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Abstract
Bacterial endophytes are a class of endosymbiotic microorganisms widespread among plants that colonize 
intercellular and intracellular spaces of all plant compartments and do not cause plant disease or significant 
morphological changes. Plant and endophytic bacteria association includes vast diversity of bacterial taxa and 
plant hosts and in this review we present an overview of taxonomic composition of endophytes identified in 
common agricultural crops. Further, during the last decade, new aspects of the microbial diversity have emerged 
with application of new metagenomic analysis methods in studies of bacterial endophytes. Endophytic bacteria 
community structure is influenced by plant genotype, abiotic and biotic factors such as environment conditions, 
microbe – microbe interactions and plant – microbe interactions. Agricultural practices, such as soil tillage, 
irrigation, use of pesticides and fertilizers have a major effect on function and structure of soil and endophytic 
microbial populations. Therefore, the use of agricultural practices that maintain natural diversity of plant endophytic 
bacteria is becoming an important element of sustainable agriculture that could ensure plant productivity and 
quality of agricultural production. The diverse endophytic microbial communities play integral and unique role in 
the functioning of agroecosystems. Endophytic bacteria have been shown to have several beneficial effects on their 
host plant, including growth promoting activity, modulation of plant metabolism and phytohormone signalling 
that leads to adaptation to environmental abiotic or biotic stress. Use of endophytic bacteria presents a special 
interest for development of agricultural applications that ensure improved crop performance under cold, draught or 
contaminated soil stress conditions or enhanced disease resistance. 

Key words: agricultural practices, endophytic microbiome, microbial community, microbial diversity, plant 
adaptation. 

Introduction
Agricultural intensification in the 20th century 

has been largely achieved through the use of farm 
equipment, high-yielding crop varieties, intensive tillage, 
irrigation, fertilizers, pesticides and other manufactured 
inputs (Foley et al., 2005). This is well illustrated by 
the global use of fertilizers that increased from approx. 
27 to 170 million of nutrient tons over the past 50 years 
before 2010 (Bumb, Baanante, 1996; Heffer, 2013). 
However, detrimental effects of the agricultural practices 
on soil ecology, high irrigation needs, as well as effect 
on human health, have been recognized. Therefore 
new environmentally benign approaches have to be 
employed to maintain sustainable agricultural production 
and to overcome threats that lead to loss of crop yield, 
including plant stresses associated with unfavourable 
environmental conditions, such as drought, temperature 
extremes or soil salinity, as well as biotic stress induced 
by plant pathogens and pests. In this context, there is a 
strong case for using microorganisms for improved plant 

performance in integrated plant disease management 
systems (reviewed by Singh et al., 2011 and Jha et al., 
2013). Microorganisms can provide beneficial effects 
on plants directly by enhancing crop nutrition or 
indirectly by reducing damage caused by pathogens or 
environmental stress. 

Plants live in intimate association with 
microorganisms that fulfil important functions in 
agricultural ecosystems. Bacteria may exist as free-living 
organisms in soils or attached to the surface of roots or 
phylosphere, and may establish symbiotic relations with 
plants (Smith, Goodman, 1999). Endophytic bacteria 
are a class of endosymbiotic microorganisms that live 
in internal plant tissues of apparently healthy host 
plants (Schulz, Boyle, 2006). Unlike phytopathogens, 
such bacteria do not normally cause any substantial 
disease symptoms, and occurrence of endophytes is not 
associated with morphological changes of plant tissues 
such as caused by root-nodule symbionts. Endophytes 
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colonize plant apoplast, including the intercellular 
spaces of the cell walls and xylem vessels of plant roots, 
stems and leaves, and they are also found in tissues or 
flowers (Compant et al., 2011), fruits (de Melo Pereira 
et al., 2012) and seeds (Trognitz et al., 2014). Population 
densities of endophyte bacteria are extremely variable in 
different plants and tissues and have been shown to vary 
from hundreds to reaching as high as 9 × 109 of bacteria 
per gram of plant tissue (Jacobs et al., 1985; Misaghi, 
Donndelinger, 1990; Chi et al., 2005). Typically, higher 
density of endophyte populations is found in plant roots 
and other below-ground tissues as compared to above-
ground tissues, and ascending migration of endophytic 
bacteria from roots to leaves of rice plants has been 
demonstrated (Chi et al., 2005), suggesting roots as the 
main entry point of the potential endophytes from soil to 
the host plant. Although endophytic bacteria are adapted 
to living inside specific plant genotypes, a variety of 
reports indicate that structure of endophytic community 
is influenced by abiotic and biotic factors such as 
environment conditions, microbe – microbe interactions 
and plant – microbe interactions (Ryan et al., 2008). 

