Bacteria Biotopes relation extraction (BB-

rel) subtask in the BioNLP Shared Task 2019.

This task aims to promote the development of

text mining systems that extract relationships

between Microorganism, Habitat and Pheno-

type entities. In this paper, we propose a novel

approach for dependency graph construction

based on lexical chains, so one dependency

graph can represent one or multiple sentences.

After that, we propose a neural network model

which consists of the bidirectional long short-

term memories and an attention graph convo-

lution neural network to learn relation extrac-

tion features from the graph. Our approach is

able to extract both intra- and inter-sentence

relations, and meanwhile utilize syntax infor-

mation. The results show that our approach

achieved the best F1 (66.3%) in the official

evaluation participated by 7 teams.1

1 Introduction

The BioNLP Shared Task 2019 (Bossy et al.,

2019) is a continuation of the previous efforts or-

ganized around the BioNLP Shared Task work-

shop series (Kim et al., 2009, 2011; Nédellec et al.,

2013; Deléger et al., 2017). It aims to facilitate

development and sharing of computational tasks

of biomedical text mining and solutions to them.

The Bacteria Biotope (BB) task is one of the six

main tasks of the BioNLP Open Shared Tasks

2019. Three teams participated in the BB task

when it was first organized in 2011. INRA Bib-

liome (Ratkovic et al., 2011) achieved the best Fs-

core of 45% with the Alvis system which used dic-

tionary mapping, ontology inference and semantic

analysis for NER, and co-occurrence-based rules

for detecting relations between the entities. The

2013 BB task (Bossy et al., 2013) contained three

1Code: https://github.com/woodyXwt/BB19-rel

Figure 1: Bacteria Biotopes relation examples. The

Red, green and blue words denote Microorganism en-

tities, Habitat entities and Phenotype entities respec-

tively.

subtasks, the first one concerning recognition and

normalization of bacteria and habitat entities, and

the other two subtasks involving relation extrac-

tion. Four teams participated in these tasks, with

the UTurku TEES system (Björne and Salakoski,

2013) achieving the first places with F-scores of

42% and 14%. Compared to the 2013 BB task,

the 2016 BB task contains more subtasks and its

subtask2 only concerned relation extraction. The

team VERSE (Lever and Jones, 2016) achieved

the best F-scores of 55.8% in the subtask2.

The Bacteria Biotopes relation extraction (BB-

rel) in the BioNLP Shared Task 2019 aims

to automatically extract Microorganism-Habitat

or Microorganism-Phenotype relationships from

biomedical literature. The BB-rel task follows

the previous Bacteria Biotopes shared tasks, an-

notating directed binary relationships between Mi-

croorganism, Habitat and Phenotype entities. Fig-
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ure 1 shows some examples for each relationship.

In the BB-rel task, not all the relations occur be-

tween two entities with the same sentence. In the

preprocessing step, we found that there exist about

one fourth of all relations whose argument enti-

ties are located in different sentences. Therefore,

we need to build a model that does not only con-

sider the entity relationship within one sentence,

but also beyond the sentence boundary.

A lexical chain (Morris and Hirst, 1991) is a se-

quence of words which are semantically-similar

or related. These words are related sequentially

in the text, defining the topic of the text seg-

ment that they cover and establishing associations

between sentences. Following this observation,

some researchers have obtained success in many

NLP tasks such as word sense induction(Tao et al.,

2014) , machine translation (Mascarell, 2017) and

text (Stokes et al., 2004) segmentation. In the

BB-rel dataset, the sentences where inter-sentence

relations occur usually express the same topic or

have semantic associations each other. These fea-

tures usually appear as some related words which

can form lexical chains. Following this obser-

vation, we propose a novel approach to build an

inter-sentence dependency graph based on lexical

chains.

