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Fertilization has a large impact on the soil microbial communities, which play pivotal roles

in soil biogeochemical cycling and ecological processes. While the effects of changes in

nutrient availability due to fertilization on the soil microbial communities have received

considerable attention, specific microbial taxa strongly influenced by long-term organic

and inorganic fertilization, their potential effects and associations with soil nutrients

remain unclear. Here, we use deep 16S amplicon sequencing to investigate bacterial

community characteristics in a fluvo-aquic soil treated for 24 years with inorganic

fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential

links between soil nutrient parameters and specific bacterial taxa. Our results showed

that combined organic-inorganic fertilization increased soil organic carbon (SOC) and

total nitrogen (TN) contents and altered bacterial community composition, while inorganic

fertilization had little impact on soil nutrients and bacterial community composition. SOC

and TN emerged as the major determinants of community composition. The abundances

of specific taxa, especially Arenimonas, Gemmatimonas, and an unclassified member

of Xanthomonadaceae, were substantially increased by organic-inorganic amendments

rather than inorganic amendments only. A co-occurrence based network analysis

demonstrated that SOC and TN had strong positive associations with some taxa

(Gemmatimonas and the members of Acidobacteria subgroup 6, Myxococcales,

Betaproteobacteria, and Bacteroidetes), and Gemmatimonas, Flavobacterium, and an

unclassified member of Verrucomicrobia were identified as the keystone taxa. These

specific taxa identified above are implicated in the decomposition of complex organic

matters and soil carbon, nitrogen, and phosphorus transformations. The present work

strengthens our current understanding of the soil microbial community structure and

functions under long-term fertilization management and provides certain theoretical

support for selection of rational fertilization strategies.
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INTRODUCTION

Fertilization is an essential agricultural practice used primarily
to increase nutrient availability to crop plants, with concomitant
changes in the soil properties, and microbial communities
(Marschner et al., 2003). These changes can in turn influence
plant growth and health by increasing soil nutrient turnover,
plant disease suppression, or disease incidence, etc., Increasing
the sustainability of cropping systems involves the reduced inputs
of agrochemical fertilizers and combined organic amendments
to facilitate biological interactions for the provision of plant
nutrients (Lazcano et al., 2013). Of particular importance are soil
microbial processes given their pivotal roles in the dynamics of
soil carbon (C) and nitrogen (N) (Wardle et al., 1999).

Certain bacterial taxa at high taxonomic levels (e.g., phylum
or class) can display properties of ecological coherence since
they respond predictably to environmental variables (Philippot
et al., 2010; Cederlund et al., 2014). Earlier, Fierer et al. (2007)
proposed that certain bacterial phyla could be differentiated
into the ecologically relevant copiotrophic (or r-selected) and
oligotrophic (or K-selected) categories based on their substrate
preferences and life strategies. As thus, long-term fertilization can
directionally change the abundance of certain bacterial phyla. But
we still have no sufficient understanding of soil bacterial taxa
at low taxonomic levels (e.g., genus or species) in response to
long-term fertilization. Long-term repeated addition of organic C
seems to select for certain microbial taxa at low taxonomic levels
that feed primarily on organic substrates and proliferate greatly,
resulting in the changes in microbial community composition
and soil nutrient status (Marschner et al., 2003; Zhong et al., 2010;
Cederlund et al., 2014). As a consequence, specific microbial taxa
of which the abundances are substantially increased by long-
term fertilization should show some degree of connections with
soil nutrients. Moreover, these taxa show potential beneficial or
detrimental effects on crop productivity and even agroecosystem
stability (Francioli et al., 2016). The complex associations occur
between microbial taxa in the context of exogenous organics
decomposition and soil nutrient transformations (Chen et al.,
2015a; Banerjee et al., 2016). Network analysis of taxon co-
occurrence, as measured by correlations between abundances of
microbial taxa, can help decipher complex microbial association
patterns and the ecological rules guiding community assembly
(Barberán et al., 2012). Network analysis cannot only reveal
inter-taxa associations in the shared niche spaces but also link
microbial taxa to environmental parameters (Fuhrman, 2009;
Barberán et al., 2012).