It has been established that tight association 
between host-plant and endophytes is mediated through 
action of compounds produced by the microorganisms 
and the host cells (Reinhold-Hurek, Hurek, 2011; Brader 
et al., 2014). A large body of literature documented 
diverse effects of endophytic bacteria on plant health 
and growth. The endophytes aid nutrient availability and 
uptake, enhance stress tolerance, and provide disease 
resistance (Ryan et al., 2008; Hamilton et al., 2012). Plant 
growth promoting capability of endophytes could be 
directly established through production of plant growth 
hormones, interactions that alter endogenous plant 
hormone production or activity that increases accessibility 
of nutrients, such as nitrogen and phosphorus (Glick, 
2012). Plant disease resistance promoting properties 
are associated with the ability of endophytic bacteria to 
produce a wide range of compounds, such as antibiotics 
or chitinase enzyme, which can inhibit growth of plant 
pathogens and thus act as biocontrol agents (Raaijmakers, 
Mazzola, 2012; Christina et al., 2013; Brader et al., 
2014; Wang et al., 2014). Endophytes were also shown 
to stimulate a latent disease defense mechanism, termed 
as induced systemic resistance (ISR), that confers an 
enhanced level of protection to a broad spectrum of 
pathogens (Pieterse et al., 2014). 

Owing to their plant growth promoting and 
disease control properties, endophytes can be used in the 
form of bioinoculants in agriculture as amendments to 
promote plant growth and health. A number of registered 
patents that are related to application of endophytic 
bacteria to enhance host tolerance to fungal pathogens as 
well as to promote plant growth demonstrate a potential 
for applications that would benefit development of 
sustainable agricultural production (Mei, Flinn, 2010). 

Here, we provide an overview of the composition 
of bacterial populations that are found in endosphere of 
major crop plants grown in agricultural environment 
and recent advances in analysis approaches used in the 
endophytic microbiome research. Further, progress 
in understanding of complex interactions among the 

bacterial endophytes,  effects of agricultural practices 
on endophytic bacterial communities and a role of the 
endophytes in plant adaptation to stress and disease 
resistance are considered. 

Occurrence and diversity 
of bacterial endophytes                    
in agricultural crops 
Diverse endophytic bacteria play an integral 

role in ecosystems and plant physiology. These 
bacteria colonize all plant compartments, generally the 
intercellular and intracellular spaces of inner tissues. 
Initial studies on diversity of endophytic bacteria were 
mostly based on characterization of endophytic isolates 
obtained from the plant after surface disinfection. 
Lodewyckx et al. (2002) characterized the main methods 
used for the bacteria isolation and 81 bacterial species 
which form endophytic associations with plants. One of 
the early reviews by Hallman et al. (1997) presented a list 
of bacterial endophytes isolated from various plant parts 
of different agricultural crops. The list of endophytes and 
plants harbouring them was supplemented by later studies 
(Rosenblueth, Martinez-Romero, 2006; Bacon, Hinton, 
2007; Ryan et al., 2008). A summary of most widespread 
bacterial isolates identified and common agricultural crop 
plants that serve as host for the bacteria are presented in 
Table. The list is incomplete as the endophytic bacteria 
and plant association include a vast diversity of bacterial 
taxa and plant hosts. 

The early studies on composition of endophytic 
communities revealed that different plant hosts harbour 
similar community of bacterial endophytes (Mundt, 
Hinkle, 1976). The genera of Bacillus and Pseudomonas 
are identified as frequently occurring in agricultural 
crops (Seghers et al., 2004; Souza et al., 2013). Presence 
of different endophytic species depends mostly on plant 
and bacteria genotype, biotic and abiotic environmental 
factors. Meanwhile a single host plant species comprises 
several genera and species of endophytes, the tissue type 
of plant or season of isolation may determine extent of 
the endophytic population (Kuklinsky-Sobral et al., 
2004; Rosenblueth, Martinez-Romero, 2006). A large 
study conducted on bacterial endopyte communities 
revealed that although endophytic bacteria colonize 
entire plant, the roots usually contain higher number of 
species. Endophytic species mostly belong  to  the α-, β-, 
and γ-proteobacteria subgroups and are closely related 
to epiphytic species (Kuklinsky-Sobral et al., 2004). 
Interestingly, the γ-proteobacteria group is the most 
diverse and dominant. It has been reported that most of 
gram-negative endophytes act as agents of biological 
control (Kobayashi, Palumbo, 2000), while among the 
gram-positive bacteria the dominant endophytic species 
primarily those belonging to the Bacillus species are 
found (Gupta et al., 2002; Bacon, Hinton, 2007). 

Most of the culturable isolated endophytic 
bacteria species belong to Proteobacteria, meanwhile 
Firmicutes, Actinobacteria and also Bacteroides are less 
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Table. Endophytic bacteria isolated from common agricultural crop plants 

Plant species 
and organ Bacterial endophyte taxa References

1 2 3
Alfalfa (Medicago 
sativa L.) roots

γ-proteobacteria: Erwinia sp., Pseudomonas sp.
firmicutes: Bacillus megaterium, B. chosinensis
actinobacteria: Microbacterium trichothecenolyticum

Gagne et al., 1987; 
Stajkovic et al., 2009 

Black pepper (Piper 
nigrum L.) roots

γ -proteobacteria: Pseudomonas sp., Serratia sp. 
firmicutes: Bacillus sp.
actinobacteria: Arthrobacter sp., Micrococcus sp., Curtobacterium sp.

