
Chapter 6
Bacteria in Permafrost

David Gilichinsky(*ü ), Tatiana Vishnivetskaya, Mayya Petrova, 
Elena Spirina, Vladimir Mamykin and Elizaveta Rivkina

6.1 Introduction

Significant numbers of viable ancient microorganisms are known to be present 
within the permafrost. They have been isolated in both polar regions from the cores 
up to 400 m deep and ground temperatures of −27°C. The age of the cells corre-
sponds to the longevity of the permanently frozen state of the soils, with the oldest 
cells dating back to ~3 million years in the Arctic, and ~5 million years in the 
Antarctic. They are the only life forms known to have retained viability over 
geological time. Thawing of the permafrost renews their physiological activity and 
exposes ancient life to modern ecosystems. Thus, the permafrost represents a stable 
and unique physicochemical complex, which maintains life incomparably longer 
than any other known habitats. If we take into account the depth of the permafrost 
layers, it is easy to conclude that they contain a total microbial biomass many times 
higher than that of the soil cover. This great mass of viable matter is peculiar to 
permafrost only.
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The terrestrial cryosphere consists of two parts: glaciosphere (snow and ice) and 
frozen ground, which contains long-term and seasonal cryogenic formations with 
ancient and periodically frozen viable microorganisms, respectively (Table 6.1). 
Permanently frozen formations are a widespread, rich terrestrial depository of 
ancient viable cells and represent a significant part of the biosphere, the 
Cryobiosphere. These permanently frozen formations (ice and ground) maintain 
life during geological time.

Biota of Greenland and Antarctic Ice Sheets (120,000 and 400,000 years, respec-
tively) have been widely studied up to depths of 3–4 km (Abyzov 1993; Kapitsa 
et al. 1996; Karl et al. 1999; Priscu et al. 1998; Petit et al. 1999; Skidmore et al. 
2000; Miteva et al. 2004). The oldest, with more than 500,000 years, glacial ice 
(Thompson et al. 1997), as well as immured bacteria (Christner et al. 2003), were 
found at Guliya ice cap on Tibetan Plateau. Table 6.1 shows that the number of via-
ble, mostly airborne, cells in snow and seasonal ice covers are in the same order of 
magnitude as within the ancient Ice Sheet cores. Such data could be interpreted as 
an absence of reduction of the microbial population once bacteria were immured in 
ice hundreds of thousand years ago. The studies have shown that the number of via-
ble cells in these cores increases sharply with the presence of dust particles (Abyzov 
1993) and the ultra small cells were dominating (Miteva and Brenchley 2005). The 
cell distribution along the Antarctic Ice Sheet borehole indicates that the abundance 
of viable cells in Antarctic Ice Sheet decreases with increasing age of the ice—most 
abundant are the upper (<12,000 years) layers in spite of extremely low tempera-
tures, −50°C (Abyzov 1993). Studies of Greenland ice indicate a good preservation 
of the genomic DNA in relatively young, 2,000–4,000 years, cores (Willerslev et al. 
1999), as well as of bacterial and plant viruses in samples from 500–100,000 years 
old (Castello et al. 2005). Unfortunately, this relates to human danger viruses too: in 
the Arctic, influenza A RNA is preserved in high concentrations in the seasonal ice 

Table 6.1 Bacteria in terrestrial Cryosphere

EARTH CRYOSPHERE

Glaciosphere Cryolithosphere

Seasonally cryogenic formations

Snow & ice 
Covers

Cryopedosphere (frost-affected soils)
Seasonally thawed soil 

(Permafrost-affected soil or Cryosol)
Seasonally
frozen soil

101–102 cells ml−1 107–109 cells g−1

Long-term cryogenic formations

Ice sheets 
Glaciers

Ice
veins

Rocky permafrost
(overcooled dry rocks)

Frozen ground and Buried soils
(fine dispersed icy sediments)

101–102 cells ml−1 no data 103–107 cells g-1

CRYOBIOSPHERE
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of lakes (Shoham 2005). Recently, the preservation of influenza A virus genes was 
reported in ice and water from Kolyma lowland lakes on the East Siberian sea coast 
that are visited by large numbers of migratory birds. This type of temporal gene flow 
might be a common feature of viruses that can survive entrapment in environmental 
ice and snow (Zhang et al. 2006).