Recent studies have used high-throughput sequencing to
provide new insights into the soil microbial diversity and
community composition under long-term organic and inorganic
fertilization (e.g., Lentendu et al., 2014; Calleja-Cervantes et al.,
2015; Zhou et al., 2015; Chen C. et al., 2016; Ding et al.,
2016; Francioli et al., 2016). However, less is known about
which microbial taxa at low taxonomic levels are strongly
influenced by long-term organic and inorganic fertilization and
how these taxa are linked to soil nutrient parameters. To
address these knowledge gaps, we selected a long-term field
experiment receiving 24 years of various types of inorganic

fertilizers and combined organics-fertilizers, measured the
related parameters of soil nutrients, and analyzed the soil
bacterial community characteristics using deep sequencing of
the 16S rRNA gene amplicons. We used recently developed
differential abundance analysis and network analysis of co-
occurrence to unravel the potential effects of specific bacterial
taxa and their associations with soil nutrients. Specifically, we
examined: (i) whether combined organic-inorganic fertilization
causes more pronounced shifts in the soil bacterial community
composition than inorganic fertilization alone, (ii) which specific
taxa are substantially stimulated by long-term fertilization, and
(iii) which soil parameters are well linked to these taxa. We
hypothesized that: since C and N are the most important
resources for bacterial growth, soil C and N would show great
associations with some specific taxa of which the abundances are
substantially increased by long-term fertilization.

MATERIALS AND METHODS

Experimental Description and Sampling
A long-term fertilizer field experiment was established in 1990
at Zhengzhou (34◦47′ N, 113◦40′ E) of Henan Province, which
is an important grain-producing area in China. The use of
long-term field experiment has been approved by the legal
entity “Henan Academy of Agricultural Sciences.” This region
undergoes a temperate monsoon climate, with an average
annual precipitation, and temperature of 641 mm and 14.4◦C,
respectively. The soil is a fluvo-aquic soil (clay 25%, sand 27%, an
Inceptisol in the USDA soil taxonomy system) developing from
alluvial sediments of the Yellow River (Chen L. et al., 2016). The
experimental site included 33 plots (eleven treatments with three
replicate plots of each, 10 × 4m for each plot). All plots were
randomly arranged and cement plates were inserted between
plots. Except fertilization, all other management practices (e.g.,
irrigation, tillage, and pesticides) were the same for all plots.
We selected seven treatments with application of various types
of organics and fertilizers: MNPK (organic manure plus NPK
fertilizers), SNPK (maize straw plus NPK fertilizers), HNPK
(high rate of N fertilizer, regular PK fertilizers), LNPK (low
rate of N fertilizer, regular PK fertilizers), NP (NP fertilizers),
NK (NK fertilizers), and CK (unfertilized control). Urea (N
45%), superphosphate (P2O5 12%), and potash (K2O 60%) were
applied as NPK fertilizers. The cropping system was wheat
(Triticum aestivum L.) andmaize (Zea mays L.) rotation. 165.0 kg
N ha−1 years−1, 82.5 kg P2O5 ha−1 years−1, and 82.5 kg K2O
ha−1 years−1 were given at wheat season, and 187.5 kg N ha−1

years−1, 93.8 kg P2O5 ha−1 years−1, and 93.8 kg K2O ha−1

years−1 at maize season (except LNPK with 110.0 and 125.0 kg N
ha−1 years−1 at wheat and maize seasons, respectively). Organic
manure was cattle manure compost, on average, with N 12.7 g
kg−1. Manure and straw were applied according to 7:3 of organic
N:inorganic N ratio, i.e., 115.5 and 131.3 kg organic N ha−1

years−1 given at wheat andmaize seasons, respectively, calculated
from the N content of manure and straw.

The soils were sampled from the 0–20 cm plow layer in
October 2014 after the harvest of maize. Six soil cores (5 cm
diameter, 20 cm depth) were randomly collected from each

Frontiers in Microbiology | www.frontiersin.org 2 February 2017 | Volume 8 | Article 187

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Li et al. Bacterial Responses to Long-term Fertilization

replicate plot and pooled into one composite sample. After visible
stones and plant residues were removed, soil was homogenized
and passed through a 2 mm mesh. All samples were divided into
three parts, one portion was air-dried to determine the general
soil properties, one was stored at 4◦C to measure the potential
activities of C, N and P-acquiring enzymes, and one at−20◦C for
molecular analyses.

