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Bacterial Foraging Optimization Algorithm: 
Theoretical Foundations, Analysis, and 
Applications 

Swagatam Das, Arijit Biswas, Sambarta Dasgupta, and Ajith Abraham1 

Abstract. Bacterial foraging optimization algorithm (BFOA) has been widely 
accepted as a global optimization algorithm of current interest for distributed op-
timization and control. BFOA is inspired by the social foraging behavior of Es-
cherichia coli. BFOA has already drawn the attention of researchers because of its 
efficiency in solving real-world optimization problems arising in several applica-
tion domains. The underlying biology behind the foraging strategy of E.coli is 
emulated in an extraordinary manner and used as a simple optimization algorithm. 
This chapter starts with a lucid outline of the classical BFOA. It then analyses the 
dynamics of the simulated chemotaxis step in BFOA with the help of a simple 
mathematical model. Taking a cue from the analysis, it presents a new adaptive 
variant of BFOA, where the chemotactic step size is adjusted on the run according 
to the current fitness of a virtual bacterium. Nest, an analysis of the dynamics of 
reproduction operator in BFOA is also discussed. The chapter discusses the hy-
bridization of BFOA with other optimization techniques and also provides an ac-
count of most of the significant applications of BFOA until date. 

1   Introduction 

Bacteria Foraging Optimization Algorithm (BFOA), proposed by Passino [1], is a 
new comer to the family of nature-inspired optimization algorithms. For over the 
last five decades, optimization algorithms like Genetic Algorithms (GAs) [2], 
Evolutionary Programming (EP) [3], Evolutionary Strategies (ES) [4], which draw 
their inspiration from evolution and natural genetics, have been dominating the 
realm of optimization algorithms. Recently natural swarm inspired algorithms like 
Particle Swarm Optimization (PSO) [5], Ant Colony Optimization (ACO) [6] have 
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found their way into this domain and proved their effectiveness. Following the 
same trend of swarm-based algorithms, Passino proposed the BFOA in [1]. Appli-
cation of group foraging strategy of a swarm of E.coli bacteria in multi-optimal 
function optimization is the key idea of the new algorithm. Bacteria search  
for nutrients in a manner to maximize energy obtained per unit time. Individual 
bacterium also communicates with others by sending signals. A bacterium takes 
foraging decisions after considering two previous factors. The process, in which a 
bacterium moves by taking small steps while searching for nutrients, is called 
chemotaxis and key idea of BFOA is mimicking chemotactic movement of virtual 
bacteria in the problem search space.       

Since its inception, BFOA has drawn the attention of researchers from diverse 
fields of knowledge especially due to its biological motivation and graceful struc-
ture. Researchers are trying to hybridize BFOA with different other algorithms in 
order to explore its local and global search properties separately. It has already 
been applied to many real world problems and proved its effectiveness over many 
variants of GA and PSO. Mathematical modeling, adaptation, and modification of 
the algorithm might be a major part of the research on BFOA in future. 

This chapter is organized as follows: Section 2 provides the biological  
motivation behind the BFOA algorithm and outlines the algorithm itself in a com-
prehensive manner. Section 3 provides a simple mathematical analysis of the 
computational chemotaxis of BFOA in the framework of the classical gradient 
descent search algorithm. A mathematical model of reproduction operator is fur-
nished in section 4.  Section 5 discusses the hybridization of BFOA with other soft 
computing algorithms. Section 6 provides an overview of the applications of 
BFOA in different fields of science and engineering. The chapter is finally sum-
marized in Section 7. 

2   The Bacteria Foraging Optimization Algorithm      

During foraging of the real bacteria, locomotion is achieved by a set of tensile 
flagella. Flagella help an E.coli bacterium to tumble or swim, which are two basic 
operations performed by a bacterium at the time of foraging [7, 8]. When they 
rotate the flagella in the clockwise direction, each flagellum pulls on the cell. That 
results in the moving of flagella independently and finally the bacterium tumbles 
with lesser number of tumbling whereas in a harmful place it tumbles frequently 
to find a nutrient gradient. Moving the flagella in the counterclockwise direction 
helps the bacterium to swim at a very fast rate. In the above-mentioned algorithm 
the bacteria undergoes chemotaxis, where they like to move towards a nutrient 
gradient and avoid noxious environment. Generally the bacteria move for a longer 
distance in a friendly environment. Figure 1 depicts how clockwise and counter 
clockwise movement of a bacterium take place in a nutrient solution. 