Aravind et al., 2009

Carrot (Daucus 
carota L. var. sativus)

α-proteobacteria: Rhizobium (agrobacterium) radiobater
γ-proteobacteria: Klebsiella terrigena, Pseudomonas putida, P. fluorescens, 
P. chlororaphis 
firmicutes: Bacillus megaterium

Surette et al., 2003

Grape (Vitis spp.) stems β-proteobacteria: Comamonas sp.
γ-proteobacteria: Pseudomonas cichorii, Enterobacter sp., Klebsiella 
ozaenae, K. pneumoniae, K. terrigena, Pantoea sp., Xanthomonas sp., 
Moraxella bovis, Rahnella agquatilis
firmicutes: Bacillus fastidiosus, B. insolitus
actinobacteria: Curtobacterium sp., Clavibacter sp., Rhodococcus luteus

Bell et al., 1995; 
West et al., 2010

Maize (Zea mays L.) 
stems, roots

α-proteobacteria: Rhizobium etli
β-proteobacteria: Bukholderia pickettii, B. cepacia, Achromobacter, 
Herbaspirillum seropedicae
γ-proteobacteria: Erwinia sp., Enterobacter sp., E. cloacae, 
Stenotrophomonas sp., Klebsiella sp., K. terrigena, K. pneumoniae, 
K. variicola, Pseudomonas sp., P. aeruginosa, P. fluorescens
firmicutes: Bacillus sp., B. mojavensis, B. thuringiensis, 
B. megaterium, B. subtilis, B. pumilus, Lysinibacillus, Paenibacillus
actinobacteria: Corynebacterium sp., Arthrobacter globiformis, 
Microbacterium testaceum

Lalande et al., 1989; 
Fisher et al., 1992; 
McInroy, Kloepper, 
1995; 
Palus et al., 1996; 
Chelius, Triplett, 2001; 
Zinniel et al., 2002; 
Rosenblueth, Martinez-
Romero, 2004; 
Rai et al., 2007 

Potato (Solanum
tuberosum L., Ipomoea 
batatas) tubers and 
stems

α-proteobacteria: Agrobacterium sp., Sphinogomonas sp., 
Methylobacterium sp.
β-proteobacteria: Acidovorax sp., Alcaligenes sp., 
Comamonas sp., Enterobacter sp.
γ-proteobacteria: Acinetobacter sp., Erwinia sp., Klebsiella sp., 
Pantoea sp., P. agglomerans, Pasteurella sp., Photobacterium sp., 
Vibrio sp., Serratia liquefaciens, Xanthomonas sp., Pseudomonas tolaasii, 
Psychrobacter sp., Shewanella sp., Enterobacter sp., E. asburiae 
firmicutes: Bacillus alclophialus, B. pasteurii, B. sphaericus, 
B. coryneforms, Leuconostoc sp., Paenibacillus odorifer 
bacteroidetes: Capnocytophaga sp.
Actinobacteria: Actinomyces sp., Arthrobacter ureafaciens, 
Corynebacterium sp., Curtobacterium sp., C. citrenum, C. leteum, 
Micrococcus sp.

Hollis, 1951; 
De Boer, Copeman, 
1974; Sturz et al., 2000; 
Reiter et al., 2002; 
Sturz et al., 1998 

Radish (Raphanus 
sativus L.) leaves and 
roots

proteobacteria: Proteobacteria sp. Seo et al., 2010

Red clover (Trifolium
Pratense L.), leaves, 
stems, roots and fresh 
nodules

α-proteobacteria: Agrobacterium rhizogenes, A. tumefaciens, 
Methylobacterium sp., Phyllobacterium sp., Rhizobium sp., Sphingomonas sp.
β-proteobacteria: Acidovorax sp., Bordetella sp., Comamonas sp., 
Variovorax sp.
γ-proteobacteria: Enterobacter sp., Aerobacter cloaceae, Escherichia sp., 
Klebsiella sp., Pantoea agglomerans, Xanthomonas compestris, X. oryzae, 
Pseudomonas cichorii, P. corrugata, P. fulva, P. syringae, P. tolaasii, 
Serratia sp., Pasteurella sp., Psychrobacter sp., P. immobilis
firmicutes: Bacillus brevis, B. megaterium
actinobacteria: Arthobacter ilicis, Cellulomonas sp., 
Curtobacterium citreum, C. luteum, Micrococcus varians

Sturz et al., 1998
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common (Reinhold-Hurek, Hurek, 2011). This suggests 
that part of communities of bacterial endophytes could 
be overlooked and others are overrepresented based on 
their capability to grow on synthetic medium. To draw 
a more precise picture of the diversity of endophytic 
microorganisms, recently a number of studies have been 
focused on identification of unculturable endophytes 
using novel metagenomic analysis approaches. Direct 
amplification of microbial DNA from plant tissue samples 
and application of modern bioinformatics tools allow 
analysis of a bacterial community composition and its 
phylogenetic structure inside a variety of plant organs or 
tissues (Chun et al., 2007; Manter et al., 2010). Sessitsch 
et al. (2012) analyzed genomic characteristics of bacterial 
endophytes colonizing rice roots under field conditions. 
These authors found that the population was dominated 
by members of γ-proteobacteria, comprising mostly 
enterobacter-related endophytes. However, application of 
culture independent methods allowed studies of growing 
numbers of plant material samples and revealed rarely 
reported endophyte species of δ- and ε-proteobacteria 
in rice roots (Sun et al., 2008). Tsurumaru et al. (2015) 
analyzed a metagenome of the bacterial community 
associated with the taproot of sugar beet (Beta vulgari 
L.) The study found that Alphaproteobacteria are 
dominant, followed by the Actinobacteria and the 
Betaproteobacteria. Another metagenomic study of the 
sorghum root and stem microbiome revealed that the 
two tissues harboured significantly different composition 
of bacterial communities, but both were dominated by 
agriculturally important genera such as Microbacterium, 

Agrobacterium, Sphingobacterium, Herbaspirillum, 
Erwinia, Pseudomonas and Stenotrophomonas (Maropola 
et al., 2015). 