Soil Biochemical Characterization
Soil pH was measured in a 1:2.5 soil solution (0.01 M CaCl2)
with a Starter-2100 pH probe (Ohaus, Brooklyn, NY, USA). Soil
organic C (SOC) and total N (TN) contents were determined
by the K2Cr2O7 digestion and Kjeldahl determination methods,
respectively. Available P (AP) content was determined by
NaHCO3 extraction-colorimetry and available K (AK) content by
CH3COONH4 extraction-flame photometry. Invertase activity
(ITA) was analyzed using a 3,5-dinitrosalicylic acid method
(Bandick and Dick, 1999). Urease activity (UEA) and alkine
phosphatase activity (PTA) were quantified by measuring the
breakdown rate of substrates urea and p-nitrophenyl-phosphate,
respectively (Tabatabai, 1994).

Preparation of Amplicon Library and
Sequencing
The total DNA was extracted from 0.50 g of fresh soils using
the FastDNA Spin Kit for Soil (MP Biomedicals, Santa Ana,
CA, USA), following the kit’s directions. The isolated DNA was
dissolved in 50 µl of TE buffer. DNA quality and concentrations
were estimated based on spectrometry absorbance at wavelengths
of 230, 260, and 280 nm detected by a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA). DNA was frozen at –80◦C for downstream assays.

PCR amplification was carried out using primers F515
(5′-GTGCCAGCMGCCGCGGTAA-3′)/R806 (5′-GGACTACVS
GGGTATCTAAT-3′) designed against the V4 region of the
bacterial 16S rRNA gene (Caporaso et al., 2011). The reverse
primer is barcoded with an 8-base sample-specific sequence to
facilitate multiplexing of a sample set, and both primers contain
sequencer adapter regions. The reaction mix was done in a
volume of 50 µl consisting of 27 µl of ddH2O, 2 µl (5 µM) of
each forward/reverse primer, 2.5 µl (10 ng) of template DNA,
5 µl (2.5 mM) of deoxynucleoside triphosphates, 10 µl of 5
× Fastpfu buffer, 0.5 µl of bovine serum albumin, and 1 µl
of TransStart Fastpfu polymerase (TransGen, Beijing, China).
Thirty thermal cycles (15 s at 94◦C, 15 s at 55◦C, and 30 s at 72◦C)
were conducted with a final extension at 72◦C for 10 min. The
quality of reaction products were verified on a 1% agarose gel.

PCR products were purified using a PCR Clean-up
Purification Kit (MP Biomedicals), and quantified using a
Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA, USA). The
purified amplicons were pooled in equimolar concentrations and
loaded on a MiSeq Reagent Kit V2, and dual index sequencing
of paired-end 250 bp was run on an Illumina MiSeq instrument
(Illumina, San Diego, CA, USA). The sequence data were
submitted to NCBI Sequence Read Archive (https://www.ncbi.
nlm.nih.gov/sra/) with accession number SRP094809.

Community Bioinformatics and Statistics
The clustering of operational taxonomic unit (OTU) was
conducted using the UPARSE pipeline (Edgar, 2013), based
on the following workflow: (i) quality filtering sequences
using a “maxee” (i.e., maximum per sequence expected error
frequency) value of 1 and trimmed to a consistent length; (ii)
dereplicating identical sequences and removing singleton reads;
(iii) building a de novo dataset of >97% similar sequence clusters
and simultaneously removing chimera on this non-redundant
dataset, using self-dataset and RDP gold sequence (Cole et al.,
2014) as reference; (iv) generating OTU abundance table by
mapping the total reads to representative sequence. Taxonomic
annotation was assigned to each OTU representative sequence by
UCLUST (Edgar, 2010) in QIIME v.1.9.0 (Caporaso et al., 2010)
against the Greengenes 13_8 database. All sequences unassigned
and assigned to archaea were removed.

The remaining sequences of all samples were rarefied to the
same sequencing depth (25,223 sequences per sample). Principal
coordinate analysis (PCoA) of the weighted and unweighted
UniFrac (Lozupone and Knight, 2005) distances was calculated in
the R package “ape.” Canonical analysis of principal coordinates
(CAP) was performed in the R package “vegan.”When specifying
CAPmodels, we constrained the analysis to edaphic factors while
conditioning on all other factors. Effect significance of factors was
calculated by running the vegan’s permutest function over the
CAP model using a maximum of 500 permutations. Mantel tests
revealed the correlations between soil biochemical properties and
bacterial community composition.

