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Abstract

The microorganisms that inhabit hospitals may significantly influence patient recovery rates and 

outcomes (REFs). To develop a community level understating of how microorganisms colonize 

and move through the hospital environment, we mapped microbial dynamics between hospital 

surfaces, air and water to patients and staff over the course of one year as a new hospital became 

operational. Immediately following the introduction of staff and patients, the hospital microbiome 

became dominated by human skin-associated bacteria. Human skin samples had the lowest 

microbial diversity, while the greatest diversity was found on surfaces interacting with outdoor 

environments. The microbiota of patient room surfaces, especially bedrails, consistently resembled 

the skin microbial community of the current patient, with degree of similarity significantly 

correlated to higher humidity and lower temperatures. Microbial similarity between staff members 

showed a significant seasonal trend being greatest in late summer/early fall correlating with 

increased humidity.

The indoor environment has become our most intimate ecosystem, though its reduced 

microbial diversity relative to the outside world may be linked to an increased incidence of 

immunological diseases, asthma, and allergies1–4. A strong link has been observed between 

the microbial communities associated with human skin and those recovered from 

buildings5–7. However, the implication of this interaction on the incidence of hospital-

acquired infections as a leading cause of patient death8–10 has not been investigated. 

Culture-dependent analysis of HAIs and pathogen genotype tracking allows for the near-real 

time post hoc characterization of potential transmission routes11. However, outside of a 

small number of studies limited to ICUs and neonatal care rooms12–14 no detailed 

longitudinal culture-independent analyses of the hospital microbiome have been 

performed15.

Here, we present a yearlong microbial survey of the microbiota associated with the patients, 

staff, and surfaces of the newly constructed Center for Care and Discovery (University of 

Chicago). Sampling began 2 months prior to the hospital becoming operational on February 

23rd 2013, and continued for nearly a year post-opening. We collected 6,523 microbial 
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samples from multiple sites (Table S1) in 10 patient care rooms and two nursing stations 

across two hospital levels. At least 5,000 high quality 16S rRNA V4 amplicons were 

generated per sample. One patient room on each level was sampled daily while all other 

environments where sampled weekly. Environmental conditions, including temperature, 

humidity, illuminance, CO2 concentrations and infrared doorway beam breaks were 

continuously monitored16–17.

A soon as the hospital became operational, the floor and nursing station surfaces saw a 

significant increase in the relative abundance of the human-skin associated genera 

Corynebacterium, Staphylococcus, and Streptococcus, and a decrease in Acinetobacter and 

Pseudomonas, which dominated pre-opening samples (Figure S1A,B,C; Figure S2). OTU-

level Shannon diversity significantly increased in nursing station surfaces that commonly 

interact with human skin (Figure S1 D), but not in floor samples.

Skin samples were generally the least diverse of all sample types (although they had greater 

phylogenetic diversity than expected given their low Shannon index), while surfaces most 

likely to interact with the outdoors, such as air filters, shoes, and floors, were the most 

diverse (Figure 1A). Samples taken from the phone, chair armrest, countertop, computer 

mouse, and floor of the nurse stations, as well as the floor and air filters from the patient 

rooms, all had significantly lower beta diversity compared to samples taken from patient 

skin, staff noses, faucet handles, and unused latex gloves (Figure 1B). Staff hand microbial 

communities were significantly more similar to the microbiota of built hospital surfaces than 

were patient hands, likely as a result of greater staff mobility within the hospital. Supervised 

learning models could successfully differentiate nose and hand samples taken from staff 

members and patients (error ratios of 2.5 and 3.9, respectively) and hand samples could even 

be differentiated using genus-level data (error ratio = 3.3), with the genera Micrococcus 
(staff-associated) and Prevotella (patient-associated) having the highest feature importance 

scores. Pre-opening room and station floor samples had highly similar microbial 

communities, but were dissimilar to other surfaces; while post-opening floor samples had a 

greater degree of similarity to all surfaces (Figure 1B).

To determine the strength of microbial interaction between different hospital surfaces, we 

calculated the degree to which samples taken from two different surfaces on the same day 

and in the same room or building level, resembled each other using a method we term PC 

space correlation (Figure 2). Patient hands and bedrails had a strong interaction (ρ = 0.5); 

but all pairwise correlations within patient rooms were significant, suggesting a degree of 

microbial homogenization on the same day within each room. The strongest observed 

correlations were between the hand microbiota of hospital staff and their personal cell 

phones and pagers (ρ = 0.52 and 0.50 respectively), which has been observed 

previously18–19. Correlations within the nurse station environment were all significant but 

comparatively weak, probably due to the diversity of people using these environments daily. 

Correlations between environments were generally much weaker than those within 

environments, likely because of the reduced overlap in personnel occupancy. The station and 

patient floors had the greatest correlations between environments, likely due to 

homogenization by shoe traffic between locations. However, staff shoe and floor samples did 

not seem to interact significantly despite previous observations18. This may be due to regular 
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cleaning of the hospital floors or, more likely, the diversity of other individuals walking 

throughout the hospital who were not sampled in this study.