Metagenomic analysis involves direct isolation 
of bacterial DNA, library construction and functional 
analysis (Handelsman, 2004; Jiao et al., 2006). To 
investigate endophytic bacterial diversity, highly specific 
methods should be used (Sun et al., 2008). Initial studies 
on the unculturable bacterial endophyte diversity revealed 
technical limitation related to separation of endophytic 
bacteria from plant nuclei, plastids, mitochondria and 
plant associated microbial DNA (Govindasamy et al., 
2014). As plant DNA is much more abundant than 
bacterial, it is difficult to isolate and sequence only 
bacterial community at high coverage. In order to avoid 
plant host DNA, enrichment of endophytic bacteria prior 
to DNA amplification should be done (Govindasamy 
et al., 2014). To exclude interference of plant host DNA, 
Jiao et al. (2006) enriched bacterial endophytes by 
hydrolysis of the plant cell walls, followed by differential 
centrifugation. For bacterial DNA ratio enrichment in 
stems and leaves of soybean and rice, Ikeda et al. (2009) 
used series of differential centrifugation steps followed 
by density gradient centrifugation. Another technique 
suitable for extraction of endophytes from internal tissues 
of potato tubers was developed by Nikolic et al. (2011) 
and involved overnight shaking of the small pieces of 
potato tubers in sodium chloride solution. Although the 
method allowed bacterial DNA extraction from a large 
amount of plant material, diversity of rare members of 
endophytic metagenome could be also reduced. 

1 2 3
Wild rice (Oryza
officinalis, O. barthii, 
O. rufipogon, 
O. glandiglumis, 
O. breviligulata) and 
cultivated rice 
(O. sativa L.) roots and 
stems

α-proteobacteria: Agrobacterium sp., Azorhizobium sp., Azospirillum sp., 
A. lipoferum, A. brasilense, Bradyrhizobium sp., Rhizobium leguminosarum, 
Azorhizobium sp., A. Caulinodans, Bradyrhizobium japonicum
β-proteobacteria: Azoarcus sp., Burkholderia graminis, 
B. cepacia, Ideonella dechloratans, Chromobacterium violaceum, 
Herbaspirillum seropedicae, H. rubrisubalbicans, H. seropedicae
γ-proteobacteria: Enterobacter cancerogenus, Pseudomonas sp., Pantoea sp., 
Serratia sp., S. marcescens, Klebsiella sp., K. variicola, Stenotrophomonas sp. 
firmicutes: Bacillus sp.
actinobacteria: Micrococcus sp.

You, Zhou, 1989; 
Stolzfus et al., 1997; 
Yanni et al., 1997; 
Chaintreuil et al., 2000; 
Engelhard et al., 2000; 
Elbeltagy et al., 2001; 
Sandhiya et al., 2005; 
Mbai et al., 2015

Sugar beet (Beta 
vulgaris L.) roots

γ-proteobacteria: Erwinia sp., Pseudomonas sp., Xanthomonas sp.
firmicutes: Bacillus sp., Lactobacillus sp.
actinobacteria: Corynebacterium sp.

Jacobs et al., 1985; 
Dent et al., 2004

Soybean (Glycine 
max (L.) Merr.) stems, 
leaves, roots and 
nodules

α-proteobacteria: Erwinia sp., Agrobacterium sp.
γ-proteobacteria: Pseudomonas citronellolis, P. oryzihabitans, P. staminea, 
K. pneumoniae, K. oxytoca, Enterobacter sp., Pantoea sp., P. agglomerans
firmicutes: Bacillus fastidiosus

Zinniel et al., 2002; 
Kuklinsky-Sobral et al., 
2004 

Tomato (Lycopersicon
Esculentum Mill.) stems 
and fruits

γ-proteobacteria: Pseudomonas sp., P. syringae, P. aeruginosa, 
Escherichia coli
firmicutes: Brevibacillus brevis

Samish et al., 1961; 
Pillay, Nowak, 1997; 
Yang et al., 2011; 
Patel et al., 2012 

Wheat (Triticum 
aestivum L.) roots 

β-proteobacteria: Burkholderia cepacia
γ-proteobacteria: Klebsiella sp.
firmicutes: Bacillus polymyxa
actinobacteria: Mycobacterium sp.