In this paper, we propose a novel relation ex-

traction method for the BB-rel task by incorpo-

rating dependency graphs and lexical chains into

the neural network. As shown in Figure 1, inter-

sentence relations are usually expressed in inter-

related sentences, and these sentences may con-

tain semantically-related words which can form

lexical chains. We utilize these lexical chains

and dependency graphs to build an inter-sentence

dependency graph for inter-sentence relation ex-

traction. Specifically, we utilize word embed-

ding to find the semantic relationships of words

that occur in different sentences for building re-

liable lexical chains. Then, we use the Stanford

CoreNLP toolkit (Manning et al., 2014) to ob-

tain sentence-level dependency and part-of-speech

(POS) information, and build an inter-sentence de-

pendency graph based on these information and

lexical chains.

After that, we employ a neural network model

which consists of the bidirectional long short-

term memories and attention-guided graph convo-

lutional neural networks to extract features from

the inter-sentence dependency graph. The fea-

Train Dev

Lives In 715 395

Exhibits 281 138

Total relatonships 996 533

Intra-sentence relationships 885 467

Inter-sentence relationships 111 66

Table 1: BB-rel data statistics on the training and de-

velopment set.

tures are fed into a multi-layer perceptron (MLP)

to classify the relation between an entity pair.

Our approach has two advantages. First, it is ca-

pable of extracting both intra-sentence and inter-

sentence relations by connecting the dependency

graphs of different sentences via lexical chains.

Second, it is able to leverage syntax information.

The results in the BB-rel task demonstrate the su-

periority of our method. It achieves the highest

F1-score, the second highest precision and recall

in the official evaluation.

2 Method

In this section, we first introduce our strategy of

relation candidate generation. Then, the approach

for constructing lexical chains is described. After

that, we will introduce how to build inter-sentence

dependency graphs. Lastly, the architecture of our

neural network model is described.

2.1 Relation Candidate Generation

In the BB-rel dataset, if all candidate pairs (bac-

teria and habitat or phenotype) that occur in the

document are enlisted as candidate training exam-

ples, the positive and negative examples will be-

come very unbalanced because most entity pairs

located beyond one sentence do not have any re-

lation. Based on our observations, most entity

pairs spanning more than two sentences have no

relations between them. Therefore, we consider

all entity pairs that span within two sentences as

the candidates to generate training examples. The

statistics of our dataset are summarized in Table 1.

2.2 Lexical Chain Construction

In previous work, there are mainly three ap-

proaches for constructing lexical chains. The first

one utilized WordNet (Hirst and St-Onge, 1997) to

capture the semantic relationship between words.

The second approach (Remus and Biemann, 2013)
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Figure 2: Process of lexical chain construction. Orange

words denote nouns. C is the set of lexical chains. The

similarity here refers to the cosine similarity between

word vectors. We set the threshold to 0.5.

automatically extracted lexical chains using statis-

tical methods . Another approach (Li et al., 2017)

is based on semantic word vectors. In this paper,

we assume that lexical relationships can be cap-

tured by calculating the similarity of their seman-

tic vectors. To compute similarities, we use 200-

dimensional pre-trained word vectors released by

Pyysalo et al. (2013). Moreover, we only consider

nouns for constructing the lexical chains since

they usually contain relevant information.

Given a sentence, we first use the Stanford

CoreNLP toolkit (Manning et al., 2014) to ob-

tain POS tags for each word. Then we pick

those words whose POS tags belonging to N=

(NN,NNP,NNS) as candidates for chain construc-

tion. We take one candidate at a time and check

where it should be placed. Assuming that C is the

set of lexical chains, we add each candidate w to C

according to the following steps (Figure 2):

• Step 1: each noun is treated as a candidate

w. If C is empty, we will create a new lexical

chain in C and add the current candidate w

into it.

• Step 2: for the current candidate w, we tra-

verse all the lexical chains in C and compute

the similarity between the last word of each

lexical chain and the current candidate w. If

the similarity surpasses a predefined thresh-

old, the current candidate w will be attached

to the corresponding lexical chain.