Table 6.1 shows that the most colonized part of Cryosphere is represented by 
modern frost-affected soils and permafrost with cells adsorbed on organic or 
mineral particles. This is why, after brief description of the contemporary soil 
cover in high altitudes and latitudes, we focus on permafrost as a habitat, and its 
biodiversity. However, firstly we have to clarify the terminology and emphasize 
that the term permafrost designates the permanently frozen ground—soil or rock 
that remains at or below 0°C for at least two consecutive years (van Everdingen 
1998). In the literature, the term “soil” is the synonym of fine dispersed sediments 
or deposits. So, in the above mentioned definition, the term “permafrost soil” is 
a synonym of “permafrost”. Unfortunately, in recent years, some microbiologists 
used in presentations and papers the term permafrost soil as a synonym of modern 
soils in permafrost zone—seasonally (summer) thawed soils underlain by permafrost. 
Thereby, these authors ignore the principal differences between permanently and 
seasonally frozen grounds as microbial habitats and mislead readers about the 
microbial community which is investigated: ancient or modern. In the case of the 
soil cover in the permafrost zone, several terms could be used—seasonally 
thawed soils or active layer. More recent terms are permafrost-affected soils or 
cryosol.

6.2 Soil cover

The frost-affected soil cover consists of two main groups, which contain a similar 
number of viable cells (Table 6.1): (1) seasonally (summer) thawed soils with mean 
annual temperatures lower than 0°C, underlain by permafrost; and (2) seasonally 
(winter) frozen soils with mean annual temperatures higher than 0°C, underlain by 
non-frozen deposits. In the cold period, both groups are in the frozen state and melt 
during each summer. The leading factor in differentiation of soil horizons is tem-
perature transition through 0°C, resulting in freeze-thawing processes, ice-water 
phase exchange, cryoturbation, soil heaving, shattering and continual renovation of 
soil profile. This is why it is so important to understand the influence of multi-time 
freeze-thawing stresses on soil microbial community.

Arctic tundra and north taiga soils in frozen state are consolidated by ice, and 
the depth of seasonal thawing varies between 0.3 and 2.0 m. The maximal number 
and biodiversity of microorganisms correlate with the upper soil horizon A and 
decrease with depth up to the surface beneath the seasonal thaw layer, called per-
mafrost table. This table represents the physical barrier with the sharp accumulative 
peak of microorganisms (Fig. 6.1), which came down from the upper layers due to 
infiltration of melted water (Fyodorov-Davydov and Spirina 1998).
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The surface of Arctic tundra soil is under the influence of solar radiation. But 
covers of snow and vegetation decrease and minimize this impact, as well as 
temperature oscillations. The surface conditions in Antarctica (intensive solar radi-
ation, absence of snow and vegetation covers and ultra-low subzero temperatures 
down to −60°C) differ from Arctic. This is why the upper 10–25 cm thick Antarctic 
Dry Valleys sandy “active” layer is dry and lacks ice-cement due to sublimation. 
The overcooled (frosty) layer with no water and therefore no ice may often be 
mobilized by storm wind. At elevations of 1500 m, there is no summer air temperature
above freezing. However, the surface temperatures of soil or rock may exceed 0°C 
for several hours (Llano 1962; McKay et al. 1993, 1998), and for short periods even 
reach 10°C (Campbell et al. 1997). In such a situation, the upper ~2 cm layer of the 
surface often contains a low number of viable cells in comparison with the underlain 
horizons (Cameron et al. 1970; Horowitz et al. 1972), and, in some cases, these 
microorganisms cannot be isolated on agar plates. This correlates with the poor 
diversity of bacterial phylotypes, a low number of mycelial fungi strains, and a 
minimum of chlorophyll content. The occurrence and biodiversity of microorgan-
isms is higher at depth (horizon C) than in top of the “active” layer (Gilichinsky 
et al. 2007). Such distribution is typical for cryptoendolithic microbial communities 
on and within Antarctic sandstone (Friedmann 1982; Meyer et al. 1988; Nienow 
and Friedmann 1993).

Microbiologists have carried out research of Arctic soil microbial communities 
by classical bacteriological methods for more than 60 years (Jensen 1951; McBee 
and McBee 1956; Boyd and Boyd 1962). Numerous studies have shown that the 
bacterial composition in the active layer of Arctic tundra include members of 

Fig. 6.1 Bimodal profile distribution of microorganisms in tundra and north taiga soil cover. Key:
1 forest litter; 2 peaty horizon; 3 mucky horizon; 4 soddy horizon; 5 iron-enriched horizon; 
6 morphological features; 7 organic inclusions in mineral horizons; 8 permafrost table
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Alpha-, Beta-, Gamma-Proteobacteria, Firmicutes, Actinobacteria (Arthrobacter, 
Nocardia, Mycobacterium), Cyanobacteria and members of the Cytophaga/
Flexibacter/Bacteroides group (Nelson and Parkinson 1978; Parinkina 1989; 
Dobrovolskaya et al. 1996; Mannisto and Haggblom 2006).