We used the R package “DESeq2” to calculate the OTUs
differential abundance (i.e., log2-fold change in relative
abundance of each OTU) for each fertilizer regime as compared
to unfertilized control. Differential abundance analysis was
conducted by fitting a generalized linear model with a negative
binomial distribution to normalized value for each OTU and
testing for differential abundance using a Wald test (Love et al.,
2014). We adjusted P-values for multiple testing using the
procedure of Benjamini and Hochberg (1995), and selected a
false discovery rate (FDR) of 10% to denote statistical significance
(Love et al., 2014; Whitman et al., 2016). Enriched and depleted
OTUs were defined as OTUs with absolute differential abundance
>1.0 and adjusted P < 0.1.

Network Analysis
Network analysis was conducted on bacterial OTUs and soil
properties using the maximal information coefficient (MIC)
in MINE software (Reshef et al., 2011). The MIC is a highly
useful score that reveals the strength of linear and non-linear
associations among variables (Reshef et al., 2011). To minimize
pairwise comparisons and reduce network complexity, only
OTUs with large differential abundance (adjusted P < 0.05)
in at least one fertilizer regime were selected for network
analysis. After the pairwise comparisons in MINE software,
top 10,000 interactions were selected. The resulting 241 OTUs
with strong positive (r > 0.8), strong negative (r < –0.8)
and strong non-linear (MIC-ρ2 > 0.8) relationships were
used for network construction in Cytoscape v.3.2.1 (Shannon
et al., 2003). Network topological characteristics were calculated
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using NetworkAnalyzer tool in Cytoscape. Modular structure of
highly interconnected nodes was analyzed using the MCODE
application with default parameters. OTUs with maximum
betweenness centrality scores were considered as keystone
species (Vick-Majors et al., 2014; Banerjee et al., 2016).

RESULTS

Soil Biochemical Properties
Soil pH and AP content showed no statistical differences between
treatments. Inorganic fertilization (i.e., NK, NP, LNPK, and
HNPK treatments) had little impact on SOC and TN contents.
NPK fertilizers with combined application of manure (MNPK)
and straw (SNPK) significantly increased SOC content by 52.3
and 47.1%, respectively, and significantly increased TN content
by 36.4 and 49.1%, respectively. AK content was significantly
enhanced by SNPK (56.6%), but little affected by other treatments
(Table 1). Urease activity (UEA) was significantly improved by
MNPK, but little affected by other treatments. Phosphatase
activity (PTA) and invertase activity (ITA) showed 2.3 and 5.3-
fold increases in SNPK, respectively, as compared to unfertilized
control (Table 1).

Relative Abundance of Major Phyla and
Families
Acidobacteria (16–21%), Bacteroidetes (11–20%), and
Proteobacteria (23–30%) were the dominant phyla
across treatments. Among the classes of Proteobacteria,
Betaproteobacteria (8–14%) had the highest relative abundance
(Figure 1A). MNPK had higher relative abundance of
Betaproteobacteria, and SNPK had higher Bacteroidetes than
other treatments. Acidobacteria in HNPK and MNPK were
more abundant (Figure 1A). Top 15 families with average
relative abundance of >3.5% were analyzed (Figure 1B). MNPK
led to a remarkable increase (4.4-fold increase) in the relative
abundance of Xanthomonadaceae, but significant decrease
in the relative abundances of Planctomycetaceae, Gaiellaceae,
and Nitrospiraceae. Similarly, the relative abundances of
Planctomycetaceae, Gaiellaceae, and Nitrospiraceae (especially
Gaiellaceae, P < 0.01) were largely decreased by SNPK. The
significantly increased abundances of Chitinophagaceae and
Sphingomonadaceae occurred in HNPK (Figure 1B).

Community Structure, Variation, and
Determinants
Principal coordinate analysis (PCoA) with weighted and
unweighted UniFrac distance matrixes demonstrated the distinct
community separation of MNPK and SNPK from other
treatments, along the first principle coordinates (Figures 2A,B).
The UniFrac distance is based on taxonomic relatedness, where
weighted UniFrac takes abundance of taxa into consideration
whereas unweighted UniFrac does not and is thus more
sensitive to rare taxa. The moderate community separation
between inorganic fertilization and non-fertilization (Figure 2B)
indicates that the application of inorganic fertilizers has a
certain influence on rare bacterial species. We used CAP
to quantify the impacts of edaphic factors (i.e., pH, SOC,

TN, AP, and AK) on bacterial community composition.
The five constrained factors substantially contributed to
bacterial community variation (49.31% of variation, P =

0.006, weighted UniFrac; 30.93% of variation, P = 0.002,
unweighted UniFrac), and SOC and TN were the determinants
among these factors (Figures 2C,D). Mantel test revealed great
correlations of SOC (P ≤ 0.002) and TN (P = 0.001) with
bacterial community composition (Table S1). SOC and TN
also had significant correlations with the relative abundance
of some major phyla and families, e.g., positive relationships
with Betaproteobacteria and Xanthomonadaceae, and negative
relationships with Planctomycetes, Alphaproteobacteria, and
Nitrospiraceae (Table S2). These results suggest that the soil
bacterial community composition under long-term fertilization
was mainly driven by SOC and TN contents.

