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Abstract

The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to
be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable
random and non-random factors could be responsible for that process. These studies have also motivated a ‘‘structure–
function’’ paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the
bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge
samples were collected during a one-year period from two geographically distant CAS bioreactors of different size.
Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed
to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to
revealing a significant b-diversity between the bioreactors’ communities, results showed that the largest bioreactor had
a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also
suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure
in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional
redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model
and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS
bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems
that could be applied towards improving bioreactor design and operation.

Citation: Valentı́n-Vargas A, Toro-Labrador G, Massol-Deyá AA (2012) Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and
Ecological Factors Driving Community Assembly and Performance. PLoS ONE 7(8): e42524. doi:10.1371/journal.pone.0042524

Editor: Jacques Ravel, Institute for Genome Sciences, University of Maryland School of Medicine, United States of America

Received January 13, 2012; Accepted July 10, 2012; Published August 3, 2012

Copyright: � 2012 Valentin-Vargas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: valentin.alexis@gmail.com

¤ Current address: Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, United States of America

Introduction

Nowadays, biological wastewater treatment plants (WWTPs)

are the most common biotechnological application in the world

[1]. More than 15,000 WWTPs operate in the United States

alone, 75% of which include a secondary biological treatment,

processing billions of liters of sewage per day [2]. From the various

alternatives of biological treatment systems that exist, conventional

activated sludge (CAS) bioreactors are by far the most commonly

used secondary treatment technology [3]. Despite of periodic

improvements to the technology since its invention almost

a century ago [3] and its ubiquitous global application, little is

known about the underlying factors controlling the complex

dynamics of the microbial populations interacting in the

bioreactors and how those dynamic interactions affect the system’s

functional stability [4]. Until recently, a major obstacle was that

the science behind most of those technology improvements was

almost entirely empirical rather than theoretical [3,5]. Major

changes to the design of CAS systems were done predominantly

from an engineering perspective, greatly underestimating the

importance of microbial communities as an integral component of

these biological treatment systems [3,5]. Thus, many essential

aspects regarding the ecology and dynamics of microbial

communities within these systems, necessary for a rational

improvement of their design and operation, remain unresolved

[6].

Recent efforts have focused on improving the treatment process

from a bio-ecological perspective, but so far few studies have been

able to establish a clear link between the structure and function of

microbial communities and the design and operation of the

bioreactors [7]. Most of these efforts have failed due to limiting

methodology issues. One of these issues is the modeling of full-

scale WWTP bioreactors based on studies of lab-scale and pilot-

scale bioreactors [8,9]. These studies have often been misleading

and far from mimicking the real conditions observed in full-scale

bioreactors, creating a big gap between their theoretical and their

practical contributions [10,11]. Another issue is that many studies

had focused on analyzing single bioreactors [12,13], neglecting

from their analysis the effect that niche-specific factors may play in

the structure and function of microbial communities [5,14,15].

The most notorious, and therefore highly scrutinized, of these

issues is culture- and traditional-microscopy-based studies. These

studies, aimed to elucidate the diversity of microbes in WWTPs

[16–19], proved to be unreliable, irreproducible and created
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erroneous perceptions of the dominant populations in the

bioreactors [20–23]. They also failed to consider operational and

geographical factors on the composition of the communities [24–

27].

With the development and application of modern culture-

independent molecular techniques in ecological studies of waste-

water treatment systems [21,28–30], the capacity of researchers to

understand the true dynamics of microbial communities in these

ecosystems has greatly been improved [11]. However, de los Reyes

[31] explains that advanced molecular studies of microbial

communities in WWTPs have led to the emergence of a microbial

community ‘‘structure-function’’ paradigm that has not yet been

fully clarified. Linking changes in system design and operation

with the ecological factors controlling community assembly in the

bioreactors will be critical in fully clarifying this ‘‘structure-

function’’ paradigm and resolving important operational issues,

such as: sludge bulking (e.g. [32]), poor biochemical removal (e.g.

[33]), and system instability (e.g. [34,35]); ultimately resulting in

more stable and predictable systems [5]. Moreover, the study of

CAS systems could provide, in turn, a research platform for

developing and validating ecological principles that could be used

to predict the behavior of microbial communities in other

engineered and natural ecosystems [36–38].

Since bacteria are the dominant microbial group in full-scale

WWTPs [7], in the current study we aimed to (i) assess and

compare the dynamics of bacterial communities in two geo-

graphically distant full-scale CAS bioreactors treating domestic

sewage in a tropical environment and to (ii) establish links between

the systems’ operational parameters and the behavior of the

communities. We also evaluated the outcome of the study by

applying well-established ecological theories that could allow us to

better predict how microbial communities assemble in these

ecosystems. We hypothesized that (i) the structure of the bacterial

communities in both bioreactors will significantly differ temporally

and spatially from each other (high b-diversity) and in response to

operational parameters, and that (ii) the functional stability of the

system can be linked to the dynamics and diversity of the bacterial

communities in the bioreactors. We combined culture-indepen-

dent molecular techniques and a robust multivariate statistical

analysis to test these hypotheses and contribute to fulfilling the

urgent need for rationally improved biological wastewater

treatment technologies.

Methods

Description of WWTPs, Sample Collection and
Physicochemical Analysis
Two full-scale domestic WWTPs were studied on the island of

Puerto Rico. The first plant is the Puerto Rico Aqueduct and

Sewers Authority (PRASA) Regional Wastewater Treatment Plant

of Mayagüez, located in the coastal town of Mayagüez

(18u149530N, 67u099210W). This plant has four CAS bioreactors

with the capacity of processing 106 mega liters of wastewater per

day (MLD). Because the plant’s average daily flow (ADF) (,41

MLD) is below its maximum capacity, it generally has only 2

bioreactors operating simultaneously, alternating them in two-year

periods. Since bioreactor #2 was scheduled to start its two-year

operating period days prior to the first scheduled sampling, we

selected it for our study in order to maintain consistency

throughout the sampling period. The second plant is the PRASA

Municipal Wastewater Treatment Plant of Adjuntas, located in

the central town of Adjuntas (18u09’59’’N, 66u439400W). This

plant has only one CAS bioreactor with the capacity of processing

2.3 MLD, which routinely operates close to capacity. Since the

former plant has a higher capacity we refer to it as the HC plant

and the latter as the LC (low capacity) plant. Monthly grab

samples of activated sludge were collected from the aeration tanks

over a 12-month period (February 2007–January 2008). Samples

were collected in sterile 50 mL tubes and transported to the lab on

ice for immediate processing. Additional samples were collected

concurrently from the WWTPs for physiochemical analysis

(Table 1). The different parameters were estimated following

standard methods for wastewater analysis [39]. All the necessary

permits were obtained for the described field study. All necessary

permits to enter the wastewater treatment plants (WWTPs) and for

the collection of water and activated sludge samples from the

systems were granted by Puerto Rico Aqueduct and Sewers

Authority (PRASA, the government agency that supervise and

operates the studied treatment plants).