Gram-negative bacteria, such as Burkholderia sp., Collimonas sp., Pedobacter sp., 
Janthinobacter sp., Duganella sp., Dyella sp., Achromobacter sp., Pseudomonas sp. 
and Sphingomonas sp., are typical components of the tundra soil microbial complex, 
while Gram-positive strains are often a minor component (Mannisto and Haggblom 
2006; Belova et al. 2006). Since the processes of methane production and oxidation 
are common in Arctic polygonal tundra, methanogens and methanotrophs (Methylocella 
tundrae, Methylocella palustris, Methylobacter psychrophilus) are always present in 
the community structure (Berestovskaya et al. 2002, 2005; Dedysh et al. 2004).

However, determination of phylogenetic diversity of a bacterial community from 
soil DNA started by Zhou et al. (1997) has come only now to the active phase. In 
that study, no dominant clones were found; all 43 environmental clones were differ-
ent with most of the phylotypes from Proteobacteria (60.5%), especially from Delta 
(25.6%), Alpha (20.9%), Beta (9.3%) and Gamma (4.7%) subdivisions, followed by 
Fibrobacter (16%), Gram-positive bacteria (11.6%) and members of the Cytophaga-
Flexibacter-Bacteroides group (2.3%). However, due to the small size of the clone 
library, it was impossible to compare the microbial abundance and diversity of tun-
dra soils with soils of other northern regions. Partly, this deficiency was filled up by 
Neufeld and Mohn (2005). Using the data of serial analysis of ribosomal sequence 
tags (SARST) and denaturing gradient gel electrophoresis (DGGE), they estimated 
and compared the bacterial biodiversity in Arctic tundra and boreal soils. Between 
1,487 and 2,659 ribosomal sequence tags (RSTs) were obtained from each sample 
of three arctic tundra sites and three boreal forest locations. Rarefaction analysis, 
Chao1 estimates, and Shannon–Weiner diversity index consistently indicated that 
the undisturbed arctic tundra soil libraries possessed greater bacterial diversity than 
the boreal forest soil libraries. The taxonomic affiliations of RSTs demonstrated the 
dominance of Proteobacteria and substantial proportions of Actinobacteria, 
Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, and Cyanobacteria. All 
libraries contained a large proportion of RSTs (10–25%) with close affiliations to 
16S rRNA gene sequences of unknown phylogenetic affiliation. This report and our 
studies demonstrate that the Arctic serves as an unrecognized reservoir of microbial 
diversity and thus of biochemical potential.

In our study, in order to get higher diversity of phylotypes, we extracted the total 
community genomic DNA from the original sample (T

0
) and after aerobic (T

a
) and 

anaerobic (T
an

) enrichments (Fig. 6.2). A total of 243 environmental clones were 
selected and partial 16S rRNA gene sequences for each clone were obtained using 
the high throughput DNA sequencing approach, and the phylogenetic relatedness 
of the 16S rRNA gene sequences was studied. All variants yielded a high propor-
tion of Proteobacteria and unclassified bacteria, while the proportion of all other 
bacterial groups varied depending on the conditions of enrichment or on the respec-
tive DNA isolation kit (Fig. 6.2). Therefore, we present here a summary of all 
clones spread over 15 phyla. Most of the clones (29.3%) belonged to unclassified 
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bacteria and bacteria of uncertain position, so the majority of the bacterial commu-
nity of tundra soil appears to have never been isolated and the physiology and func-
tion of these presumably dominant organisms are unknown. The dominant bacterial 
group was represented by Proteobacteria (40.4%) with the majority of clones from 
the Beta (23.9%) subdivision, in comparison to the Alpha (5.7%), Gamma (5.7%), 
and Delta (4.5%) subdivisions. The distribution of other detected bacterial groups 
was as follows: Gram-positive bacteria consisted of Actinobacteria (9.5%) and 
Firmicutes (0.8%), then Gemmatimonadetes (7.8%), Nitrospira (3.3%), Cytophaga–
Flexibacter–Bacteroides group (2.4%), Verrucomicrobia (2.4%), Acidobacteria 
(1.6%); other detected bacteria constituted less than 1%.

To date, two tundra soils and four permafrost samples, all of them of different 
composition and origin, were characterized in three independent studies based on 
culture-independent approaches (Zhou et al. 1997; Vishnivetskaya et al. 2006; 
Steven et al. 2007; and this review). Deeper permafrost layers contain microbial 
communities which have been formed in the surface ecosystems and then trapped 
and buried during sediment accumulation and freezing. However, because of the 
complex vertical structure of the soil/sediments and the physical and chemical 
differences between the horizons (Zvyagintsev 1994), it is obvious that the subsurface
community structure differs from that of surface soils. In spite of the fact that a 
bacterial community structure depends on sample characteristics, we found 
similarities between upper soil layers and underlain permafrost sediments. While 