Mavingui et al., 1992; 
Balandreau et al., 2001; 
Zinniel et al., 2002; 
Iniguez et al., 2004 

Table continued
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Interactions within the 
population of bacterial 
endophytes 
Endophytic bacteria are known to produce a 

wide variety of secondary metabolites and hydrolytic 
enzymes. Discovery of novel endophytic metabolites and 
investigation of their involvement in plant metabolism is 
an active field of research (recently reviewed by Brader 
et al., 2014). A large number of the compounds produced 
by endophytes possess antibacterial or antifungal 
activity. So far, the main research on antimicrobial 
activity of endophytes has been mainly focused on 
impact of endophytes on pathogenic bacteria and fungi. 
However, an abundance of endophytic bacteria and 
potential of metabolic signalling suggests presence of the 
multidimensional network of competing and symbiotic 
interactions in plant endosphere, which is difficult to 
model in in vitro experiments. Therefore elucidation of 
the molecular basis for interactions among the endophytic 
bacteria and their effect on endophytic fungi largely 
remains a challenge for future research. 

The fact that many endophytic bacteria 
contain quorum sensing systems suggests a complex 
interaction between the bacteria in endosphere. Quorum 
sensing signals are involved in plant colonization by 
Methylobacterium (Dourado et al., 2014). Metagenomic 
analysis revealed that three quorum sensing systems – 
autoinducer-2 system, the diffusible signal factor system 
and N-acyl homoserine lactone (AHL) system are present 
in endophytic rice microbiome (Sessitsch et al., 2012). 
The AHL signalling is prevalent in Populus deltoides 
endophytic microbiome (Schaefer et al., 2013). The 
example of interactions between species based on quorum 
sensing was revealed in a study on plant pathogen causing 
olive (Olea europaea L.) knot disease Pseudomonas 
savastanoi pv. Savastanoi, and enterobacteria Pantoea 
agglomerans and Erwinia toletana. All three bacteria 
produced AHLs and shared one AHL quorum sensing 
system. P. savastanoi AHL quorum sensing mutants had 
impaired virulence. E. toletana knot formation ability by 
pathogen was regained when olive was co-inoculated with 
P. savastanoi AHL synthase mutant (Hosni et al., 2011). It 
was demonstrated that plants actively participate in AHL 
signalling as presence of the AHLs altered expression 
of number of plant genes including those involved in 
plant defense responses and plants were shown to mimic 
bacterial AHLs (reviewed by Hartmann et al., 2014). 

Quorum sensing signals can be “intercepted” 
by signal degrading molecules – the effect known as 
quorum quenching. Endophytic Bacillus isolates from 
Cannabis sativa quenched four different AHLs used by 
Chromobacterium violaceum in violacein production 
regulation (Kusari et al., 2014). Extracts of endophyte 
bacteria Bacillus and Enterobacter from Pterocarpus 
showed AHLs degrading ability when applied on 
biosensor strains (Rajesh, Ravishankar, 2014). N-acyl-
L-homoserine lactone acylase with specificity against 
medium and long chain AHLs was found in endophytic 
Streptomyces (Chankhamhaengdecha et al., 2013). 
AHL lactonase gene from Bacillus thuringiensis was 
introduced into endophytic Burkholderia which then 

was able to attenuate symptoms caused by pathogenic 
Burkholderia glumae in rice and Erwinia carotovora in 
potatoes (Cho et al., 2007). 

Recent studies have revealed that bacterial 
endophytes are involved in complex interactions 
with endophytic fungi. For example, Burkholderia 
rhizoxinica endosymbiont of endophytic fungus Rhizopus 
microsporus controls vegetative reproduction of the 
host fungus (Lackner et al., 2011). Endophytic bacteria 
identified as Luteibacter enhances indole-3-acetic acid 
(IAA) production in vitro by endophyte Pestaliotopsis, 
meanwhile bacteria alone fail to produce IAA on medium 
and endophytic fungi produce significantly smaller 
amounts of IAA in absence of the bacterium (Hoffman 
et al., 2013). 

Effect of agricultural        
practices on endophytic 
bacterial communities 
Agricultural land management greatly alters 

soil characteristics, including physical, chemical and 
biological properties (Jangid et al., 2008; Garcia-Orenes 
et al., 2013). Soil tillage may lead to reduction in soil 
microbial diversity due to mechanical destruction, soil 
compaction, reduced pore volume, desiccation and 
disruption of access to food resources. Excessive use of 
pesticides can induce significant changes in the function 
and structure of soil microbial populations (Pampulha, 
Oliveira, 2006). The effect of pesticides may manifest 
a direct inhibitory effect on microbial growth and 
metabolism, as well as microbial diversity may change 
due to overall changes in the structure of agricultural 
ecosystems. Agricultural management alters the quantity 
and quality of plant residues entering the soil and their 
spatial distribution, through changes in nutrients and inputs 
(Christensen, 1996). Likewise, application of mineral or 
organic fertilizers has a different effect on composition 
of microbial community and microbial biomass (Zhong 
et al., 2010). Microbial diversity and metabolic activity 
is significantly increased by application of organic 
manure. However, the application of manures introduces 
faecal bacteria into soil and has the potential to alter the 
composition of the endogenous microbial population and 
to pose environmental hazards (Soupir et al., 2006). 

The majority of bacteria in plant endosphere 
are presumed to have a “facultative endophyte” lifestyle 
and a stage in their life cycle in which they exist outside 
the host plants (Hardoim et al., 2008). These endophytes 
often originate from soil, initially infecting roots of the 
host plant and colonizing the plant apoplast. Therefore 
it could be presumed that the endophytic community 
represents a certain subset of the wider microbial 
population of rhizosphere and it would reflect differences 
induced by agronomic practices that are characteristic 
of soil microbial community. However, research on the 
effect of agricultural practices on endophyte population 
dynamics is limited to several studies. 