Terminal Restriction Fragment Length Polymorphism (T-
RFLP)
Sub-samples of 3 mL from each 50 mL tube of pre-homoge-

nized activated sludge were serially centrifuged at 10,000 g for

5 min in 1.5 mL tubes. The sludge pellets were washed twice in

sterile deionized water to reduce the concentration of PCR

inhibitors. Total DNA extractions from the pellets were performed

using the FastDNAH SPIN Kit for Soil (MP Biomedical, Ohio,

USA) following the manufacturer instructions with the following

modification: acid-washed crystals of Polyvinylpyrrolidone were

added to the Lysis Matrix E tubes at a concentration of 0.1%

before vortexing them for 15 min at maximum speed. Extracted

DNA purification and quantification was done as described

elsewhere [40]. The 16 S rRNA gene of bacteria was PCR

amplified in triplicate, using 100 ng of template DNA and the

primer set 27F-1392R [41]. The 59 terminal of the 27F primer was

labeled with the infrared dye IRDyeH 700 (LI-COR Biosciences,

Nebraska, USA). PCR reactions of 50 mL each were prepared as

previously described [40], with the addition of 3% DMSO. The

Table 1. Average values and standard deviations of the
measured operational parameter for each WWTP.a

Operational Parametersb HC LC

BOD- Influent (mg L21) 297.506186.98 173.33629.90

BOD- Effluent (mg L21) 4.1361.60 5.1863.27

BOD Removal (%) 98.3360.89 96.7562.53

TSS- Influent (mg L21) 54.33612.91 162.83649.54

TSS- Effluent (mg L21) 1.7861.89 10.81611.81

TSS Removal (%) 96.7563.74 92.6768.28

ADF (MLD) 41.2064.27 1.8860.33

HRT (Hours) 7.2160.65 8.7361.78

SRT (Days) 10.5963.69 3.3261.63

Food:Microbes ratio (F/M) 0.5860.45 0.0960.03

pH 6.6360.37 6.6460.34

PO4
32 (mg L21) 103.92638.60 61.29637.87

NO3
–N (mg L21) 4.9062.09 5.5462.02

Temperature (uC) 29.9261.00 26.4260.67

aWWTP: Wastewater Treatment Plant.
bBOD: Biochemical Oxygen Demand; TSS: Total Suspended Solids; ADF: Average
Daily Flow; MLD: Mega Liters per Day; HRT: Hydraulic Retention Time; SRT:
Solids Retention Time.
doi:10.1371/journal.pone.0042524.t001
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PCR cycling parameters were as follows: initial denaturing at 95uC

for 5 min followed by 35 cycles of denaturing at 94uC for 1 min,

annealing at 53uC for 1 min, extension at 72uC for 2 min, and

final extension at 72uC for 8 min. Triplicate PCR products were

then pooled and mixed. Three aliquots from each amplicon pool

were individually digested with one of the following restriction

endonucleases: HaeIII, RsaI or MspI. Digestion reactions consisted

of 150 ng of PCR product, 1.5 mL of 10X buffer, 0.5 mL of the

endonuclease (10 U mL21), and water to a final reaction volume of

15 mL. They were incubated for 4 hours at 37uC, followed by an

enzyme inactivation step at 65uC for 10 min. A 2 mL aliquot of

each digestion was mixed 1:1 with a 10% dionized formamide IR2

stop solution (LI-COR Biosciences, Nebraska, USA), and then

denatured at 94uC for 5 min. Samples were visualized in 6.5%

polyacrylamide gels, processed using the DNA Analyzer LI-COR

Biosciences 4300 (LI-COR Biosciences, Nebraska, USA) following

the manufacturer instructions. The external and the central wells

of each gel were loaded with the molecular marker 50–700 bp

IRDyeH 700.

Analysis of T-RFLP Profiles
The terminal restriction fragments (TRFs) profiles were

analyzed with Gel-Pro Analyzer V4.5 (Media Cybernetics, Mary-

land, USA). Each individual TRF, considered an independent

operational taxonomic unit (OTU), was assigned a hypothetical

molecular weight based on the known sizes of the molecular

marker. Thus, only TRFs within the range of the molecular

marker (50–700 bp) were considered for the analysis. The relative

abundance of the OTUs was based on the bands’ signal intensity,

observed on the electropherograms as peak height. Each

fluorescence signal was standardized by dividing the height of

each peak by the sum of all the peak heights in a single sample

profile. To accurately compare multiple T-RFLP profiles, the raw

matrices of relative abundance were analyzed using two scripts

written on CLISP (www.clisp.org). The first script, called PEAKS,

performed a recursive iteration to detect the minimal values that

can separate fragment’s peaks from noise baseline based on

a modification of the statistical criteria proposed by Abdo et al.

[42]. The selection of real peaks was based on exclusion of values

equal or larger than the median plus three standard deviations

(m+3s), the calculation and elimination of higher than expected

values was done recursively until no larger values could be

removed from the data set and the script saved the last calculated

value as the threshold to consider real peaks. A new matrix of

relative abundance values was constructed by eliminating all

values below the threshold determined for each sample. This

matrix was subjected to the second script, called BINNING, used to

group, in a single OTU, TRFs from different samples with similar

molecular weights. Even though the electrophoretic displacement

of the TRFs was compared with the displacement of the standard

of known molecular weight, subtle differences on the bands

migration pattern between runs could create small discrepancies in

molecular weight between TRFs of a single OTU. Thus, to

compare T-RFLP profiles from different gels they first need to be

aligned through a process done by grouping TRFs of similar

molecular weights from different profiles [43]. The BINNING

script explored all possible groups of TRFs (or ‘‘bins’’) and

organized individual sets of data in a unified matrix using three

criteria: (i) fragment size, (ii) congruence and (iii) number of peaks

within a possible OTU. The fragment size criterion established the

maximum binning size of an OTU depending on fragment size as

suggested for Automatic rRNA Intergenic Spacer Analysis by

Brown et al. [44]. The congruence criterion discarded binned

groups that cluster two or more peaks of the same profile into the

same OTU, subdividing the grouping into two or more OTUs.