Fig. 6.2 Bacterial diversity in one sample of Arctic soil as obtained after aerobic (T
a
) and anaer-

obic (T
an

) enrichments in comparison to original community (T
0
). The total community genomic 

DNA for each variant was isolated using MoBio and Bio101 kits. The proportion of different 
subdivisions of Proteobacteria is given on the right of each pie. Bacterial phyla which environmen-
tal clones were closely related to are shown
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the diversity of the genera detected in tundra soil was higher than within perma-
frost, Gram-positive bacteria with high and low G+C content, Alpha-, Beta-and 
Gamma-Proteobacteria, and Cytophaga–Flexibacter–Bacteroides group were 
detected in both soil and sediments. These bacterial groups were also detected in 
different textured tundra soil horizons by fluorescence in situ hybridization (FISH), 
a new approach for studying the composition of an active community in an environment
(Kobabe et al. 2004). We found that Proteobacteria (Delta-, Alpha-, or Beta-) were 
predominant in tundra soil, while Gamma-Proteobacteria dominated within permafrost.
However bacteria of the genus Pseudomonas and the family Xanthomonadaceae 
could be easily detected in tundra soil as well. The comparison of environmental 
clones and previously characterized isolates from tundra soil showed that 
Arthrobacter, Nocardioides, Methylocystis, Janthinobacterium, Burkholderia, and 
Pseudomonas could be detected by both culture-dependent and culture-independent 
methods.

6.3 Permafrost

The first data related to the existence of bacteria in permafrost appeared at the 
beginning of the 20th century, in relation to the discovery of mammoths and studies 
of soils in Siberia (Omelyansky 1911; Isachenko 1912). In the 1930s–70s, sepa-
rately, unrecognized by each other, microbes were discovered in many Arctic 
regions (Kapterev 1936, 1938; Kriss 1940; James and Sutherland 1942; Kriss and 
Grave 1944; Kalyaev 1947; Becker and Volkmann 1961; Boyd and Boyd 1964; 
Kjoller and Odum 1971), and in Antarctic Dry Valleys (Cameron and Morelli 
1974). As early as 1975, Pewe first emphasized the need for further research in this 
field and, 20 years later, the overview of these studies was published (Gilichinsky 
and Wagener 1995). In all these studies, the procedures and the application of drilling 
fluids did not guarantee the sterility of the cores. Because of these methodological 
and technical difficulties, the above mentioned reports were not considered with 
due attention and the permafrost was not studied as a living stratum. Nevertheless, 
the authors of these early studies first raised the question of the possible preservation 
of viable cells in the permafrost. The recent status of permafrost microbiology has 
been reviewed by Steven et al. (2006). This is why we focus below on some new 
aspects only.

6.3.1 Bacterial biodiversity

Abundance and diversity of microbes inhabiting permafrost are very high. The total 
cell number counted by epifluorescence microscopy was 105–106 cells g−1 dry mass 
in Antarctica (Gilichinsky et al. 2007) and 107–108 cells g−1 dry mass in Siberian 
(Vorobyova et al. 1997) permafrost. The number of bacterial cells that grow on nutrient 



90 D. Gilichinsky et al.

media was <0.1% (Antarctica) and 0.1–1.0% (Siberia) of the total amount counted by 
epifluorescence microscopy. Bacterial communities from both Siberian and Antarctic 
permafrost samples were precisely characterized by culture-dependent and culture-
independent methods. Both methods revealed the presence of Gamma-Proteobacteria 
and Gram-positive bacteria with high and low G+C content in both ecosystems 
(Table 6.2). From Table 6.2, we can easily see that some of the bacterial genera, such 
as Arthrobacter, Bacillus, Pseudomonas, and Enterobacteriaceae, could be detected 
by both methods. Culture-independent approaches showed the dominance of Gamma-
Proteobacteria, especially Xanthomonadaceae (75–84%), and Actinobacteria 
(39–57%) in Siberian permafrost (Petrova, unpublished data; Vishnivetskaya et al. 
2006), and Gram-positives (up to 45%) and Proteobacteria (up to 25%) in Antarctic 
permafrost (Spirina et al. 2003). Numerous studies showed abundant viable bacteria 
in Siberian permafrost (Shi et al. 1997; Vorobyova et al. 1997; Vishnivetskaya et al. 
2000), these bacteria were isolated with different isolation techniques and approaches. 
Table 6.2 shows that there were more environmental clones from Antarctic perma-
frost than from Siberian; this may be a consequence of the high resolution approach 
we used to access the total community biodiversity in Antarctic permafrost core sam-
ples. The high throughput DNA sequencing of environmental clones yielded over 
2,000 partial 16S rRNA gene sequences, which were automatically aligned using 
SEQUENCE MATCH against closely related sequences in the Ribosomal Database 
Project (RDP) (Maidak et al. 2001). In comparison to 265 environmental clones from 
Siberian permafrost, which were grouped using amplified ribosomal 16S rRNA 
restriction analysis (ARDRA), only representatives of the major ARDRA clusters 
were sequenced. Thus, viable isolates from Siberian permafrost and environmental 
clones from Antarctica are well characterized; therefore the dissimilarities and 
similarities between them may suggest that (1) some genera are indigenous, and (2) 
similar genera inhabit distinct permafrost systems. We have also found that most of 
our isolates and clones are phylogenetically related to previously characterized strains 
or clones from different cold ecosystems (Vishnivetskaya et al. 2006; Gilichinsky 
et al. 2007).