When they get food in sufficient, they are increased in length and in presence of 
suitable temperature they break in the middle to from an exact replica of itself. 
This phenomenon inspired Passino to introduce an event of reproduction  
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Fig. 1 Swim and tumble of a bacterium 

in BFOA. Due to the occurrence of sudden environmental changes or attack, the 
chemotactic progress may be destroyed and a group of bacteria may move to some 
other places or some other may be introduced in the swarm of concern. This con-
stitutes the event of elimination-dispersal in the real bacterial population, where all 
the bacteria in a region are killed or a group is dispersed into a new part of the 
environment. 

Now suppose that we want to find the minimum of )(J θ where pℜ∈θ (i.e. 

θ is a p-dimensional vector of real numbers), and we do not have measurements 

or an analytical description of the gradient )(J θ∇ . BFOA mimics the four prin-

cipal mechanisms observed in a real bacterial system: chemotaxis, swarming,  
reproduction, and elimination-dispersal to solve this non-gradient optimization 
problem. A virtual bacterium is actually one trial solution (may be called a search-
agent) that moves on the functional surface (see Figure 2) to locate the global  
optimum. 

Let us define a chemotactic step to be a tumble followed by a tumble or a tum-
ble followed by a run. Let j be the index for the chemotactic step. Let k be the in-
dex for the reproduction step. Let l be the index of the elimination-dispersal event. 
Also let 

    p:  Dimension of the search space, 
          S:  Total number of bacteria in the population, 

  Nc : The number of chemotactic steps, 
  Ns:  The swimming length. 
  Nre : The number of reproduction steps, 
  Ned : The number of elimination-dispersal events, 
  Ped :  Elimination-dispersal probability,  
  C (i): The size of the step taken in the random direction specified by the 
tumble. 

Counter 
clockwise 
rotation 

TUMBLE 

 Clockwise rotation 

SWIM 
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Fig. 2 A bacterial swarm on a multi-modal objective function surface 

Let },...,2,1|),,({),,( SilkjlkjP i == θ represent the position of each mem-
ber in the population of the S bacteria at the j-th chemotactic step, k-th reproduc-
tion step, and l-th elimination-dispersal event. Here, let ),,,( lkjiJ  denote the cost 
at the location of the i-th bacterium pi lkj ℜ∈),,(θ  (sometimes we drop the indi-
ces and refer to the i-th bacterium position as iθ ). Note that we will interchangea-
bly refer to J as being a “cost” (using terminology from optimization theory) and 
as being a nutrient surface (in reference to the biological connections). For actual 
bacterial populations, S can be very large (e.g., S =109), but p = 3. In our com-
puter simulations, we will use much smaller population sizes and will keep the 
population size fixed. BFOA, however, allows p > 3 so that we can apply the 
method to higher dimensional optimization problems. Below we briefly describe 
the four prime steps in BFOA. 

i)    Chemotaxis: This process simulates the movement of an E.coli cell through 
swimming and tumbling via flagella. Biologically an E.coli bacterium can 
move in two different ways. It can swim for a period of time in the same  
direction or it may tumble, and alternate between these two modes of opera-

tion for the entire lifetime. Suppose ),,( lkjiθ represents i-th bacterium at  

j-th chemotactic, k-th reproductive and l-th elimination-dispersal step. )(iC  

is the size of the step taken in the random direction specified by the tumble 
(run length unit). Then in computational chemotaxis the movement of the 
bacterium may be represented by                 

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ θθ ,                               (1) 

where Δ  indicates a vector in the random direction whose elements lie in [-1, 1].  