Finally the script counted the number of peaks that belong to each

possible OTU and favored larger bins. The BINNING script was

repeated twice, once creating bins in ascending order of molecular

weight and vice versa. The bins selected were used to create the final

unified matrices (one per enzyme). The size assigned to each TRF

in a bin was an average of the molecular weights of the TRFs

within that bin. For further details on the CLISP scripts refer to

Caro-Quintero [45].

Statistical Analysis
Community structure analysis. The binned matrices were

square-root transformed to minimize the impact of highly

dominant OTUs and then subject to several statistical analyses

to compare the structure of the bacterial communities within and

between bioreactors. The dynamics of bacterial communities in

both WWTPs were primarily analyzed by non-metric multidi-

mensional scaling (NMDS). Since the distribution of the scatter

points in the NMDS ordination diagram may converge on

different arrangements depending upon the random initial

conditions of the analysis, 110 iterations of the analysis were

run. A stress value was calculated to measure the difference

between the ranks on the ordination configuration and the ranks

in the original similarity matrix for each repetition [46]. An

acceptable stress value should be below 0.1. The ordination with

the lowest stress was plotted. Analysis of similarity (ANOSIM) and

non-parametric multivariate analysis of variance (NPMANOVA)

were conducted to test the differences in overall bacterial

community structure between the WWTPs and to further confirm

the results observed in the NMDS plot. All three analyses were

based on similarity matrices calculated with the Bray-Curtis

similarity index selected based on its capacity to support

abundance data and because it only accounts for TRFs that are

present in two profiles (and not those that are absent) as a similarity

between them [43]. Given that Bray-Curtis distance measure

doesn’t incorporate any form of scaling for abundance data that

could dampen the effect of outliers (e.i. dominant and rare species

contribute equally to the distance matrix) the square-root trans-

formation of the data sets is therefore justified [47].

Analysis of diversity. Rényi diversity profiles, used to rank

the bacterial communities according to their relative diversity [48],

were calculated from the T-RFLP abundance matrices. These

profiles are based on a single continuous parameter, known as

Rényi’s alpha (a) parameter, which values at the scale of 1, 2 and

infinity are proportional to Shannon’s diversity index, Simpson’s

diversity index and Berger–Parker diversity index, respectively

[49]. The shape of the profiles is an indication of the evenness

within the community; the more horizontal a profile is the more

evenly distributed the populations are within that community [48].

Following a recommendation made by Kindt and Coe [48], for

this analysis we employed the raw data set instead of the square

root transformed data set given that the overall interpretation of

the profiles should be invariable to such transformation. We also

compared the average richness of OTUs per restriction enzyme

and conducted a paired t-test against the null hypothesis that there

was no significant difference between the richness of OTUs

detected in each bioreactor throughout the study.

A power law, known as the species-area relationship (S= cAz),

will be applied to define the relationship between the richness of

bacterial populations detected in the systems and the size of the

bioreactors [26].

Relationship between community dynamics and

operational parameters. To directly assess the relationship

between the structure of the bacterial communities and the
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operational parameters of the WWTPs, a canonical correspon-

dence analysis (CCA) was carried out. The CCA scaling focused

on inter-sample distances to optimize the position of the samples in

the ordination diagram, and was performed using square-root

transformed abundance data against the operational parameters as

explanatory variables. A CCA ordination biplot of the bacterial

communities per treatment plant and the environmental variables

arranged along the first two ordination axes was generated by

constraining the axes to be linear combinations of environmental

variable scores [50]. CCA eigenvalues were generated for each

canonical axis to estimate how much of the total variability

observed between the microbial communities could be explained

by their response to the environmental variables. The CCA

ordination diagram was interpreted as described by ter Braak and

Smilauer [51]. The statistical significance of the CCA analysis was

tested by a Monte Carlo permutation test (1000 unrestricted

random permutations; P,0.05) of residuals from a reduced model

against the null hypothesis that bacterial community composition

was unrelated to the measured operational parameters [50].

All statistical analyses were carried out with the software

PAleontological STatistics V 1.9 [52], except CCA that was

carried out with the software CANOCO V 4.5 [51]. Rényi’s

diversity profiles were generated with the R package BiodiversityR

[48]. The errors associated to the randomness of the statistical

methods and the sampling schemes were ignored given the

implementation of several tests of statistical significance (e.g.

ANOSIM, t-test, permutation test) to validate the observed

statistical patterns.

Results

WWTPs Operational Parameters
Details of the operational parameters estimated for both

WWTPs are listed in Table 1. Both plants processed domestic

sewage year-round under very similar hydraulic retention times

(HRT), pH, and fairly constant warm temperatures, typical of the

tropical climate in Puerto Rico. The rest of the measured

parameters, however, presented important differences between

the treatment plants. One of the most obvious differences between

them was the average daily flow (ADF), which is directly related to

the size of the bioreactors. Throughout the study the ADF in the

HC plant was approximately 22 times higher than in the LC

plant. On average, the biochemical oxygen demand (BOD) in the

influent was much higher in the HC plant (,72% more) but in

spite of these high loads of influent BOD, the HC plant was

capable of producing, on average, lower effluent BOD concen-

tration (,20% less) than the LC plant. Figure 1B shows that the

HC plant was more consistent in the removal of BOD from the

system, reporting equal or higher BOD removal efficiencies about

75% of the time. One intriguing observation that surfaced during

the analysis of the BOD results was that in the LC plant the

concentration of the influent BOD seemed to have an adverse

effect on the capacity of the plant to remove BOD from the

wastewater. Throughout the study, higher levels of influent BOD

in the LC plant were consistently associated with lower levels of

effluent BOD (higher removal efficiencies), while lower levels of

influent BOD were associated with higher levels of effluent BOD

(lower removal efficiencies). This was not the case for the HC plant

in which lower levels of effluent BOD were, as expected, associated

with lower levels of influent BOD. To test this observation we

conducted regression and correlation analyses on the relationship

between the influent and effluent levels of BOD (Figure 2). The

HC plant showed the expected positive relationship between the

parameters (r = 0.4878), even though the result from the correla-

tion was not significant (P=0.108). For the LC plant, on the other

hand, the analyses showed a strong and significant negative

correlation (r =20.6330, P=0.0272). We ran a Wald test to

evaluate the interaction between source bioreactors and influent

BOD levels as a predictor variable for the regression model and

found that, indeed, the relationship between the parameters

significantly differed between plants (P=0.0033).