6.3.2 Cyanobacteria

350 permafrost cores were screened for presence of viable cyanobacteria. 30 cyano-
bacteria strains were isolated from Siberian samples (Vishnevetskaya et al. 2001), 
while no cyanobacteria were found in Antarctic permafrost. However, a few cyano-
bacterial environmental clones were amplified from the total community genomic 
DNA isolated from Antarctic permafrost (Gilichinsky et al. 2007). To compare the 
environmental clones and isolates obtained from permafrost of both Polar Regions, 
phylogenetic analyses of 16S rRNA genes of cyanobacteria were performed, which 
placed them into three groups (Fig. 6.3). Three viable cyanobacterial strains from 
Siberian permafrost and four environmental clones from Antarctic permafrost have 
close relatives within the Nostocales family. However, these environmental clones 
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were closely related to an uncultured cyanobacterium found in river epilithon. 
Viable Nostoc-like strains formed heterocysts in the absence of combined nitrogen 
source, and were characterized by different phycoerythrin/phycocyanin ratio 
depending on nitrogen source. Among eight strains of non-heterocystous filamen-
tous cyanobacteria, we found seven that were close to each other and to 
Leptolyngbya (80–95.8% identity), and one which was closely related to Microcoleus
(96.8%), both of them in the family Oscillatoriales. The phylogenetic analyses were 
confirmed by studying the morphological features of the isolates. We have found 
that viable cyanobacteria were dominated by non-heterocystous filamentous cyano-
bacteria of the family Oscillatoriales. Permafrost cyanobacteria were closely related 
to strains and mostly to uncultured cyanobacteria derived from microbial mat or 
cryptoendolithic communities in Antarctica.

6.3.3 Anaerobic bacteria

Permafrost contains both aerobic and anaerobic bacteria. In addition, the reducing 
conditions within the permafrost are more favorable for the preservation of 
anaerobic bacteria. Most-probable-number (MPN) incubations showed evidence 
of viable denitrifiers, acetoclastic methanogens, hydrogenotrophic methanogens, 
Fe(III) reducers, and sulfate reducers in some of the aged frozen soils (Rivkina 
et al. 1998). The denitrifiers and hydrogenotrophic methanogens were found in 
higher numbers and in the oldest layers. Acetoclastic methanogens and sulfate 
reducers were found in low numbers, and not in all samples. Iron-reducing bacteria 
were only found in samples of moderate age (from modern to 10,000 years). 
Sulfate-reducing bacteria were detected in half of the samples without a specific 
pattern. The number of some anaerobic groups of microorganisms growing at 
+15°C is presented in Table 6.3.

Table 6.3 Numbers of viable permafrost anaerobes (cells g–1 dry mass) growing at 15°C

Methanogens  Denitrifying  Sulfate-reducers
Period (age, years) Depth (m) (CO

2
+H

2
) (NO

3
+citrate) (SO

4
+ lactate)

Q
IY

 (5–10) × 103 0.1 2.0 × 107 2.0 × 107 2.0 × 102

 1.2 1.2×107 1.2 × 105 0
Q

III
 (1–4) × 104 2.2 2.5 ×107 2.5 × 105 0

 4.4 2.5×107 2.5 × 106 0
 17.0 2.5×107 2.5 × 105 0
Q

II
 (1–6) × 105 30.0 2.3 ×107 2.3 × 103 2.3 × 102

 32.7 2.0×107 2.0 × 106 0
N

2
–Q

I
 (0.6–1.8) × 106 37.2 2.0 × 107 2.0 × 106 2.0 × 102

 43.5 2.5×107 2.0 × 104 2.5 × 102

 48.8 2.0×107 2.5 × 103 2.0 × 102

 54.8 2.0×104 2.0 × 106 0
 64.3 2.5×107 2.5 × 107 2.0 × 102
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Fig. 6.4 Micrographs of methanogenic permafrost isolates. Methanosarcina mazei strain JL01: a
phase contrast image, bar 10 mm; b ultrathin section, bar 0.5 mm. Methanobacterium sp. strain 
M2: c phase contrast image, bar 10 mm; d ultrathin section, bar 0.5 mm. Methanobacterium sp. 
strain MK4: e phase contrast image, bar 10 mm; f ultrathin section, bar 0.5 mm. Pph, polyphos-
phate inclusions; Clc, cyst-like cells (Photo of N. Suzina)