Enriched and Depleted OTUs by Long-term
Fertilization
We conducted differential abundance analysis to identify OTUs
that were strongly influenced by different fertilization regimes.
Using OTU abundance from unfertilized soil as control and
an adjusted P-value cutoff of 0.1, “enriched OTUs (eOTUs)”
and “depleted OTUs (dOTUs)” specifically represent OTUs that
increase and decrease significantly in relative abundance by more
than doubling in response to long-term fertilization, respectively.
There were 163 and 108 eOTUs (primarily the identifiable
eOTUs from the phyla Bacteroidetes, Betaproteobacteria,
Gammaproteobacteria, and Acidobacteria, Table 2), and 248 and
126 dOTUs (primarily phyla Acidobacteria, Alphaproteobacteria,
Actinobacteria, and Bacteroidetes, Table 2) in MNPK and
SNPK, respectively (Figures 3A,B; Dataset S1). Among top
10 most influential OTUs in MNPK and SNPK, eOTUs were
mainly identified as Arenimonas, Gemmatimonas, and several
unclassified members of Xanthomonadaceae, and dOTUs mainly
as Gaiella, Nitrospira, Sphingomonas, and several unclassified
members of Sphingomonadaceae (Table 2). There were much
fewer OTUs enriched and depleted by inorganic fertilization
compared to combined organic-inorganic fertilization, with the
notable exception of HNPK in which 123 dOTUs (primarily
phyla Bacteroidetes, Actinobacteria, and Acidobacteria, Table 2)
were comparable to SNPK (Figures 3C–F; Dataset S1).

Network Associations among OTUs and
Soil Properties
The network comprised 874 significant associations (edges) of
245 nodes, with an average clustering coefficient of 0.32 and
overall diameter of 11 edges (Table S3). The network exhibited
an average number of neighbors of 7.14 and characteristic path
length of 3.99 (Table S3). Network edges were predominantly
composed of strong positive associations, and the dominant
identifiable OTUs belonged to Acidobacteria, Bacteroidetes,
and Gammaproteobacteria (Figure 4A). SOC showed a strong
positive association with one Acidobacteria subgroup 6 (Gp6)
member (Figure 4B; Dataset S2). TN showed strong positive
associations with Gemmatimonas, one Acidobacteria Gp6
member, one Myxococcales member and two members within
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TABLE 1 | Soil biochemical properties among different fertilization regimes.

pH SOC (mg g−1) TN (mg g−1) AP (µg g−1) AK (µg g−1) PTA (µg g−1 h−1) UEA (µg g−1 h−1) ITA (mg g−1 h−1)

CK 8.11 ± 0.08a 6.16 ± 0.45b 0.55 ± 0.05c 8.27 ± 0.58a 96.70 ± 16.56bc 1.76 ± 0.28b 16.97 ± 3.05b 0.90 ± 0.31b

NK 8.27 ± 0.04a 5.99 ± 0.67b 0.61 ± 0.05bc 18.61 ± 19.33a 135.66 ± 7.24abc 2.02 ± 0.21b 20.03 ± 2.06ab 2.22 ± 1.18b

NP 8.12 ± 0.01a 7.59 ± 0.85ab 0.72 ± 0.03abc 11.54 ± 2.80a 92.83 ± 12.41c 1.43 ± 0.41b 20.25 ± 3.11ab 1.75 ± 0.90b

LNPK 8.18 ± 0.08a 7.88 ± 0.46ab 0.57 ± 0.04c 11.33 ± 2.57a 144.77 ± 21.95ab 1.68 ± 1.05b 17.01 ± 2.15b 2.26 ± 0.88b

HNPK 7.82 ± 0.34a 8.10 ± 0.77ab 0.64 ± 0.05abc 10.55 ± 5.38a 114.63 ± 2.70abc 2.02 ± 0.21b 22.08 ± 1.31ab 2.67 ± 0.58ab