The influent concentrations of total suspended solids (TSS)

throughout the study were, as opposed to those of BOD, higher in

the LC plant than in the HC plant. On average, The LC plant

received loads of TSS 3 times higher than the HC plant. In terms

of the effluent TSS, however, the HC plant was still the leader,

producing almost 85% lower effluent concentrations. Although

not as evident as for BOD, the HC plant was also more consistent

removing TSS (Figure 1A) than the LC plant. With an average

SRT of 10.6 days throughout the study, the HC plant showed at

least 3 times higher SRT than the LC plant. Likewise, the HC

plant showed 6.5 times higher F/M values. In terms of nutrients,

both bioreactors showed very similar and rather low concentra-

tions of nitrate-nitrogen. However, the levels of phosphate in both

bioreactors were considerably high, with the HC plant showing

about 70% higher concentrations.

Temporal Dynamics of Bacterial Community Structure
A NMDS analysis was conducted (Figure 3) to visualize the

temporal dynamics of bacterial communities in the CAS

bioreactors. Given a stress of 0.04817, the NMDS tridimensional

ordination diagram was a reliable representation of the original

similarity matrix. In the ordination diagram we can observe that

the bacterial community structure in the LC bioreactor was

considerably more erratic (i.e. dynamic) than the community

structure in the HC bioreactor. During the first 4 sampling times

of the study the community in the HC bioreactor showed some

marked fluctuations, but after the fifth sampling time the

community seemed to stabilize and maintain a more consistent

yet dynamic structure. It can be also observed from the diagram

that the composition of the bacterial communities in both CAS

bioreactors substantially diverged from each other. The statistical

significance of these differences was confirmed with ANOSIM

(R=0.5451, P,0.0001) and NPMANOVA (F=4.014,

P,0.0001).

Comparison of Bacterial Community Diversity in the CAS
Bioreactors
To compare the abundance of populations in the bacterial

communities, we analyzed the richness of OTUs as deducted from

the T-RFLP profiles (Table 2). On average, 7% more TRFs were

detected in the HC community profiles as compared to the LC

bioreactor profiles. A paired t-test analysis of the bacterial

population richness showed that the bacterial community in the

HC bioreactor was significantly richer (P=0.0232).

In order to rank the bacterial communities according to their

diversity, Rényi diversity profiles were generated for each

WWTP from the T-RFLP abundance data (Figure 4). Rényi

diversity profiling is an ordering technique aimed to easily rank

communities of organisms according to their diversity. The

selection of indices to compare diversity across ecosystems has

often been criticized for being arbitrary and inconsistent since

the ranking of communities may change when different indices

are used [48]. Defining a family of diversity indices based upon

a single continuous parameter is recommended to make the

diversity ordering more robust [53]. Thus, ranking based on

diversity profiles is ideal because several indices are collectively

considered in a single analysis and if the ranking of the

Bacterial Dynamics in CAS Bioreactors
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communities changes between alpha-values then the profiles are

not comparable. Rényi’s diversity ordering method is preferred

over other ordering methods [e.g. 54,55] because of its

superiority on effectively managing a wide range of data sets’

sizes and clearly pointing out the non-comparability between

certain profiles [53]. Moreover, as opposed to other methods

that are more sensitive to the presence of rare species in the

community [e.g. 55], Renyi’s method seems to be more sensitive

to the presence of the dominant populations and relatively

indifferent to the presence of the rare ones [53].

As inferred from the Rényi profiles, the bacterial community

from the HC bioreactor was consistently more diverse than the

community from the LC bioreactor across all diversity indices

represented by the alpha-values. Also, it seems from the shape of

the profiles that the populations in the HC bioreactor were more

evenly distributed.

Relationship between Operational Parameters and
Bacterial Community Structure
A CCA (Figure 5) was conducted to determine which

operational parameter had a stronger influence on the assemblage

of the bacterial communities in the bioreactors and how the

relationship between biotic and abiotic components of the systems

translates into the bioreactor’s functional stability. Given a statis-

tically significant CCA ordination (P=0.0190), the null hypothesis

of no relationship between bacterial community composition and

measured operational parameters was rejected. The CCA

eigenvalues for the first two canonical axes showed that the

measured operational parameters accounted for approximately

45.1% of the total variability observed in bacterial community

structure. From a close examination of the CCA ordination

diagram several observations could be made. First, we can

appreciate a very prominent separation between samples from

different WWTPs into opposite sides of the first canonical axis,

meaning that the bacterial communities in each CAS bioreactor

responded very differently (entirely opposite most of the time) to

the measured operational parameters. We must emphasize that

during the CCA analysis no distinction was made between samples

from different WWTPs (i.e. no nominal variables were used to

differentiate samples by their origin). Thus, the separations

between the samples from the two plants and the direction of

their response to the operational variables should not be an artifact

of the analysis but a real ecological trend. Secondly, we can see

that most parameters were highly correlated to the first axis, which

explains most of the variability in the bacterial communities. From

all the parameters, ADF, influent TSS, SRT, F/M, HRT and

Figure 1. Temporal variations of TSS (A) and BOD (B) removal efficiencies. Percentage values represent the difference between measured
influent and effluent concentrations of TSS and BOD for both WWTP: HC (N), LC (&).
doi:10.1371/journal.pone.0042524.g001
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temperature seem to have the strongest influence on the bacterial

communities’ composition in the bioreactors. Although influent

BOD and phosphate levels in the bioreactors seemed slightly less

influential on the community composition, they were still highly

correlated to the first axis. Levels of nitrate-nitrogen and pH in the

bioreactors were more related to the differences explained by the

second axis and had the weakest influence on the community

composition at any given time. Interestingly, very conspicuous

parameters (i.e. ADF, F/M, SRT) had a strong positive relation-

ship with the bacterial communities from the HC plant and

a strong negative relationship with the communities from the LC

plant, while other conspicuous parameters (i.e. TSS, HRT)

behaved the opposite.