Methane is also trapped in the permafrost and this is why, among viable 
anaerobic microorganisms, research was mainly oriented towards methane-pro-
ducing Archaea. Using radiolabeled substrates, NaH14CO

3
 and Na14CO

2
H

3
, it was 

shown that methane formation in frozen deposits may occur at subzero tempera-
tures down to −16.5°C (Rivkina et al. 2004, 2007). Our specific goals were to 
isolate methane-producing Archaea and to investigate the effect of long-term 
preservation of the methane-producing community in the permafrost on its meta-
bolic activity.

Active methanogenic enrichment cultures (40% of CH
4
 in headspace) were 

obtained after 6 and 12 months of incubation, respectively, and only on H
2
+CO

2
 at 

20°C, although trace amounts of methane were also detected on acetate. Three 
strains from Holocene and Pliocene age were isolated for the first time in 
pure cultures: JL01, M2 and MK4 (Fig. 6.4). Although CO

2
+H

2
 served as a favorable 
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substrate for all enrichments, strain JL01 used only acetate, methanol, monometh-
ylamine, dimethylamine and trimethylamine as carbon sources, while the other two 
strains grew exclusively on CO

2
+H

2
 (Rivkina et al. 2007). The presence of biogenic 

methane in permafrost includes original methane formation in sediments at 
temperatures above 0°C followed by its conservation during freezing. At the same 
time, one cannot exclude the possibility of methane formation within permafrost at 
subzero temperatures. This would depend on the ability of methanogens not only 
to survive and adapt in the permafrost but also to carry out metabolic reactions. 
Discovery of viable methanogens in ancient permafrost sediments provides significant
evidence of the stability of these microbial populations through extremely long 
existence at subzero temperatures. The comparison of ancient isolates with modern 
methanogens provides a mean to understand their adaptation strategy, which is the 
goal of our future studies.

6.3.4 Resistance of permafrost bacteria to antibiotics 
and heavy metals

The occurrence of viable Cenozoic microorganisms within the permafrost is intrigu-
ing because an analysis of their features may provide a window into microbial life 
as it was before the impact of humans. It is often argued that the impact of industrial 
and urban pollution on bacterial communities results in the wide dissemination of 
various drug and heavy metal resistance genes carried by plasmids and transposons. 
The only environment on Earth which is a depository of unaltered microbial 
communities is permafrost. This is why the most straightforward way to check this 
idea is to obtain the data on the distribution of these genes among bacteria of the 
pre-industrial era, as well as to determine if the pre-industrial and modern microbial 
communities have different sensitivities to antibiotics and heavy metals. The first 
study was carried out in eastern Arctic, where microbial populations of modern 
tundra soil and ~3 million years old permafrost were tested for their resistance to anti-
biotics. The reduction in CFUs caused by these antibiotics on microbial populations 
recovered from modern tundra soils was loosely in agreement with the reduction 
expected for bacteria from arable temperate soils. At the same time, some of the ancient 
bacteria were more resistant to a number of antibiotics (novobiocin, carbenicillin, 
ampicillin, trimethoprim and bacitracin) than the modern populations, and the pat-
tern of antibiotic sensitivity in permafrost was clearly very different from any that 
have been seen in a wide variety of modern soils studied (Tiedje et al. 1994).

Recently, strains resistant to the following antibiotics—chloramphenicol, strep-
tomycin, kanamycin, gentamicin, tetracycline, spectinomycin, neomycin—were 
isolated from permafrost. The analyses of these strains indicate the presence of all 
types of mobile elements known among modern bacteria: plasmids, insertion 
sequence elements, transposons and, probably, integrons. For example, among 
streptomycin resistant bacteria from permafrost, strains that contain well studied 
and wide spread transposon Tn5393 with streptomycin-resistance genes were found
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(Petrova et al., in press). This indicates that antibiotic resistance was common in 
microbial communities well before the commercial use of antibiotics. The cause of 
such enhanced antibiotic resistance is not clear, however it may be suggested that a 
generalized response of the community to in situ stresses, e.g., freezing and starva-
tion, may also protect bacteria from some antibiotics.