• Step 3: if the current candidate w cannot be

attached to any existing lexical chain, we will

create a new lexical chain for it.

Figure 3: An example of the dependency graph and its

corresponding adjacent matrix. If there is a dependency

relation between the node i and j in the dependency

graph, the value of the element Mij in the adjacent ma-

trix is 1.

2.3 Dependency Graph Construction

In this section, we propose an approach to build

an inter-sentence dependency graph by lexical

chains. For an entity pair that occurs within the

same sentence, we directly use their sentence de-

pendency graph. If two entities occur in different

sentences, we construct their dependency graph by

lexical chains. We design two rules to build an

inter-sentence graph. Here we define the follow-

ing notations: C is the set of lexical chains, A and

B are nouns belonging to sentence s1 and sentence

s2, respectively.

• Rule 1: if A and B exist in the same chain of

C, we will add an edge between A and B to

build an inter-sentence dependency graph.

• Rule 2: if A and B do not appear in the same

lexical chain, we will use the root nodes of

two sentences to build the dependency inter-

sentence graph.

Then we convert the dependency graph into

an adjacency matrix. An example of such pro-

cess is shown in Figure 3. Give a sequence

S = {s1, s2, ..., sn}, we considered its depen-

dency graph as an undirected graph, which can be

converted into an adjacent matrix. If there is a de-

pendency relation between nodes i and j in the de-

pendency graph, the element Mij in the adjacent

matrix is assigned with 1.
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Figure 4: The architecture of our model. The input sentence is “MRSA were isolated by oxacillin screening agar”

with a Microorganism entity “MRSA” and a Habitat entity “oxacillin screening agar”. M denotes the adjacency

matrix.

2.4 Neural Network Model

2.4.1 BiLSTM Layer

Figure 4 shows the neural network architecture of

our model. It uses the words and POS tags as in-

put. We adopt the 200-dimensional word embed-

dings and 20-dimensional POS tag embeddings.

The final representation for the token is the con-

catenation xi of the word embedding si and the

POS tag embedding pi. We initialize our word

embeddings with the pre-trained biomedical em-

beddings (Pyysalo et al., 2013) and randomly ini-

tialize the POS tag embeddings.

After obtaining the word representation se-

quence x = {x1, x2, ..., xn}, we leverage bidi-

rectional LSTMs (Hochreiter, 1998) to encode the

context information into each word. The forward

and backward hidden states (
→

hi and
←

hi) will be

concatenated, formalized as hi = [
→

hi ⊙
←

hi].

2.4.2 Attention-Guided GCNN Layer

We employ the attention-guided graph convo-

lutional neural network (AGCNN) (Guo et al.,

2019a) to incorporate the dependency information

into word representations, which is composed of

M identical blocks. Each block has three types of

layers: attention-guided layer, densely connected

layer, linear combination layer.

In the attention guided layer, we first update the

representation of the node using a graph convolu-

tion network (GCNN) (Zhang et al., 2018). For

an L-layer GCNN, we denotes the inputs in the

first layer as g
(0)
1 , ..., g

(0)
n and the outputs in the last

layer as g
(L)
1 , ..., g

(L)
n . The g

(l)
i denotes the output

vectors of the node i in the l-th layer. The con-

volution operation in the l-th layer can be written

as:

gl = σ(

n∑

j=1

M̃ij ,W
lgl−1/di + bl), (1)

where W l is a linear transformation, bl is a bias

term, and σ is a nonlinear function (e.g., ReLU ).

The M̃ can be computed by M + I , where I ∈
R
n×n is an identity matrix and di =

∑n
j=1 M̃ij

is the degree of node i in the dependency graph.

Intuitively, during the graph convolution of each

layer, each node gathers all the information of its

neighboring nodes in the graph.