To investigate the degree to which the microbiota of individual patient rooms varied over the 

year, we calculated the variability of the core microbiome (Figure 3A). For all surface types, 

the average percent of 16S rRNA reads detected in every sample of a given room varied 

between 15 and 35%, being greatest for patient noses and lowest for patient axillae. The 

trends for all 5 surfaces were remarkably similar, suggesting that variability in the 

microbiota of room bedrails and floors could be attributable to variation in the skin 

microbiota of patients. We used a Bayesian source-tracking approach20 to match microbial 

profiles of samples taken from the second day of a patients stay, to those taken on their first 

day (Figure 3B). For the same surface type (e.g. hand to hand), the model was highly 

predictive for matching the patient on day 2 to the correct patient on day 1. Models using the 

microbial profile of day 1 hands to predict day 2 bedrails, and day 1 bedrails to predict day 2 

hands, were also highly accurate. Floor, nose, and axilla samples, by contrast, had much 

weaker predictive accuracy, though with the exception of nose or floor predicting axilla, 

were significantly better than random.

Within a patient room on the same day higher temperatures and higher illuminance was 

consistently associated with greater microbial dissimilarity between patient and surface 

microbial communities, while higher relative humidity and humidity ratio consistently 

correlated with greater microbial similarity (Figure 4A). Skin-associated microbial similarity 

between staff members working on the same floor showed a seasonal trend, with the greatest 

similarity in late summer/early fall, and the least similarity in the winter (Figure 4B). The 

greater the humidity, the greater the nose and hand-associated microbial similarity between 

staff; while staff hands became less similar with increasing temperatures (Figure 4C). Hand, 

nose, and floor samples taken on the same week were generally more similar than those 

taken on different weeks for both patient and staff environments (Figure S3).

The four dominant genera identified in the hospital comprised 303 unique strains 

(Oligotypes): with 116, Staphylococcus, 83 Streptococcus, 77 Corynebacterium, and 27 

Acinetobacter strains (Figure S4). When we applied Bayesian source tracking to the two 

patient rooms that were sampled daily, using the microbial profiles on hand or axilla samples 

from each patient as a source, it was often possible to accurately predict the correct patient 

based on microbial profiles on the bedrails, and to a lesser extent on floors and faucet 

handles (Figure S5; Figure S6). This suggests that individual patients can harbor a unique 

strain-level skin microbial profile, though the fact that many oligotypes were found in a large 

number of samples (Figure S4) limits predictive accuracy.

The complex dynamic environment of a hospital is an extreme environment for microbial 

life. With frequent cleaning and constant turnover of occupants this environment is purpose 

built to reduce the microbial interaction between occupants. We have demonstrated that the 

building parameters shape the microbial sharing between occupants, but that these drivers 

are linked to seasonal humidity trends, driven by local climate.
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METHODS

Sample Collection

Samples were collected by trained technicians at the Center for Care and Discovery at the 

medical center of the University of Chicago in compliance with IRB12-1508. With the 

exception of air samples, which were collected via filters placed in patient room air vents, all 

samples were collected by rubbing sterile swabs pre-moistened with 0.15M saline solution 

on the site of interest. After collection, samples were immediately frozen at −20° pending 

shipment to Argonne National Laboratory on dry ice. Environmental factors and occupancy 

proxies were continuously collected as previously reported16–17.

Amplicon Sequencing

All samples were processed using a modified version of the manufacturer’s protocol of the 

Extract-N-Amp kit (Sigma-Aldrich). Swabbed tips were placed into 2ml 96-well Deep Well 

plates (Axygen). 200μl of Extract-N-Amp Extraction solution was added, vortexed for 5 

seconds, and incubated at 90°C for 10 minutes. Samples were centrifuged a 2,500 × g for 1 

minute. 200μl of Extract-N-Amp Dilution solution was added to each sample to obtain a 1:1 

ratio of extraction to dilution solution. Genomic DNA was amplified using the Earth 

Microbiome Project barcoded primer set, adapted for Illumina HiSeq2000 and MiSeq by 

adding nine extra bases in the adapter region of the forward amplification primer that 

support paired-end sequencing. The V4 region of the 16S rRNA gene (515F-806R) was 

amplified with region-specific primers that included the Illumina flowcell adapter sequences. 