It was demonstrated that colonization ability 
of nitrogen-fixing endophytic bacterium Acetobacter 
diazotrophicus is largely decreased in the sugarcane plants 
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fertilized with high levels of nitrogen (Fuentes-Ramirez 
et al., 1999). Analysis of the endophytic population of 
maize roots under treatment with herbicides and different 
fertilizer types revealed that microbial group-specific 
genetic pattern differentiated the maize plants, cultivated 
by using mineral fertilizer, from the plants cultivated 
by using organic fertilizer (Seghers et al., 2004). 
Meanwhile, no significant effect of herbicide treatment 
on composition of the root endophyte population was 
detected. These studies did not reveal if the changes in 
endophyte population were a consequence of changes 
in overall soil microbial population upon the fertilizer 
treatment or the agronomic practices had a direct effect on 
the root endophytic community. However, another study, 
demonstrating that application of chitin resulted in changes 
in bacterial communities in soil, rhizosphere and cotton 
roots, suggested that the organic amendment supported 
endophytic species in cotton roots that otherwise did not 
occur (Hallman et al., 1999). Intriguingly, it was shown 
that the composition of the endophytic community was 
largely different from that of the rhizosphere, suggesting 
that the composition of the endophytic population was 
not directly determined by microbial diversity of the 
rhizosphere, but involved other factors related to plant 
biochemistry. Therefore the amendment of chitin, that 
enhanced chitinase and peroxidase concentrations, 
might have changed a preference of the plants for certain 
bacterial endophytes. 

The importance of agricultural practices that 
maintain natural diversity of plant endophytic bacteria is 
emphasized by the observations that agricultural plants 
may become a niche for human pathogens and a source for 
outbreaks of food-borne illness (Brandl, 2006). Pathogenic 
bacteria of the family Enterobacteriaceae including 
pathogenic Salmonella genus strains, Escherichia coli 
and Vibrio cholerae strains, and the human opportunistic 
pathogen Pseudomonas aeruginosa were described as 
endophytic colonizers of plants (Kutter et al., 2006; 
Schikora et al., 2008; Deering et al., 2012; Akhtyamova, 
2013). The colonization of plants by the human pathogens 
may be associated with the use of manures contaminated 
with faecal bacteria (Brandl, 2006; Holden et al., 2009), 
as well as the use of practices that lead to decline in soil 
and endophytic microbial populations and a reduced 
number and abundance of species antagonistic to the 
human pathogens (Latz et al., 2012). 

Another aspect related to the effect of agricultural 
practices on soil and plant microbiome is reflected by the 
disease-suppressive soil phenomenon defined as “soils 
in which plants do not suffer from certain diseases or 
where disease severity is substantially reduced even 
though a virulent pathogen is present and the host 
plant is susceptible to the disease” (Weller et al., 2002; 
Haas, Defago, 2005). Biological suppression of soil-
borne diseases is a function of activity and composition 
of soil microbiome. It was shown several decades 
ago that disease suppressive properties of soil were 
largely induced by long-term cultivation of wheat and 
potato monoculture leading to build up of host specific 
microbial community (Scher, Baker, 1980; Whipps, 
1997; Lorang et al., 1989). Further studies elucidated 
possible mechanisms of disease suppression that include 

competition for space and nutrients, antagonism due to 
production of secondary metabolites and elicitation of 
induced systemic resistance (ISR) (Philippot et al., 2013; 
Pieterse et al., 2014). Specific role of the endophytic 
bacteria in development of the disease suppressive 
traits was rarely addressed in the studies on disease 
suppressive soil communities; however, bacteria of genus 
Streptomyces, Bacillus, Actinomyces, Pseudomonas that 
lead endophytic lifestyle were shown to contribute to the 
disease suppressive traits of soils (Siddiqui, Ehteshamul-
Haque, 2001; Weller et al., 2002; Haas, Defago, 2005; 
Mendes et al., 2011; Kinkel et al., 2012). 

Role of endophytes in 
adaptation of agricultural 
crops to biotic and abiotic 
environmental stress 
Endophytic bacteria have been shown to have 

several beneficial effects on their host plant. Plant growth 
is promoted through improved nutrient acquisition, 
including nitrogen fixation (Mirza et al., 2001) and 
production of plant growth enhancing substances 
such as cytokinins (Garcia de Salamone et al., 2001) 
and indole acetic acid (IAA) (Naveed et al., 2015). In 
addition to enhanced growth properties, modulation of 
plant metabolism and phytohormone signalling by the 
endophytic bacteria enhances adaptation to environmental 
abiotic or biotic stress. Endophytic bacteria present a 
special interest for improved crop adaptation to stress 
as they have the advantage of being relatively protected 
from the harsh environment of the soil under draught, 
high salt or other stress conditions (Sturz et al., 2000). 