Discussion

In this study, we aimed to assess the dynamics of bacterial

communities in two full-scale CAS bioreactors and evaluate the

relationship between the WWTP performance and the behavior of

the communities, relying primarily on a time series of T-RFLP

profiles of community structure. By combining the T-RFLP

profiles with a robust statistical analysis we were able to expose

differences between the bacterial communities in the bioreactors in

terms of composition, diversity and response to operational

parameters. We were also able to link the performance of the

systems and the mechanisms driving community assembly in the

bioreactors. Overall, the two original hypotheses that motivated

this study were largely supported by the results.

Assessment of the Bacterial Alpha- and Beta-diversities in
the CAS Bioreactors
The biodiversity of microbial communities in CAS bioreactors is

a key factor that needs to be scrutinized as it may correlate with

community functional redundancy, and therefore, system func-

tional stability [4,56,57]. The two main measurements applicable

to spatial-scale biodiversity are: alpha-diversity (a, the diversity of

populations within a defined ecosystem) and beta-diversity (b,

a comparison of the variations in community composition between

two ecosystems). Comparisons of a-diversity are univariate (e.g. two

samples could have the same species richness but not share any

taxa), while b-diversity measures dissimilarity among samples (i.e.

taxa composition and relative abundance) through multivariate

methods [58]. Several reports have shown that standardized T-

RFLP profiles processed in parallel can be used to assess both the

b-diversity [56,59] and a-diversity [11,12,60] of complex micro-

bial communities.

Our results show that the HC bioreactor had a significantly

higher bacterial a-diversity as compared to the LC bioreactor

(Table 2, Figure 4), plus, the bacterial communities in both

bioreactors had a significantly high b-diversity (Figure 3).

Furthermore, the bacterial community in the HC bioreactor was

remarkably less dynamic than the bacterial community in the LC

bioreactor (Figure 3). These results are truly pertinent if we

consider that previous studies suggested that community bio-

diversity could be positively correlated to system’s function (i.e.

efficiency and stability) in treatment bioreactors [11,61] and other

engineered ecosystems [34]. Richness analysis of TRFs (Table 2)

showed that generally fewer TRFs were detected in the LC system,

whereas the variation in the total amount of TRFs detected per

sample was greater in this system than in the HC system. This

suggests that the community in the LC bioreactor was not only less

stable in terms of structure (i.e. taxa dominance) but also in terms

of taxa richness. Patterns in b-diversity can further be explored by

analyzing differences in the abundance of key populations that

significantly contribute to the overall dissimilarity between the

communities. For instance, a similarity percentage analysis (Table

S1) revealed that the Betaproteobacteria class was a potentially critical

group within the HC bioreactor that significantly contributed to

the differences between the communities. This is not surprising,

considering that the rather long SRT in the HC plant coincide

with the fact that crucial nitrifying Betaproteobacteria in WWTPs

require extended growing periods (.5 days) in order to build

a functionally stable ammonia-oxidizing community [57,62].

Overall, these results are in line with other reports showing that

bacterial diversity is consistently higher in WWTPs with larger

capacities [26] and also that geographically distant WWTPs, in

spite of their size, usually possess divergent community structures

[26,27,63]. Van der Gast et al. [26] showed that the ecological

power law known as the species-area relationship could predict the

relationship between the number of bacterial populations in

membrane bioreactors and the size of the bioreactors. This

relationship is a fundamental ecological concept, first modeled by

Arrhenius [64] as a power law: S= cAz, where S is the number of

species in a sampled community, A is the area (the spatial scale of

the observation), c is an empirically derived taxon- and niche-

specific constant, and z is a scaling exponent determined by the

slope of the log-log line of the relationship that reflects species

turnover. Values of z for the distribution of macroorganisms have

been shown to differ between continuous (0.12–0.19) and insular

habitats (0.2–0.4) [65,66]. In recent years, this relationship has also

Figure 2. Correlation analyses of the relationship between
plants’ influent and effluent BOD concentrations. LC (A) and HC
(B). The Pearson’s correlation coefficient (r), the linear regression
coefficient of determination (R2) and the probability value (P) of the
analysis are shown.
doi:10.1371/journal.pone.0042524.g002
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been shown to apply to microbial communities in both continuous

[67] and insular habitats [38,68]. Van der Gast et al. [26] used

a modified version of the species-area power law to use volume

instead of area as the spatial scale of the sampled habitat. In our

case, we did not know the volume of the bioreactors, thus, instead

of volume we used the ADF as an indicator of their size to estimate

the species-area relationship for these ecosystems. Surprisingly, the

Figure 3. Non-Metric Multi-Dimensional Scaling (NMDS) ordination diagram of temporal variations in bacterial community
structure. The ordination is based on a Bray-Curtis similarity matrix of the square-root transformed abundance data obtained from the T-RFLP
profiles from both CAS bioreactors: HC (N) and LC (&). The open arrows point to the first sampling time and the black arrows point to the last
sampling time for each bioreactor. Each scatter point in the plot represents the bacterial community in a particular bioreactor at a particular point in
time. The separation between the points is relative to their similarity in terms of community composition and they are connected chronologically to
show their relative changes throughout the sampling period. The stress value for the tridimensional NMDS ordination is shown. Two non-parametric
analyses were calculated to test the significance of the differences observed in the NMDS ordination plot: One-way Analysis of Similarities (ANOSIM):
R=0.5451 (P,0.0001); One-way Non-Parametric Multivariate Analysis of Variances (NPMANOVA): F=4.014 (P,0.0001).
doi:10.1371/journal.pone.0042524.g003

Table 2. Comparison of the richness of bacterial populations
(OTUs) detected in each CAS bioreactor per restriction
enzyme.a

WWTPb TRFs Richnessc

HAEIII (132) RSAI (121) MSPI (130) Average

HC 7868.6 68611.6 77612.4 74610.1 Paired t-test

LC 66610.8 64615.3 7768.0 69612.9 P= 0.023

aCAS: Conventional Activated Sludge; OTU: Operational Taxonomic Unit.
bWWTP: Wastewater Treatment Plant.
cTRFs: Terminal Restriction Fragments; Values in parentheses represent the total
number of distinctive TRFs detected per restriction enzyme in both bacterial
communities combined during the 12 samplings times.
doi:10.1371/journal.pone.0042524.t002

Figure 4. Rényi diversity profiles of the bacterial communities
from the CAS bioreactors. The profiles were derived from the T-RFLP
raw abundance matrices: HC (N) and LC (&). The x- and y-axes show
the alpha value of the Rényi’s formula and their associated Rényi
diversity profile values (Ha), respectively. Rényi profile values at the
scales of 1, 2 and infinite are proportional to Shannon diversity index,
Simpson diversity index and Berger–Parker diversity index, respectively
(see Kindt and Coe [47] for further information).
doi:10.1371/journal.pone.0042524.g004
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slope of the species-area relationship, or in our case the species-

flow relationship, for the CAS bioreactors (z=0.359) landed well

within the typical range of z-values reported for insular habitats.