After the L-layer graph convolution operation,

we transform the original dependency graph into

a fully connected edge-weighted graph by con-

structing N (N is a hyper-parameter) attention-

guided adjacency matrix. Each attention-guided

adjacency matrix Ã corresponds to a completely

connected graph. In this paper, we use the multi-
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head attention(Vaswani et al., 2017) to calculate

Ã, which allows the model to focus on informa-

tion from different representation sub-spaces. The

output is computed as a weighted sum of values,

where the weight is calculated by the function of

the query and the corresponding key.

Ã(t) = softmax(QWQ
i × (KWK

i )T /
√
d)V,

(2)

where Q and K are both equal to the collective

representation hl−1 at layer l−1 of the model. The

projections are parameter matrices WQ
i ∈ R

d×d

and WK
i ∈ R

d×d. Ã(t) is the t-th attention guided

adjacency matrix corresponding to the t-th head.

Following (Guo et al., 2019b), we employ the

dense connection (Huang et al., 2017) into the our

model to capture more structural information on

the large graph. We concatenate the initial node

representation h
(l)
j and the node representations

g
(1)
j , ..., g

(l−1)
j produced in layer 1, ..., l − 1:

h
(l)
j = [xj ; g

(1)
j , ..., g

(l−1)
j ], (3)

Each densely connected layer has L sub-layers.

The dimensions of these sub-layers dhidden are de-

cided by L and the input feature dimension d. In

our model, we use dhidden = d/L.

Then we use N separate dense connection lay-

ers to modify the computation of each layer as fol-

lows (for the t-th matrix Ã(t)):

glti = ρ(
n∑

j=1

Ã(t)W l
th

l
i + blt), (4)

where t = 1, ..., N and t selects the weight ma-

trix and bias term associated with the attention

guided adjacency matrix Ã(t). The column dimen-

sion of the weight matrix increases by dhidden per

sub-layer, i.e., W l
t ∈ R

dhidden×d
(l)

where d(l) =
d+ dhidden(l − 1).

Finally, we use linear combination layer to in-

tegrate representations from N different densely

connected layers. Formally, the output of the lin-

ear combination layer is defined as:

gcomb = Wcombgout + bcomb, (5)

where gout is the output by concatenating outputs

from N separate densely connected layers, i.e.,

gout = [g(1); ...; g(N)] ∈ R
d×d. Wcomb ∈ R

d×d

is a weight matrix and bcomb is a bias vector for

the linear transformation.

2.4.3 Output Layer

We treat the BB-rel task as a classification task.

S = [s1, ..., sn] denotes a sequence, si is the i-
th token, Me and He denote Microorganism and

Habitat or Phenotype entities. The entities may

consist of several tokens, namely [se1 , ..., sen ] and

[sh1 , ..., shn
]. The goal of the BB-rel task is to pre-

dict whether there is a ”Live in” or ”Exhibits” re-

lationship between the entities He and Me.

After applying the attention-guided GCNN

layer to the input word vectors, we obtain the rep-

resentation for each word. The sequence represen-

tation can be obtained using the following equa-

tion:

gseque = f(g1, ..., gn), (6)

where g1, ..., gn denotes the outputs of the the

attention-guided GCNN layer and f : Rd×n →
Rd is a max-pooling function. Since we also ob-

served that the entity information is often criti-

cal for BB-rel extraction, the entity representations

Me and He are also used, given by:

gm = f(gm1 , ..., gmn
),

gh = f(gh1 , ..., ghn
).

(7)

Inspired by (Santoro et al., 2017; Lee et al.,

2017), we obtained the final feature for BB-rel ex-

traction by feeding the sequence and entity repre-

sentations into a multi-layer perceptron (MLP):

gfinal = MLP ([gseque; gm; gh]), (8)

where “[]” denotes the concatenation operation.

Finally, gfinal is fed into a softmax layer to com-

pute the probability distribution over all classes.

During training, our model uses the cross-entropy

loss:

loss(θ) = −
J∑

j=1

logP (yj |Sj), (9)

where J denotes the size of the training set S =
{(S1, y1), ..., (SJ , yJ)} and yj denotes the gold

answer of the j-th training instance. P (yj |Sj) de-

notes the probability that Sj belongs to yj , which

is calculated as P (yj |Sj) = softmax(gfinal).