MNPK 8.08 ± 0.00a 9.38 ± 1.03a 0.75 ± 0.05ab 12.29 ± 2.24a 123.42 ± 31.26abc 3.39 ± 0.99ab 23.94 ± 1.84a 2.53 ± 0.86b

SNPK 7.95 ± 0.27a 9.06 ± 1.69a 0.82 ± 0.14a 8.44 ± 0.82a 151.46 ± 14.17a 4.10 ± 1.20a 22.82 ± 0.40ab 4.81 ± 0.25a

Means ± standard deviations (n = 3). Significant differences between means at α = 0.05 level detected by Tukey’s HSD test are labeled with different letters. SOC, soil organic C; TN,

total N; AP, available P; AK, available K; PTA, phosphatase activity; UEA, urease activity; ITA, invertase activity. CK, unfertilized control; LNPK, low N and regular PK fertilizers; HNPK,

high N and regular PK fertilizers; MNPK, organic manure plus NPK fertilizers; SNPK, maize straw plus NPK fertilizers.

FIGURE 1 | Stacked and unstacked histograms showing the relative abundance of (A) major bacterial phyla and dominant classes of Proteobacteria and (B)

15 most abundant bacterial families, respectively, in treatments CK (unfertilized control), NK, NP, LNPK (low rate of N, regular PK), HNPK (high rate of N, regular PK),

MNPK (manure plus NPK) and SNPK (straw plus NPK). Each stripe represents the mean of three replicates. * and # mark significant differences at P < 0.05 and 0.01,

respectively.
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FIGURE 2 | Bacterial community variation between all samples from treatments CK (unfertilized control), NK, NP, LNPK (low rate of N, regular PK),

HNPK (high rate of N, regular PK), MNPK (manure plus NPK) and SNPK (straw plus NPK). (A,B) Principal coordinate analysis plots of OTU-based weighted

(A) and unweighted (B) UniFrac distances between samples; (C,D) Canonical analysis of principal coordinates (CAP) of weighted (C) and unweighted (D) UniFrac

distances quantifying the impacts of edaphic factors on bacterial community structure. CAP was constrained to the factors pH, SOC, TN, AP, and AK while

conditioning on all other factors.

Betaproteobacteria and Bacteroidetes (Figure 4C; Dataset S2).
Based on betweenness centrality scores, the OTUs identified
as keystone taxa were Gemmatimonas, Flavobacterium and one
Subdivision3 member within Verrucomicrobia (Dataset S2).

DISCUSSION

We used deep 16S amplicon sequencing to investigate the
bacterial community characteristics in the fluvo-aquic soil
treated for 24 years with various types of inorganic fertilizers
and combined organic amendments and inorganic fertilizers.
Bacterial communities across all treatments were dominated
by the phyla Acidobacteria, Bacteroidetes, and Proteobacteria
(Figure 1), which roughly correspond to previous studies in
agricultural soils (Zhong et al., 2015; Zhou et al., 2015;
Ding et al., 2016). As anticipated, combined organic-inorganic
fertilization dramatically changed the soil bacterial community
composition, but inorganic fertilization alone had little impact
on bacterial community composition (Figure 2). Similar results
were reported previously, based on the phospholipid fatty acid
analysis (Lazcano et al., 2013; Williams et al., 2013). Our study
supports the principle that the bacterial community in cropland
soils is primarily influenced by organic component of agricultural
fertilization. Bacterial growth is often limited by C availability,

even in soils with high C:N ratio (Demoling et al., 2007). Fast-
growing copiotrophic bacteria proliferate soon after the supply
of readily available C substrates to the soil and decrease later,
and the growth of slow-growing oligotrophic bacteria recovers as
substrate C availability declines over time. Thus, the succession
of bacterial community occurs during repeated addition of
organic matters. It was observed even that bacterial growth and
community structure were changed in a short time period by
a small fraction of organic component in the total amount of
fertilizers applied (Lazcano et al., 2013).