Moreover, van der Gast et al. [26] also observed a positive

relationship between the evenness of populations and the size of

the bioreactors. Likewise, the evenness of the bacterial populations

in the CAS bioreactors, as inferred from the Rényi diversity

profiles (Figure 4), was higher in the HC bioreactor. This may

imply that larger bioreactors with greater space for bacterial

colonization have more niche space available, while smaller

bioreactors have fewer vacant niches for colonization, which may

potentially allow for a small group of populations to co-dominate

in the community [26].

The species-area relationship has been described as an

important underlying component of the classic theory of Island

Biogeography (IB) [66]. The IB ecological model, conceived by

MacArthur and Wilson [66] and further developed by Hubbell

[69], is essentially a neutral (i.e. all populations are assumed to

have equal chances to colonize a niche in the island) dispersal-

assembly theory, based on two main assumptions: (i) in insular

ecosystems the assembly of communities is determined by

a dynamic equilibrium between extinction and immigration and

(ii) the rate of that equilibrium is constrained by the size of the

island [70]. The theory also implies that communities inhabiting

larger islands will have higher biodiversity and lower rates of

immigration and extinction, thus having more stable and efficient

community structure [5]. Considering the CAS bioreactors as

insular ecosystems, we suggest the dynamic assemblage of their

bacterial communities could be predicted by the principles of the

IB theory as our results are in agreement with the main features of

this equilibrium model: the community in the larger bioreactor is

more rich and diverse, and also functionally and structurally more

stable. This suggestion is in line with previous reports that have

either theoretically [3,5] or empirically [11,26,71,72] suggested

that the complex dynamics of microbial communities in WWTP

bioreactors could be explained by the underlying principles of the

IB theory. Although the analysis of only two CAS bioreactors may

be insufficient to validate the universal applicability of the IB

theory to predict microbial dynamics on all CAS systems, it does

emphasize the need for more theoretical work aimed to rationally

improve their operation and design. The IB theory also implies

that islands sharing a common source of new species will have

more similar communities than those not sharing a common

source. Given that both WWTPs serve different regions of Puerto

Rico, the high b-diversity observed between them is not surprising.

We believe these differences could also be true for CAS systems

geographically distant from the ones we studied. For instance, we

generated reference clone libraries using samples from both

bioreactors (Figure S1) and they revealed distinctive patterns in the

dominant bacterial populations (e.g. unusually high detection of

non-filamentous Cyanobacteria) that do not necessarily correspond

with bacterial compositions in WWTPs from other parts of the

world [7,13].

One intriguing observation made from the NMDS diagram

(Figure 3) was that the bacterial community structure in the HC

bioreactor, despite being steadier than the community structure in

the LC bioreactor, showed marked fluctuations during the first 4

samples and then seemed to stabilize through the end of the study.

As mentioned above, the bioreactor we chose to monitor at the

HC plant started its operational period shortly before the first

sampling. This coincidence led us to speculate that the fluctuations

in bacterial community structure observed during the first 4

sampling times could be explained by a gradual species succession

process through which the community changed towards an

‘‘optimal’’, more stable structure. Although we did not collect

additional samples to corroborate this idea, we believe that the

community structure observed during the last 8 samples better

represents the dynamics of the bacterial community in the HC

plant. Furthermore, we did not find any correlation between these

initial community fluctuations and the functional stability of the

treatment system nor with the measured operational parameters.

These observations are consistent with several reports showing that

microbial communities during the start-up period of other types of

bioreactors suffered from systematic processes of species succession

before reaching relative stability over time [73–75], and also that

these periods of highly dynamic community structure did not

affected the performance of the systems [58,73].

Influence of Deterministic, Stochastic and Ecological
Factors on Communities’ Dynamics
Two kinds of factors are thought to jointly influence the

temporal dynamics of bacterial communities in CAS bioreactors

and other engineered ecosystems: deterministic (competition and

niche-specific variables) and stochastic (probability of microbial

dispersal by random events of colonization/extinction or un-

predictable fluctuations in the chemical composition of the

influent) [12,36]. However, there is currently a considerable

debate between microbial ecologists on which of the two groups of

factors are more important in determining temporal community

assembly in engineered ecosystems [72].

As we mentioned above, the analysis of the T-RFLP profiles

(Figure 3) showed drastic differences between the communities of

both bioreactors in terms of temporal dynamics (i.e. changes in

community structure). Could these differences be suggesting that

the size of the LC bioreactor (as a niche-specific consideration) is

exerting over the community a selective pressure strong enough to

Figure 5. Canonical Correspondence Analysis (CCA) of the
relationship between operational parameters and bacterial
community structure. The ordination was based on square-root
transformed data of the measured operational parameters (arrows):
BOD-influent (A), Flow (B), F/M (C), HRT (D), NO3

–N (E), pH (F), PO4
32 (G),

SRT (H), Temperature (I), TSS-influent (J); and the T-RFLP abundance
profiles from both CAS bioreactors: HC (N), LC (&). Numbers next to
symbols indicate the relative sampling time. An unrestricted Monte-
Carlo permutation test was performed (1000 permutations) to de-
termine the statistical significance of the relationship between the
environmental variables and the canonical axes.
doi:10.1371/journal.pone.0042524.g005
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overshadow the influence of stochastic factors on the temporal

structuring of the bacterial assemblages? To address this question,

we evaluated the impact of operational factors on the temporal

and spatial assembly of bacterial communities in the bioreactors.