It was shown that bacterial endophyte 
Burkholderia phytofirmans PsJN enhances cold tolerance 
of grapevine plants by altering photosynthetic activity 
and metabolism of carbohydrates involved in cold stress 
tolerance (Ait et al., 2006; Fernandez et al., 2012). The 
bacterium presence in the plant promoted acclimation 
to chilling temperatures resulting in lower cell damage, 
higher photosynthetic activity, and accumulation of 
cold-stress-related metabolites such as starch, proline, 
and phenolic compounds. Similar positive effect of the 
bacterium on metabolic balance and reduced effect of 
drought stress was demonstrated in wheat plants grown 
under reduced irrigation conditions (Naveed et al., 2014). 
Endophytic bacteria Pseudomonas pseudoalcaligenes was 
shown to induce accumulation of higher concentrations 
of glycine betain-like compounds leading to improved 
salinity stress tolerance in rice (Jha et al., 2011). 

Cohen et al. (2009) demonstrated that water 
stress tolerance in maize plants was alleviated by 
accumulation of the abscisic acid (ABA) produced by 
endophytic Azospirillum spp. and the effect was further 
enhanced by plant growth promoting hormones IAA and 
gibberellins. ABA is the phytohormone critical for plant 
growth and development and its levels are known to rise 
under stress condition. Main function of ABA seems to 
be the regulation of plant water balance and osmotic 
stress tolerance (Tuteja, 2007). 
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Ethylene is another important plant hormone 
that is the extensively studied mediator of plant stress 
response signalling. Ethylene is formed from methionine 
via S-adenosyl-Lmethionine, which is converted into 
1-aminocyclopropane-1-carboxylic acid (ACC) by the 
enzyme ACC oxidase (Bleecker, Kende, 2000). Stress 
induced accumulation of ethylene is usually deleterious to 
plant growth and health (Czarny et al., 2006). Endophytes 
may produce the enzyme ACC deaminase that has no 
function in bacteria but contributes to plant growth 
promotion and improved stress tolerance by cleaving 
the ethylene precursor ACC (Campbell, Thompson, 
1996; Glick, 2014). There are numerous reports on ACC 
deaminase-containing plant-associated bacteria and their 
role in improved plant growth and stress tolerance that 
was recently reviewed by Glick (2014). The effect of 
endophytic bacteria-derived ACC deaminase activity on 
salt stress was most studied. Endophytic diazotrophic 
Achromobacter xylosoxidans AUM54 isolated from 
Catharanthus roseus grown in saline soil showed ability 
to produce ACC deaminase and to reduce ethylene levels 
(Karthikeyan et al., 2012). Improved plant growth in 
150 mM NaCl containing soils was demonstrated for 
the plants inoculated with the A. xylosoxidans AUM54 
strain. Recently, the study by Qin et al. (2014) revealed 
that halophyte plant Limonium sinense was naturally 
associated with ACC deaminase producing putative 
endophytic bacteria that might play important role in 
higher salinity tolerance of the plant. Thirteen isolates 
possessing ACC deaminase activity were obtained that 
belonged to genera: Bacillus, Pseudomonas, Klebsiella, 
Serratia, Arthrobacter, Streptomyces, Isoptericola and 
Microbacterium. Four of the selected ACC deaminase-
producing strains were shown to stimulate growth of the 
host plants. In another study, tomato plants grown under 
165 mM and 185 mM NaCl levels exhibited higher 
gain of biomass and a greater number of flowers and 
buds when pretreated with ACC deaminase containing 
bacterial endophytes Pseudomonas fluorescens YsS6 
and P. migulae 8R6 as compared to treatment with ACC 
deaminase deficient mutants of the bacteria (Ali et al., 
2014). The study revealed that endophytic bacteria 
affected plants differently under salt stress conditions 
as compared to other rhizospheric bacteria, such as 
Pseudomonas putida UW4 that was studied by Cheng 
et al. (2007). Meanwhile the reduced ethylene levels due to 
ACC deaminase activity were observed in both cases, the 
later study showed that the rhizospheric bacteria allowed 
the salt to accumulate in root tissues and presumably 
partition into the vacuole (Cheng et al., 2007), while the 
bacterial endophytes limited the concentration of sodium 
in plant shoots (Ali et al., 2014). 

In addition, ACC deaminase producing Pantoea 
agglomerans Jp3-3 and Achromobacter xylosoxidans 
strain Ax 10 were shown to alleviate stress of Brassica sp. 
plants grown in copper-contaminated soils and improved 
copper uptake by the plants (Ma et al., 2009; Zhang 
et al., 2011 a). ACC deaminase producing isolates from 
Commelina communis plants grown on lead and zinc 
mine soils were shown to improve growth of rape plants 
in the lead-contaminated soil (Zhang et al., 2011 b). 

The study on cold resistance of vine plants 
inoculated by Burkholderia phytofirmans PsJN revealed 

that the colonization of endophytic bacteria placed 
metabolism of the grapevine in the primed state that 
enabled higher and faster accumulation of stress related 
gene transcripts and metabolites leading to more effective 
resistance to cold stress (Theocharis et al., 2012). This 
provided insight into the priming phenomenon implicated 
in stress tolerance induced by plant-associated bacteria. 
However, so far the role of the priming in resistance to 
abiotic stress has attracted less attention as compared to 
the pathogen defense response priming that is proven to 
be a critical process of the induced systemic resistance 
(ISR) activated by non-pathogenic plant-associated 
microorganisms. The protection of cucumber plants 
against cucumber anthracnose induced by Pseudomonas 
fluorescens strain 89B-61 was the first case demonstrating 
that endophytic bacteria could elicit ISR in plants and 
published in 1991 (Wei et al., 1991; Kloepper, Ryu, 2006). 
Subsequent studies established that the ISR was induced 
by endophytic bacteria of genus Bacillus, Pseudomonas 
and Serratia in different plant-pathogen systems and 
molecular cell signalling mechanisms involved in the 
defense priming were previously reviewed (Kloepper, 
Ryu, 2006; Pieterse et al., 2014). 