2θ  
1θ  
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ii)  Swarming: An interesting group behavior has been observed for several 
motile species of bacteria including E.coli and S. typhimurium, where intri-
cate and stable spatio-temporal patterns (swarms) are formed in semisolid 
nutrient medium. A group of E.coli cells arrange themselves in a traveling 
ring by moving up the nutrient gradient when placed amidst a semisolid 
matrix with a single nutrient chemo-effecter. The cells when stimulated by 
a high level of succinate, release an attractant aspertate, which helps them 
to aggregate into groups and thus move as concentric patterns of swarms 
with high bacterial density. The cell-to-cell signaling in E. coli swarm may 
be represented by the following function. 
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 (2) 

          where )),,(,( lkjPJ cc θ is the objective function value to be added  

to the actual objective function (to be minimized) to present a time varying 
objective function,  S is the total number of bacteria, p is the number  
of variables to be optimized, which are present in each bacterium  
and T

p ][ ,...,2,1 θθθθ =  is a point in the p-dimensional search domain. 

repellantrepellantattractantaatractant ,,, whwd  are different coefficients that should 

be chosen properly [1, 9]. 
iii) Reproduction: The least healthy bacteria eventually die while each of the 

healthier bacteria (those yielding lower value of the objective function) 
asexually split into two bacteria, which are then placed in the same loca-
tion. This keeps the swarm size constant. 

 iv) Elimination and Dispersal: Gradual or sudden changes in the local envi-
ronment where a bacterium population lives may occur due to various rea-
sons e.g. a significant local rise of temperature may kill a group of bacteria 
that are currently in a region with a high concentration of nutrient gradients. 
Events can take place in such a fashion that all the bacteria in a region are 
killed or a group is dispersed into a new location. To simulate this phe-
nomenon in BFOA some bacteria are liquidated at random with a very 
small probability while the new replacements are randomly initialized over 
the search space. 

The pseudo-code as well as the flow-chart (Figure 3) of the complete algorithm is 
presented below:  
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The BFOA Algorithm 

Parameters: 

[Step 1] Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i)(i=1,2…S), iθ .  
 
Algorithm: 
 

[Step 2] Elimination-dispersal loop: l=l+1  
 

[Step 3] Reproduction loop: k=k+1 
 

[Step 4] Chemotaxis loop: j=j+1 
        [a] For i =1,2…S take a chemotactic step for bacterium i as follows.  
        [b] Compute fitness function, J (i, j, k, l). 

Let, )),,(),,,((),,,(),,,( lkjPlkjJlkjiJlkjiJ i
cc θ+= (i.e. add 

on the cell-to cell attractant–repellant profile to simulate the swarming 
behavior)  

   where, Jcc is defined in (2). 
 

[c] Let Jlast=J (i, j, k, l) to save this value since we may find a better cost via 
a run. 

[d] Tumble: generate a random vector pi ℜ∈Δ )( with each element 

,,...,2,1),( pmim =Δ  a random number on [-1, 1]. 

[e] Move: Let 

      
)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ θθ            

          This results in a step of size )(iC in the direction of the tumble for bacte-

rium i. 

[f] Compute J ),,1,( lkji + and let 

)),,1(),,,1((),,,(),,1,( lkjPlkjJlkjiJlkjiJ i
cc +++=+ θ . 

[g] Swim 
   i) Let m=0 (counter for swim length). 

ii) While m< sN (if have not climbed down too long). 

 • Let m=m+1. 
    • If J <+ ),,1,( lkji Jlast ( if doing better), let Jlast = J ),,1,( lkji + and let 

        
)()(
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   And use this ),,1( kjji +θ  to compute the new J ),,1,( lkji + as we 

did in [f] 

                • Else, let m= sN . This is the end of the while statement.  

[h] Go to next bacterium (i+1) if Si ≠ (i.e., go to [b] to process the next 
bacterium). 
 

[Step 5] If cNj < , go to step 4. In this case continue chemotaxis since the life of 

the bacteria is not over. 
 
[Step 6] Reproduction: 
              [a]  For the given k and l, and for each Si ,...,2,1= , let 

∑
+

=

=
1

1

),,,(
cN

j

i
health lkjiJJ                                                (3) 

be the health of the bacterium i (a measure of how many nutrients it 
got over its lifetime and how successful it was at avoiding noxious 
substances). Sort bacteria and chemotactic parameters )(iC in order 

of ascending cost healthJ (higher cost means lower health). 

              [b]  The rS  bacteria with the highest healthJ values die and the remaining 

rS  bacteria with the best values split (this process is performed by 

the copies that are made are placed at the same location as their par-
ent). 