BOD is considered the most popular operational parameter for

assessing the effectiveness of WWTPs and the impact of their

effluent on receiving waters [2]. From the CCA plot (Figure 5) we

observed that influent BOD was not as significant as most of the

measured parameters on explaining the fluctuations in bacterial

community structure in the WWTP. However, we found

a significant negative relationship between influent and effluent

concentration of BOD in the LC plant, but not in the HC plant

(Figure 2). This was despite the fact that, on average, the HC plant

received higher and more variable loads of influent BOD (Table 1).

Therefore, the results from the regression analysis suggest that the

microbial community in the LC bioreactor was significantly and

negatively more prone to functional fluctuations by changes in the

concentration of influent BOD. This negative relationship can be

observed in the relative position of the influent BOD vector and

the LC samples in the CCA plot (Figure 5). This may partially

explain why the LC plant generally showed lower efficiency

removing BOD from the system and higher concentrations of

effluent BOD. Nevertheless, we must consider that even though

the levels of influent BOD in the LC plant were generally low and

steady (Table 1), the BOD removal efficiency of the plant was not

as stable. This suggests that the efficiency and structure of the LC

community may be more prone to variations from stochastic

factors (e.g. species immigration, drastic changes in the influent

chemical composition) than the HC community. Larger bioreac-

tors with higher biodiversity may provide the advantage of

a greater buffering capacity to mitigate the impact of these

unpredictable variables. Furthermore, the general response of the

LC plant to fluctuations in operational parameters seems to be

more unpredictable as the sample points in the CCA plot

corresponding to the LC temporal communities are distributed

through larger gradients along the first and second axes (Figure 5).

Given that CCA asserted that ADF was the main predictor of

bacterial community assembly in the CAS bioreactors, we suggest

that the magnitude to which deterministic and stochastic factors

influence the structure and functional stability of bacterial

communities in these bioreactors could be strongly influenced by

their capacity. The suggestion that higher population evenness in

the HC plant implies greater niche space available for bacterial

colonization [26] reinforces the idea that deterministic factors in

the HC plant are probably more relevant to the process of

bacterial community assembly. The overall observations suggest

that the initial bacterial community structure in the HC bioreactor

(samples 1–4) may have been heavily influenced by stochastic

dynamics while the remaining samples (samples 5–12) suggest

a rather stable community structure mostly shaped by determin-

istic dynamics constrained by the size of the bioreactor.

Conversely, throughout the study the bacterial community

assembly in the LC plant seems to be consistently dominated by

stochastic dynamics.

Several reports have assessed the relative importance of

deterministic and stochastic factors as drivers of bacterial

community dynamics in treatment bioreactors [12,26,71,72,76].

Some authors argue that either deterministic or stochastic factors

alone are sufficient to explain the dynamics of bacterial

communities in WWTPs [36,77]. Nevertheless, our intuition leads

us to believe that both components of the ecosystem should be

partially responsible for the temporal and spatial dynamics of these

complex communities. The proportion to which both groups of

factors influence community assembly in full-scale systems and

what components of the ecosystem influence the stability of that

proportion, however, remains a matter of debate. Some authors

have tested the relative impact of stochastic and deterministic

factors in the selection of microbial populations in lab-scale

bioreactors, finding that under certain selective pressure de-

terministic factors drove the assembly of the communities [71,72].

Conversely, other authors reported that in certain full-scale

bioreactors the selective pressure of the systems was not enough

to favor a deterministic selection of the community, thus allowing

for stochastic dynamics to dominate [12,26]. In a recent report,

Ayarza and Erijman [76] theoretically determined that the relative

dominance of stochasticity over deterministic dynamics on

microbial community assembly in lab-scale bioreactors was

positively correlated to the richness of populations in the system.

Our results suggest completely the opposite: a richer community

and a larger bioreactor were both positively associated with the

dominance of deterministic dynamics on the temporal structuring

of the bacterial community and the consequent system stability.

These observations may seem to contradict the suggestion made

above that the assembly of the communities in the bioreactors

could be predicted by the IB equilibrium theory, which is

essentially a stochastic model. However, our results do not refute

the relevance of stochasticity on community assembly in the

bioreactor, in fact, they suggest that a gradual increase in the size

of the bioreactors could result on a gradual shift from stochastic

dynamics towards a more deterministic selection of the bacterial

community structure.

A further analysis of the CCA (Figure 5) revealed other

parameters (i.e. F/M, HRT, SRT, TSS) that may also significantly

contribute to the overall differences between the communities.

The F/M ratio for activated sludge systems usually ranges between

0.2–0.6, although for CAS plants between 0.2–0.5 is preferred [2].

F/M values above the preferred range are interpreted as the

system has more biodegradable material (i.e. BOD) than the

microbial communities can optimally handle. Despite the high F/

M levels in the HC plant, which can be associated to the

contrasting levels of influent BOD and TSS, the system’s SRTs

(optimally 5–15 days for CAS systems) provided sufficient time for

an efficient and robust community structure to develop. On the

other hand, the very low values of F/M in the LC plant suggest

that the microbial community in the bioreactor was starving. The

low F/M values in the LC plant could be associated to its high

levels of influent TSS, justifying its rather short SRTs, and

suggesting a high mortality rate among the microbial populations.

The latter suggestion could further sustain the idea that the

bacterial community in this plant was heavily shaped through

stochastic dynamics. Moreover, the short SRTs could explain poor

system performance, as it can directly be linked to common

operational problems (e.g. sludge bulking, poor nutrient removal)

[2].

Few reports have looked into the effects of HRT on the

assembly of microbial communities in WWTPs [57]. It is evident,

however, that fluctuations in HRT (typically 4–8 h for CAS

systems) affect substrate gradients in treatment bioreactors; hence,

it likely exerts a selective pressure on the microbial communities

[57]. Han et al. [78] reported that in lab-scale bioreactors shorter

HRTs were correlated with less efficient and less diverse microbial

communities. This correlation could also be true for the LC plant,

which had lower HRT and lower bacterial diversity. Although we

do not quite understand the specific effect of HRT on the

communities, we believe the current report is the first one to show

a strong influence of HRT on bacterial community dynamics in

full-scale CAS bioreactors. Further studies will be necessary to

clarify the link between the two.
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Besides the influence that external factors may have on the

dynamic of bacterial communities in the bioreactors, ecological

traits intrinsic to the communities themselves could also be crucial

to maintain steadier community function and structure over time.