Permafrost provides a unique possibility of direct molecular comparisons 
between “prehistoric” bacteria, which are perfectly free from industrial impact, and 
present-day bacteria, which experience anthropogenic stress. Mercury-resistant 
bacteria are an excellent subject for paleomicrobiological molecular studies. The 
“prehistoric” transposons closely related to mercury resistance transposons Tn5041,
Tn5042, Tn5053, and Tn5056, which are widely distributed in present-day bacteria, 
were detected in mercury-resistant Pseudomonas strains isolated from permafrost 
(Mindlin et al. 2005). The number of mercury-resistant bacteria in permafrost varied 
significantly from 0.001 to 1.2–2.7% in sediments with high mercury concentrations 
(Petrova et al. 2002). The results testify that no drastic changes in distribution mode 
of the different types of mercury resistance transposons among environmental
bacteria took place in the last 40,000 years. At the same time, the complex trans-
posons of the Tn21-branch were not found in permafrost, but the transposon named 
Tn5060, nearly identical to the hypothetical mercury resistance transposon-precursor
for wide family of complex transposons of Tn21-branch, was isolated (Kholodii et al.
2003). The results of the study of the ancient mercury resistance transposons allow 
to formulate that mer operons (mercury resistance transposons) have been widely 
distributed in environmental bacterial populations long before the beginning of the 
industrial era, and that the formation of integron-carrying transposons containing 
the determinants of multiple antibiotic resistance in addition to mer operons 
occurred much later, as a result of increasing antibiotic usage in men and animals.

6.3.5 Resistance of permafrost bacteria to radiation

Preserving bacterial cells during millions of years is a challenge since permafrost 
is not only characterized by stable cryogenic conditions inducing cryodesiccation 
of the cells, but these are, in addition, submitted to constant irradiation from native 
radio nuclides. The first estimation of ground radiation in Arctic permafrost has 
been made by McKay and Forman, using both elemental analysis of the radioactive 
elements in samples and direct in situ measurements in the boreholes. The dose of 
background radiation received by the permafrost bacteria depends on sediment type 
and is ~2–4 mGy year−1 (0.23 µGy h−1) in sand and loams of alluvial origin on the 
Eurasian northeast, and ~1.3 mGy year−1 (0.15 µGy h−1) in volcanic ash and scoria. 
Taking into account the age of bacteria, late Pliocene to late Pleistocene, the total 
dose received by cells would therefore range from 0.024 kGy in soils of 12,000 years
old to 6 kGy in sediments over 3 million years in age (Gilichinsky 2002). Thus, 
bacterial cells within the permafrost should have some protecting mechanisms, 
allowing them to survive such a long time under constant irradiation conditions.
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Experimental data demonstrate that bacteria entrapped in frozen soil have a much 
greater resistance to irradiation than bacteria in thawed soil. Firstly, the samples were 
irradiated by 22.8 Gy min−1 with Co60 γ source at temperatures above 0°C, and it was 
shown that the amount of water within the sample does not affect the radiation effi-
ciency. Secondly, irradiation was performed in an especially designed cryostatic 
device at temperatures ranging from −20 to −25°C and the effect of irradiation dif-
fered for frozen and thawed samples. At equal levels of ionizing radiation, viable cell 
quantities and total radiation dose, this difference was about one order of magnitude 
for a dose of 1 kGy and is expected to increase for larger doses. Only 1% and 10% of 
the microbial population survived a dose of 1 kGy as calculated for unfrozen and fro-
zen samples, respectively. Important indexes for estimation of irradiation stability of 
microbial population are LD

50
 and LD

99.9
, i.e. doses of 50 and 99.9% lethality, respec-

tively. These parameters differ by a factor of 3 for frozen and unfrozen samples.
From the biological point of view, subzero temperatures sharply decrease the 

microbial metabolic activity: the lower the rate of metabolic processes, the lower 
the radio lesions to biological objects. Subzero temperatures also induce the osmotic 
desiccation of the cells decreasing this way the effect of ionizing radiation. These 
facts indicate that: (1) the irradiation sensitivity of soil samples and furthermore for 
pure cultures at temperatures above 0°C differ from the sensitivity of microorgan-
isms preserved in permafrost; (2) the frozen environment protects microbial cells 
from diffuse ground irradiation; and (3) permafrost is a unique environment where 
microorganisms display a high resistance over thousands and millions of years. 
Taking into account the natural radiation background of 1–2 mGy year−1, the dose 
from radio nuclides diffused through the permafrost is far from sufficient for com-
plete sterilization, i.e. it is not fatal to viable cells, but it is high enough to cause 
some selection effect and to destroy the DNA of ancient cells. The calculated data 
correlate with the number of viable cells in permafrost of different age and with 
experimental results: at 5 kGy, most of the cells in unfrozen samples died, while the 
number of surviving cells in frozen samples was still sufficiently large. The cell via-
bility and growth on media implies a high capacity for DNA repair. On the basis of 
data concerning a metabolic activity at subzero temperatures (Gilichinsky et al. 
1995; Rivkina et al. 2000, 2004; Carpenter et al. 2000; Price 2000; Price and Sowers 
2004) we can conclude that DNA repair occurs in the frozen environment, i.e. at the 
stable rate of damage accumulation, while a comparable or lower rate of reparation 
also exists. Using the experimental data, some surviving forecasts for microbial com-
plexes in native frozen ground, exposed to space radiation conditions could be done.