The reverse amplification primer also contained a twelve base barcode sequence that 

supports pooling of up to 2,167 different samples in each lane21. Each 20μl PCR reaction 

contains 5μl of MoBio PCR Water (Certified DNA-Free), 10μl of Extract-N-Amp Ready 

Mix, 1μl of Forward Primer (5uM concentration, 200pM final), 1μl Golay Barcode Tagged 

Reverse Primer (5μM concentration, 200pM final), and 4μl of template DNA. The 

conditions for PCR were as follows: 94°C for 3 minutes to denature the DNA, with 35 

cycles at 94°C for 45s, 50°C for 60s, and 72°C for 90s; with a final extension of 10 minutes 

at 72°C to ensure complete amplification. PCR amplifications were completed in triplicate, 

and then pooled. Following pooling, amplicons were quantified using PicoGreen 

(Invitrogen) and a plate reader. Once quantified, different volumes of each of the products 

were pooled into a single tube so that each amplicon was represented equally. This pool was 

then cleaned using the UltraClean® PCR Clean-Up Kit (MoBIO) and quantified using Qubit 

(Invitrogen). After quantification, the molarity of the pool was determined and diluted to 

2nM, denatured, and then diluted to a final concentration of 4pM with a 30% PhiX spike for 

loading on the Illumina HiSeq2000 sequencer. Amplicons were then sequenced in two 

151bp×12bp HiSeq2000 runs using custom sequencing primers and procedures described in 

the supplementary methods of reference 21.

Quality Control and Sequence Clustering

Paired end reads were quality trimmed and processed for operational taxonomic unite (OTU) 

clustering using the open reference method implemented in the QIIME pipeline22. The 

sequence identity cutoff set at 97% and taxonomy was assigned to the high quality (<1% 

incorrect bases) candidate OTUs using the parallel_assign_taxonomy_rdp.py script of the 
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QIIME software. Multiple sequence alignment and phylogenetic reconstruction was 

performed using PyNast and FastTree. OTUs containing less than 5 reads were discarded 

and the OTU table was rarefied to an even depth of 5000 reads.

Oligotyping

We used the Oligotyping pipeline23 to identify sub-OTU level variation in 4 highly abundant 

genera: Acinetobacter, Cornebacterium, Streptococcus and Staphylococcus. Usearch was 

used to align reads back to OTUs based on a 97% identity cut-off and mapped reads were 

quality trimmed using the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The 

minimum substantive abundance threshold for an Oligotype (-M) was set to 500 reads and 

the minimum number of samples (-s) and percent abundance cutoff (-a) were set to 1800 and 

5%, respectively.

PC Space Correlation

We calculated the weighted UniFrac distance24 between each pair of samples and then found 

the principal coordinates (eigenvectors) of the distance matrix. To reduce the complexity of 

the data and minimize noise we focused only on the minimum set of eigenvectors whose 

eigenvalues summed to fifty percent of the variance, which for our distance matrix were the 

first ten. We calculated the PC correlation along these 10 eigenvectors (n) such that our PC 

correlation (ρ) was an average of the Pearson correlation along eigenvectors i weighted by 

their associated eigenvalues (example calculation in Figure S7):

Correlation along each eigenvector was checked for significance using the cor.test function 

in R, and all non-significant correlations (p > 0.05) were reduced to zero before averaging.

Correlations were determined between pairs of samples taken from within the same 

environment (patient room, nurse station, hospital staff) on the same day. For between 

environment comparisons, such as room floor to station floor, samples could only be linked 

by the same building level (level 9 or level 10) and day, resulting in pairwise comparisons 

between all possible combinations of samples (nurse station floor to all 5 patient room floor 

samples taken that day on level 9, for example). Glove and water samples were excluded 

from these analyses due to the small and unique subset of ordination space they occupied in 

the PCoA of all samples (Figure S8).

Supervised Learning

Random forest supervised learning models were used to determine the diagnostic power of 

microbial community profiles in predicting whether hand and nose samples were taken from 

a hospital patient or staff member. The models were run using the supervised_learning.py 
command in QIIME, with 1,000 trees per model and 10-fold cross validation.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alpha and Beta Diversity of Hospital Sample Types
(A) Average alpha diversity of sample types based on Faith’s phylogenetic diversity (x-axis) 

and the Shannon diversity index (y-axis). Bars indicate standard error of the mean. (B) Heat 

map of beta diversity relationships between sample types based on the median weighted 

UniFrac distance between pairwise comparisons. Sample groups are clustered based on 

similarity in beta diversity patterns and median distances within individual sample types are 

highlighted in black along the diagonal.
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Figure 2. Heat map of PC Space Correlations between Sample Types
Within- and between-environment comparisons are differentiated by color scheme.
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Figure 3. Variability in Patient Room Microbiota
(A) Scatter plot of the percent of 16S reads in the “core microbiome” for the 8 rooms 

sampled weekly, with the core definition on the x-axis and the percent of reads in the core on 

the y-axis. Points represent the 8 individual rooms while the trend line is a moving average 

of the data. (B) Heat map of the predictive accuracy of SourceTracker models that used 

samples taken from the first day of a patient’s stay (source sample) to predict which patient a 

day 2 sample was taken from (sink sample).
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Figure 4. Effect of Environmental Factors on Microbial Transmission
(A) Heat maps of the correlation between environmental factors and the weighted UniFrac 

distance between samples taken from the same room on the same day. (B) Seasonal change 

in the distances between the hands and noses of nurses working on the same floor. Trend 

lines are a smoothed moving average of the data. (C) Correlations between environmental 

factors and the distances of hand and nose samples for nurses working on the same floor on 

the same day. Color scheme is as in (A).
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