The ISR primes plant defense mechanisms and 
protects non-exposed plant parts against a future attack by 
pathogenic microbes and herbivorous insects. Although 
several plant-associated bacteria have been reported to 
induce a salicylic acid mediated type of induced systemic 
resistance, the plant hormones jasmonic acid (JA) and 
ethylene (ET) play a major regulatory role in the network 
of interconnected signalling pathways involved in ISR 
induction (Pieterse et al., 2012). Meanwhile the detailed 
mechanism of the defense priming during ISR remains 
elusive, the evidence for role of transcription co-regulator 
NPR1 in the JA/ET-dependent ISR has been provided 
and the cytosol specific function of the NPR1, different 
from the function involved in pathogen induced systemic 
acquired resistance, has been revealed (Spoel et al., 2003; 
Stein et al., 2008). Further, the role of transcription factors 
MYB72 and MYC2 in establishment of the ISR induced 
by rhizobacteria and priming of JA/ET-dependent defense 
genes has been demonstrated (Pozo et al., 2008; Van Der 
Ent et al., 2008). 

Conclusion and outlook 
A vast diversity of endophytic bacteria isolated 

from a large number of agricultural plants suggests 
that the bacteria play an integral role in balancing 
plant physiology and functioning of agroecosystems. 
Composition of the endosphere microbial populations 
depends mostly on plant and bacteria genotype, biotic 
and abiotic environmental factors. Endophytic species 
have been mostly reported throughout the α-, β-, and 
γ-proteobacteria subgroups and the latter is the most 
diverse and dominant group. The genera of Bacillus and 
Pseudomonas are identified as frequently occurring in 
agricultural crops. During the last decade development 
of metagenomic analysis techniques has brought to 
light new information on the diversity of unculturable 
endophytic bacteria and provided important prospects for 
understanding complex interactions within the microbial 
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community and with the plant host. Numerous studies 
demonstrate beneficial effects of the endophytic bacteria 
on plant growth and adaptability to biotic or abiotic 
stresses. Therefore understanding of composition and 
functioning of plant associated microbial communities as 
well as control of the structure of endophytic bacterial 
populations through development of environmentally 
benign agricultural practices has a large potential for 
improved plant performance and application of the 
integrated plant disease management systems required 
for sustainable agricultural production. 
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Bakterinių endofitų reikšmė žemės ūkio augalų atsparumui 
stresui: apžvalga 
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Santrauka
Bakteriniai endofitai yra augaluose plačiai paplitusi endosimbiontinių mikroorganizmų grupė, kuri kolonizuoja visų 
augalo dalių tarpląstelines bei viduląstelines sritis ir nesukelia augalų ligų ar reikšmingų morfologinių pakitimų. 
Augalų ir endofitinių bakterijų sąveikai būdinga didelė taksonominė bakterijų ir augalų įvairovė. Apžvalgoje 
apibendrintos žinios apie ištirtų būdingų žemės ūkio augalų endofitų taksonominė sudėtį. Pastarąjį dešimtmetį 
naujų duomenų apie šių mikroorganizmų įvairovę pateikė naujų metagenominės analizės metodų taikymas 
tiriant endofitines bakterijas. Endofitinių bakterijų bendrijų struktūrą lemia augalo genotipas, aplinkos sąlygos, 
mikroorganizmų tarpusavio sąveika ir jų sąveika su augalais. Tokios žemės dirbimo technologijos kaip dirvos 
arimas, drėkinimas, pesticidų ir trąšų naudojimas turi didelę įtaką dirvožemio bei endofitinių mikroorganizmų 
populiacijų funkcijoms ir struktūrai. Todėl natūralią augalų endofitinių bakterijų įvairovę palaikančios žemės 
ūkio technologijos tampa svarbia darnios žemdirbystės dalimi, užtikrinančia didelį augalų produktyvumą ir 
žemės ūkio produkcijos kokybę. Įvairios endofitinių mikroorganizmų bendrijos yra neatsiejama agroekosistemų 
dalis, svarbi jų funkcionavimui. Nustatyta, kad endofitinės bakterijos gali skatinti augalo šeimininko augimą, 
reguliuoti metabolizmą, fitohormonų signalinius kelius ir tokiu būdu didinti augalų atsparumą aplinkos abiotiniam 
ar biotiniam stresui. Endofitinių bakterijų panaudojimas sudaro galimybę kurti žemės ūkio technologijas, kurios 
užtikrintų didesnį augalų atsparumą šalčio, sausros ar užterštų dirvožemių stresui arba padidintų augalų atsparumą 
ligoms. 

Reikšminiai žodžiai: augalų adaptyvumas, endofitinė mikrobioma, mikroorganizmų bendrijos, mikroorganizmų 
įvairovė, žemės ūkio technologijos. 
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