6.3.6 Resistance of permafrost bacteria 
to freezing-thawing stress

In nature, microorganisms inhabiting tundra soils show high resistance to annual 
temperature fluctuations, which cause the repetitive phase transition of water 
through the freezing point. But the question is: how would permafrost microorganisms
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conduct itself in such a situation? Experiments have shown that microorganisms 
isolated from syngenetically frozen sediments, as well as soil microbial communities
which have been exposed to the impact of multiple freeze-thaw stress, are resistant 
to sharp temperature transitions through 0°C and to freezing/thawing (12 h/12 h) 
stress. Such experiments simulate daily temperature fluctuations on the soil surface 
in spring and fall. In laboratory experiments, even after hundreds of repetitive 
freeze-thaw cycles, the number and diversity of viable cells did not change within 
the syngenetic permafrost samples, while samples from tropical soils often become 
sterile after a dozen of these cycles. Microorganisms from epigenetically frozen 
marine sediments are somewhat intermediate; they are resistant to the long-term 
impact of subzero temperatures, but do not experience the action of temperature 
fluctuations in their natural habitat and this is why they are sensitive to the phase 
exchange in surrounding environment. Similar repetitive freeze–thaw cycles led to 
an increase of microbial numbers by several orders. These results may be explained 
as follows. In the first stage, the frequent transitions through the freezing point may 
lead to massive cell death (Gilichinsky et al. 1993). In the following stage, the 
remaining cells stop dying and start to adapt to the new conditions.

Water formed during thaw contains sufficient nutritive materials, which initially 
are frozen and trapped in the ice. These nutritive solutes are expected to be suffi-
cient for supporting the heterotrophic growth and prolongation of microbial com-
munities. Certain group(s) of microorganisms (monoculture in most cases) become 
adapted to water phase transitions between the melted and frozen state, occupying 
these unique microhabitats created by the thin films of unfrozen water in the per-
mafrost (Gilichinsky 2002). The same data were obtained with cyst-like resting 
forms of non-spore-forming permafrost bacterial strains of Arthrobacter sp. and 
Micrococcus sp. (Soina et al. 2004). The members of permafrost community, both 
prokaryotic (Arthrobacter sp., Flavobacterium sp.) and eukaryotic organisms 
(yeasts of the genus Rhodotorula sp., green algae of the species Chlorella vulgaris, 
Chodatia tetrallantoidea), also demonstrated resistance to freezing/thawing stresses 
after 3 months in frozen state at −5°C and complete darkness, modeling the annual 
soil freezing/thawing variations (Vishnivetskaya et al. 2003). After adaptation to 
the impact of prolonged subzero temperatures, the microbial communities within 
permafrost samples suddenly melted in the laboratory, subjected to stress of thawing,
accompanied by exposure to oxygen, light, and temperatures above 0°C. This thawing
stress induces all the other stresses; it is the most dangerous for permafrost organisms 
and known to inhibit the recovery of a fraction of the community. Improved strategies 
and techniques for recovery of bacteria from permafrost environments are only just 
beginning to be developed and one of them is the low-temperature cultivation.

Successive freeze-thaw cycles, which are characteristic of tundra soils, offer 
challenges and produce selective environments for cold adaptation of microbial 
communities. In order to characterize the freeze–thaw resistance of single-cell isolates,
five species of the genus Exiguobacterium were subjected to 20 freeze-thaw cycles. 
Viable cell counts evidenced that bacteria grown in complex, structured environ-
ment (agar medium) better tolerated the freeze–thaw challenge than bacteria grown 
in mass-action environment (liquid medium) regardless of growth temperature. 



6 Bacteria in permafrost 99

However, growth temperature was a key factor of cryotolerance in mass-action 
(liquid) habitat. Bacteria grown at 4°C in liquid medium tolerate freezing/thawing 
much better than when grown at 24°C (Vishnivetskaya et al. 2007). From these 
experiments, we may conclude that microbes liberated in soil solution suffer more 
lethal effects from soil freeze–thaw than microbes sorbed on soil matrix.

6.4 Conclusions

Permafrost bacteria represent a unique material for research on microbial evolution 
and low temperature adaptation, and they may possess unique mechanisms that 
allow them to maintain viability for very long periods. Therefore, permafrost is of 
great significance for research in cryo- and microbiology, biotechnology, ecology, 
molecular biology, paleontology and the newly emerging field of Astrobiology.
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