3 Experiments

3.1 Evaluation Metrics

We send the prediction results of our model on the

test set to the task organizer for evaluation. The
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Hyper-parameter Value

Number of heads N 2

Block number M 2

Word emb size 200

POS emb size 20

LSTM hidden size 300

BiSTM layer 2

GCNN layer 2

GCNN output size 200

Dropout of GCNN 0.5

Multi-head attention head 3

Sublayers 5

dhidden 300

Epoch 100

Decay rate 0.9

Learning rate 0.5

Optimizer sgd

MLP layer 1

Table 2: Hyper-parameter setting.

Team Name P R F1

Amrita Cen 41.9 61.7 49.9

UTU 47.3 65.5 55.5

BLAIR GMU 54.7 64.9 59.4

BOUN-ISIK 51.3 73.1 60.3

Yuhang Wu 55.1 67.0 60.4

AliAI 68.2 62.0 64.9

Our method 62.9 70.2 66.3

Table 3: The official results of the BB-rel task.

performances of our model were evaluated by the

standard evaluation measures: precision (P), recall

(R) and F1-score (F1).

3.2 Hyper-parameter

The hyper-parameter setting is listed in Table 2.

We tuned hyper-parameters based on the develop-

ment set.

3.3 Official Results

The official results on the test set are shown in Ta-

ble 3. There are totally 7 teams participating in

the BB-rel task. Each team could submit up to 2

predictions. We report the top results for all teams.

As we can see, our method achieved the highest F1

(66.3%), and the second highest precision (62.9%)

and recall (70.2%).

Figure 5: Ensemble training and inference.

3.4 Ensemble Training and Inference

In relation extraction tasks, the ensemble training

and inference have proven to be an effective way to

improve performance of the neural network model

(Mehryary et al., 2016; Lim and Kang, 2018). Fol-

lowing previous work (Lim and Kang, 2018), we

improve performance of our model using the en-

semble training and inference. We sum the out-

put probabilities (logits) of ensemble members,

which are generated using the same neural net-

work model but different weight initialization.

As shown in Figure 5, M1 to M10 are the mod-

els using the same structure and hyper-parameters.

In the training phase, we independently trained

each ensemble member with different initialized

parameters. When inferring a relation for an easy

sample, the trained ensemble members make rel-

atively consistent predictions. When inferring for

a difficult sample, the trained ensemble members

may make different predictions. We incorporate

the voting results of 10 ensemble members to pro-

duce final results.

To investigate the effectiveness of ensemble

training and inference, we conducted the follow-

ing experiment on the development set. First, we

run five times of our model and average the results

as the final result of the single model as shown

in Table 4. Second, we run one time for the en-

semble training and inference. The results show

that the approach using ensemble training and in-

ference achieved relatively balanced precision and

recall, thus yielding a better F1.
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Method P R F1

Single 59.1 69.3 63.8

Ensemble 63.1 68.4 65.7

Table 4: Effects of ensemble training and inference.

Relation P R F1

Intra

Live in 61.6 60.0 60.8

Exhibits 73.4 80.6 76.8

Total 64.8 65.2 65.0

Intra+Inter

Live in 59.5 63.7 61.5

Exhibits 72.8 82.4 77.3

Total 63.1 68.4 65.7

Table 5: Results of recognizing inter- and intra-

sentence relations.

3.5 Results of Recognizing Inter- and

Intra-Sentence Relations

In this section, we discuss the performance of our

model in Intra- and inter-sentence relation. As

shown in Table 5, we obtained an F1-score of

65.0 when we only evaluated the intra-sentence re-

lationships. When we evaluated both intra- and

inter-sentence relationship, F1-score, Recall in-

crease by 0.7% and 3.2% respectively. But Pre-

cision drops by 1.7%. We can also see from the

table that the performance of ”Exhibits” relation is

better than the performance of the ”Live in” rela-

tion. Because most of the ”Exhibits” relation hap-

pen within a sentence and have a certain pattern.