There is the possibility that allochthonous inputs of bacterial
taxa from organic amendments contribute to the alteration in the
soil bacterial community composition. However, some studies
have revealed the negligible effects of introduced bacteria from
manure amendment on the soil bacterial community (Chu et al.,
2007; Sun et al., 2015). The microbes in manure which are
well adapted to the gut environments are less competitive than
indigenous microbes in soils (Sun et al., 2015). Bacteroidetes
is one of the most abundant bacterial phyla in cattle manure
(Shanks et al., 2011), but we did not find large changes in
the relative abundance of Bacteroidetes between treatments with
and without cattle manure amendment (Figure 1). In addition,
bacterial responses to manure amendment differ somewhat
from straw amendment. We observed increased abundance
of Acidobacteria but decreased abundance of Bacteroidetes
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FIGURE 3 | Volcano plots illustrating OTUs significantly enriched (red) and depleted (blue) by long-term fertilization compared with unfertilized control

as determined by differential abundance analysis. Each point represents an individual OTU, and the Y axis indicates the abundance fold change vs. unfertilized

control. (A) MNPK (manure plus NPK) vs. control; (B) SNPK (straw plus NPK) vs. control; (C) HNPK (high rate of N, regular PK) vs. control; (D) LNPK (low rate of N,

regular PK) vs. control;(E) NP vs. control; (F) NK vs. control.

in manure plus NPK treatment (MNPK) compared to straw
plus NPK treatment (SNPK), and bacterial phylotypes were
more enriched and depleted by MNPK compared to SNPK
(Figures 1, 3). The possible explanation is that organic manure
contains more labile organic C and lower C:N ratio than crop
straw. The type of C input has been found to be a main factor
determining the shifts in the soil bacterial community structure
(Eilers et al., 2010; Shi et al., 2011; Pascault et al., 2013).

The results of ordination and correlation analyses between
bacterial community characteristics and soil properties reveal
that soil C and N contents are the main drivers for bacterial
community composition under long-term fertilization (Figure 2;
Tables S1, S2). When soil was amended with exogenous organics

and fertilizers, certain microbial taxa are able to decompose
organics and simultaneously acquire N from fertilizers to grow
and reproduce rapidly under appropriate C:N stoichiometric
ratios. In this situation, exogenous organics, and microbial
metabolites are continuously decomposed and transformed,
resulting in the changes in soil C and N contents over a
long period of time. On the other hand, manure and straw
amendments can stimulate the activity of some oligotrophs
to mineralize recalcitrant soil organic matter (SOM) by using
fresh organic matter as energy source, and cause a short-term
change in SOM turnover, aka priming effect (Blagodatskaya
and Kuzyakov, 2008). Therefore, soil C and N contents
have necessary links with bacterial community composition
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FIGURE 4 | Network analysis revealing the associations among

bacterial OTUs and soil properties. Gray solid line, blue solid line and red

dash line represent strong positive linear (r > 0.8), strong negative linear (r <

−0.8) and strong nonlinear (MIC-ρ2 > 0.8) relationships, respectively. Colored

nodes signify corresponding OTUs assigned to major phyla and classes. Soil

properties are indicated with round rectangle, and treatment with triangle.

SOC, soil organic C; TN, total N; ITA, invertase activity. (A) Network

co-occurrences of OTUs substantially enriched by long-term fertilization;

(B,C), Subnetworks for the associations of SOC (B) and TN (C).

under long-term fertilization. The importance of soil C and
N contents in shaping bacterial community composition was
also reported previously (Helgason et al., 2010; Shen et al.,
2010; Sul et al., 2013; Liu et al., 2014; Chen C. et al.,
2016).

We conducted differential abundance analysis to pick out
OTUs that were responsible for the observed community
differences between the fertilized and unfertilized soils.
The OTUs primarily from Bacteroidetes, Betaproteobacteria,
Gammaproteobacteria, and Acidobacteria were significantly
enriched by long-term fertilization, especially combined
organic-inorganic fertilization (Table 2). Bacteroidetes,
Betaproteobacteria, and Gammaproteobacteria as copiotrophs
thrive under conditions where substrate availability is high
(Fierer et al., 2007; Eilers et al., 2010; Nemergut et al., 2010; Chen
et al., 2015b). Despite there are many oligotrophic members
within the Acidobacteria phylum (Nemergut et al., 2010; Pascault
et al., 2013), some Acidobacteria members were depleted but
some were enriched by combined organic-inorganic fertilization
(Table 2). Our results are in agreement with previous findings
that some Acidobacteriamembers (e.g., subgroups 1 and 7) were
very few but some (e.g., subgroups 4 and 6) were abundant in soils