The traits of microbial communities that define their capacity to

maintain function over time in dynamic ecosystems can be divided

in three basic mechanisms: (i) resistance of the community to

fluctuations in composition, (ii) community resiliency after

disturbing events, (iii) and community functional redundancy

[79]. The results from NMDS suggest that the HC community was

more resistant despite marked fluctuations in operational param-

eters, especially during the last 8 months of the study. The slow

succession process we saw in the HC plant during the initial

months could be attributed to mechanisms of resilience through

which the community reached stability after the highly disturbing

process it underwent during the bioreactor’s start-up period.

Nonetheless, the fact that there seems to be no correlation between

the system’s functional stability and the dynamics of the bacterial

community during this initial start-up period suggests that

functional redundancy rather than resilience was the key

ecological trait driving functional stability during that time [80].

According to Briones and Raskin [34], ecosystem stability is not

the outcome of population diversity per se, but of functional

redundancy, ensured by the presence of a reservoir of species able

to perform the same ecological function. However, functional

redundancy does correlate with community biodiversity [34].

Therefore, by having higher biodiversity, the bacterial community

in the HC plant ensured a more stable treatment process even

under highly dynamic periods due to its superior functional

redundancy. Conversely, results from the LC plant suggest that its

community was neither resistant nor resilient. Therefore, the

mechanism most likely used by the community to maintain BOD

and TSS removal efficiency usually above acceptable levels (i.e.

.85%) seems to be functional redundancy, although at a level

inferior to that observed in the HC plant.

The outcome of the current study can be divided into 4 major

findings. (i) The bacterial community in the HC bioreactor was

more diverse, less dynamic and significantly different from the one

in the LC bioreactor. These characteristics were closely linked to

the performance of the systems and partially explained by

a positive species-flow relationship. (ii) Both stochastic and

deterministic factors are intricately involved on the assembly of

bacterial communities in the system, but the proportion to which

either category of factors influence that process seems to be heavily

influenced by the biodiversity and capacity of the bioreactor. (iii)

The mechanisms utilized by the communities to handle the

selective pressure of stochastic and deterministic factors and

maintain functional stability over time involved a dynamic

combination of resistance and functional redundancy. (iv) Finally,

the principles of the IB ecological model could be appropriate to

predict the assemblage and efficiency of the communities. Further

work is necessary to see if these patterns hold for full-scale CAS

bioreactors with different capacities from other parts of the world

and to elucidate the boundaries separating the dominance of either

stochastic or deterministic dynamics on community assembly.

Furthermore, it will be necessary to translate these observations

into process-based mathematical models to be able to better

explain and predict the mechanisms driving the dynamics of the

bacterial communities in the bioreactors in the light of ecological

theory. Given that only 12 time-points may prove to be

insufficient to explain the observed patterns by such models,

a more exhaustive time-series sampling (e.g. weekly samples) is

recommended.

This study is of great importance for engineers and microbial

ecologists dedicated to optimizing the design of CAS and other

treatment systems as it provides evidence linking system perfor-

mance and operational conditions with the temporal assembly and

performance of bacterial communities in the bioreactors. If our

findings and suggestions were validated by future studies in other

CAS systems of distinctive size and geographical location, they

could have deep implications in the way CAS systems are designed

and operated. For instance, knowing that larger bioreactors will

promote more efficient and stable microbial communities could

influence the choice of constructing a single large bioreactor or

several small bioreactors to serve a human population [5]. This

could be crucial if we consider that the operating cost of WWTPs

on a per capita basis decreases with increasing reactor size [81]. Our

work emphasizes the utility of integrating theoretical ecology in the

design and operation of WWTPs as it may ultimately allow for

microbial community assembly to become more predictable [3].

This contributes to the increasing pool of evidence suggesting that

patterns of microbial assembly and diversity in the environment

can be predicted by well-established ecological theories previously

thought to apply only to macroorganisms.

Supporting Information

Figure S1 Relative abundance of bacterial groups

assessed by 16S rRNA environmental clones libraries.

The PCR reactions were carried out using the same primers

(without fluorochrome) and protocol applied for the generation of

the T-RFLP profiles. PCR products were cloned with the pGEM-

T vector system (Promega Corp.) and purified using the Wizard

Plus SV DNA Purification System (Promega Corp.). Vector’s

inserts were sequenced by the High-Throughput Sequencing Unit

(University of Washington, Washington, USA). The phylogenetic

affiliation of the sequences was determined using the Sequence

Match and Classifier tools available as part of the Ribosomal Data

Base project V 10. A total of 192 clones were sequenced, from

those, 97 were finally selected for analysis after an extensive

process of quality control in which too-short (,400 bp), low-

quality and chimerical sequences were eliminated from the data

set. The samples used to construct these libraries for both WWTPs

plants were collected during the 6th sampling time. Note:

HICAP=HC, and LOWCAP=LC.

(PDF)

Table S1 Output of SIMPER analysis showing OTUs re-

sponsible for approximately 25% of the overall average dissimi-

larity (,54%) observed between the bacterial communities in the

CAS bioreactors. Similarity persentage (SIMPER) analysis was

conducted to determine which OTUs contributed the most to the

average dissimilarity in bacterial community structure observed

between the treatment plants. Only those OTUs contributing to

the top 25% of the total dissimilarity observed were reported. A

putative phylogenetic classification was assigned to each TRF

using the Phylogenetic Assignment Tool (PAT+) included in the

Microbial Community Analysis III (MiCA 3) web-based software

package and compared against ‘‘good quality’’ bacterial sequences

(.1200 bp) from the Ribosomal Database Project 10. Out of the

383 distinctive TRFs detected by the three restriction enzymes

combined, only 35 (,9% of the total) were needed to explain 25%

of the overall differences (,54%) observed between the two

microbial communities. Also, about 57% of those 35 OTUs were

more abundant in the HC bioreactor. From the assignment of

putative phylogenies to the TRFs we can deduct that the Phylum

that probably contributed the most to the total dissimilarity

between the microbial communities was Firmicutes. Also, Betapro-
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teobacteria and Deltaproteobacteria classes were only associated to

TRFs from the HC and LC bioreactors, respectively.

(PDF)
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42. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, et al. (2006) Statistical

methods for characterizing diversity of microbial communities by analysis of

terminal restriction fragment length polymorphisms of 16S rRNA genes.

Environ Microbiol 8: 929–938.
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