3.6 Effects of Lexical Chains

In order to verify the effectiveness of construct-

ing inter-sentence dependency graphs by lexical

chains, we also conducted related experiments on

development set. The experimental results are

shown in Table 6. “lexical chains” denotes the

model employing the proposed method that con-

structs inter-sentence dependency graphs by lexi-

cal chains. “root nodes” denotes the model where

the inter-sentence dependency graphs are built us-

ing root nodes. Table 6 shows the performance

comparison of the “lexical chains” method and the

“root nodes” method on the development set. The

“lexical chains” method obtained better perfor-

Method P R F1

Root nodes 62.7 67.3 64.9

Lexical chains 63.1 68.4 65.7

Table 6: Effects of lexical chains.

Figure 6: Examples of false positives. The Red and

green words denote Microorganism and Habitat entities

respectively.

mance than the “root nodes” model. This demon-

strates our idea is effective. The relevant sen-

tences are usually expressed using relevant words.

These relevant words found by lexical chains can

be used as the associations to connect the depen-

dency graphs of different sentences. Therefore, we

can build an effective representation for an inter-

sentence entity pair.

3.7 Error Analysis

In this section, we manually analyzed what cases

lead to false positives, since those are more critical

than false negatives. Figure 6 shows some exam-

ples of false positives. The most of false positives

are caused by overlapping target entities. For ex-

ample, there is a “Live in” relation between “Lis-

teria sp.” and “chicken nugget processing plant”,

but there is no “Live in” relation between “Listeria

sp.” and “chicken” or “chicken nugget”. The rea-

son for these errors is that the model is confused

by overlapping entities with similar context.
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4 Related Work

In the natural language processing community,

there are a number of related competitions and

tasks (Wei et al., 2015; Nédellec et al., 2013;

Deléger et al., 2016). Most prior work focused on

extracting the relations within one sentence, and

ignored the relations beyond one sentence.

In the NLP community, it has proven to be ef-

fective to combine linguistic features with neural

networks for relation extraction (Zhou et al., 2015;

Miwa and Bansal, 2016). Bunescu et al. (2005)

demonstrated that the relationship of an entity pair

can be captured along their shortest dependency

path in the dependency graph because the words

on the shortest dependency path concentrate the

most relevant information and diminish redundant

information. Following this observation, several

studies (Xu et al., 2015; Liu et al., 2015) achieved

outstanding performance by combining shortest

dependency paths with various neural networks.

As deep learning develops, some attention-based

neural architectures (Zhou et al., 2016; Lin et al.,

2016) have been proposed for relation classifica-

tion and show the state-of-the-art performance.

But with a few exceptions, almost all related work

only focused on intra-sentence relation extraction,

without considering the inter-sentence relations.

Recent work has explored some approaches to

consider inter-sentence relations, such as Graph

LSTMs (Peng et al., 2017), self-attention (Verga

et al., 2018), Graph CNNs (Sahu et al., 2019).

However, none of these work investigated lexical

chains for inter-sentence relation extraction. In

the future, we will evaluate our approach on some

large-scale datasets for intra- and inter-sentence

relation extraction (Yao et al., 2019).

5 Conclusion

In this paper, we describe our approach used for

participating the Bacteria Biotope task at BioNLP-

OST 2019. Our approach achieved very com-

petitive performance in the official evaluation.

We found that the idea using lexical chains to

build inter-sentence dependency graphs is effec-

tive. Moreover, ensemble training and inference

can improve the performance of our model. The

attention-guided graph convolution neural net-

work performs well in extracting Bacteria Biotope

relations. However, our approach is not specific to

Bacteria Biotope relation extraction, and it can be

applied to other relation extraction tasks.
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