with high content of organic C (Liu et al., 2014). We analyzed
top 10 most influential OTUs at the genus level, and found that
most enriched OTUs by manure and straw amendments were
Arenimonas, Gemmatimonas, and several unclassified members
of the Xanthomonadaceae family (Table 2). The Arenimonas
species have catalytic activities of acid and alkaline phosphatase,
esterase, esterase lipase, lipase, arylamidase, etc., (Jin et al.,
2012; Huy et al., 2013; Makk et al., 2015). According to genome
sequencing information, Arenimonas is capable of metabolizing
casein, gelatin, β-hydroxybutyric acid, tyrosine, L-alaninamide,
L-glutamic acid, and glycyl-L-glutamic acid (Chen et al.,
2015c). Gemmatimonas is able to modulate C and N intakes
according to their metabolic needs under various conditions
(Carbonetto et al., 2014). Gemmatimonas shows high abundance
in soils added with pyrogenic organic matters (Xu et al., 2014;
Whitman et al., 2016), indicating that Gemmatimonas is likely
to decompose polyaromatic C. Gemmatimonas was reported as
a polyphosphate-accumulating bacterium (Zhang et al., 2003),
and could be stimulated by increased input of P fertilizer in
agricultural management (Su et al., 2015). These findings are
supported by our results that some Gemmatimonas phylotypes
(e.g., OTU_289 and OTU_78; dataset S1) were enriched by NP
treatment rather than NK treatment. Moreover, Gemmatimonas
was found at a high abundance in the rhizosphere of healthy
wheat plants (Yin et al., 2013), indicating that Gemmatimonas
may help suppress diseases and promote plant growth. The
Xanthomonadaceae members within Gammaproteobacteria are
known hydrocarbon decomposers, and they have also been
shown to obtain C from co-occurring microorganisms (Lueders
et al., 2006). Moreover, the Xanthomonadaceae family has been
previously described as being dominant in the decomposing
process of wood materials (Folman et al., 2008; Hervé et al.,
2014). In summary, specific bacterial taxa substantially enriched
by combined organic-inorganic fertilization play important roles
in organics decomposition and soil C, N, and P transformations.

Since C and N are the most important resources for bacterial
growth, soil C, and N would show great associations with some
specific taxa significantly enriched by long-term fertilization.
Our hypothesis is confirmed by a co-occurrence based network
analysis that revealed strong positive associations of SOC and
TN with some taxa (e.g., Gemmatimonas and the members
of Acidobacteria subgroup 6 and Myxococcales) (Figure 4;
Dataset S2). The roles of Gemmatimonas involved in soil
nutrient transformations are discussed above. Some subgroups
of Acidobacteria are abundant in soils with high SOC level (Liu
et al., 2014), and their ability to decompose organic matters
has been reported previously (Rawat et al., 2012; Tveit et al.,
2014). Myxococcales members act as the active micropredators
in the soil microbial food web and play important roles in
soil C sequestration (Lueders et al., 2006; Zhou et al., 2014).
Betweenness centrality score discerns the modules that are most
important in maintaining connectivity in an ecological network,
and thus can be used for identification of keystone species
(Vick-Majors et al., 2014). Based on betweenness centrality
score, Gemmatimonas, Flavobacterium, and an unclassified
Subdivision3 member of Verrucomicrobia were identified as the
keystone taxa. Flavobacterium is responsible for heterotrophic
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denitrification (Wang et al., 2016). Verrucomicrobia members
have been previously reported as degraders of recalcitrant organic
matters (Fierer et al., 2013).

In terms of organic and inorganic fertilization alone, the
former usually produces lower crop yield (Seufert et al., 2012),
but the latter causes more environmental problems (Davidson,
2009). The integrated strategies of organic amendments and
inorganic fertilizers are evaluated as a most effective way to
enhance crop productivity and increase SOM level in China
(Gong et al., 2009; Liu et al., 2010; Wei et al., 2016). Our long-
term observation data also shows comparable and even higher
yields of maize and wheat under combined organic-inorganic
fertilization compared to inorganic fertilization (Figure S1).
Meanwhile, combined organic-inorganic fertilization increased
the potential activities of soil invertase, urease, and alkaline
phosphatase, which are three typical microbial exoenzymes
involved in C, N, and P mineralization. More importantly,
compared to inorganic fertilization, combined organic-inorganic
fertilization enriched more amounts of specific bacterial
taxa. These taxa are implicated in the decomposition of
complex organic matters and soil nutrient transformations, and
are thus beneficial for plant growth by improving nutrient
availability.
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