 
[Step 7] If reNk < , go to step 3. In this case, we have not reached the number of 

specified   reproduction steps, so we start the next generation of the 
chemotactic loop. 

 
[Step 8] Elimination-dispersal: For Si ...,2,1=  with probability edP , eliminate 

and disperse each bacterium (this keeps the number of bacteria in the 
population constant). To do this, if a bacterium is eliminated, simply dis-
perse another one to a random location on the optimization domain. 
If edNl < , then go to step 2; otherwise end. 

In Figure 4 we illustrate the behavior of a bacterial swarm on the constant cost 

contours of the two dimensional sphere model: 2
2

2
121 xx)x,x(f += . Constant 

cost contours are curves in 21 xx − plane along which 

constant=+= 2
2

2
121 ),( xxxxf . 
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Fig. 3 Flowchart of the Bacterial Foraging Algorithm 

3   Analysis of the Chemotactic Dynamics in BFOA 

Let us consider a single bacterium cell that undergoes chemotactic steps according 
to (1) over a single-dimensional objective function space. Since each dimension in 
simulated chemotaxis is updated independently of others and the only link be-
tween the dimensions of the problem space are introduced via the objective func-
tions, an analysis can be carried out on the single dimensional case, without loss of 
generality. The bacterium lives in continuous time and at the t-th instant its posi-
tion is given by )(tθ . Next we list a few simplifying assumptions that have been 

considered for the sake of gaining mathematical insight.  

i) The objective function )(θJ is continuous and differentiable at all points in the 

search space.  
The function is uni-modal in the region of interest and its one and only optimum 

(minimum) is located at 0θθ = . Also 0)( ≠θJ for 0θθ ≠ . 

ii) The chemotactic step size C is smaller than 1 (Passino himself took 0.1=C  
in [8]). 
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Fig. 4 Convergence behavior of virtual bacteria on the two-dimensional constant cost con-
tours of the sphere model 

iii) The analysis applies to the regions of the fitness landscape where gradients of 
the function are small i.e. near to the optima. 

3.1   Derivation of Expression for Velocity 

Now, according to BFOA, the bacterium changes its position only if the modified 
objective function value is less than the previous one i.e. )(θJ > )( θθ Δ+J  
i.e. )(θJ - )( θθ Δ+J  is positive. This ensures that bacterium always moves in 
the direction of decreasing objective function value. A particular iteration starts by 
generating a random number, which assumes only two values with equal prob-
abilities. It is termed as the direction of tumble and is denoted by Δ . It can assume 
only two values 1 or –1 with equal probabilities. For one-dimensional optimiza-
tion problem Δ  is of unit magnitude. The bacterium moves by an amount of ΔC  
if objective function value is reduced for new location. Otherwise, its position will 
not change at all. Assuming uniform rate of position change, if the bacterium 
moves ΔC  in unit time, its position is changed by ))(( tC ΔΔ  in tΔ sec. It  
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decides to move in the direction in which concentration of nutrient increases or in 
other words objective function decreases i.e. 0)()( >Δ+− θθθ JJ . Otherwise 

it remains immobile. We have assumed that tΔ is an infinitesimally small positive 
quantity, thus sign of the quantity )()( θθθ Δ+− JJ  remains unchanged if tΔ di-

vides it. So, bacterium will change its position if and only if 
t

JJ

Δ
Δ+− )()( θθθ

 

is positive. This crucial decision making (i.e. whether to take a step or not) activity 
of the bacterium can be modeled by a unit step function (also known as Heaviside 
step function [10, 11]) defined as,  

                                                 1)( =xu ,  if x > 0; 

                                              ,0=  otherwise.                                            (3) 

Thus, ))(.).(
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( tC
t
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u ΔΔ

Δ
Δ+−=Δ θθθθ , where value of θΔ  is 0  or 

))(( tC ΔΔ  according to value of the unit step function. Dividing both sides of 

above relation by tΔ we get,  

                                   

                          Δ
Δ

−Δ+−=
Δ
Δ

⇒ .]
)}()({

[ C
t

JJ
u

t

θθθθ
                   (4) 

          Velocity is given by, ].}.
)()(

{[
00

Δ
Δ

−Δ+−=
Δ
Δ=

→Δ→Δ
C

t

JJ
uLim

t
LimV

tt
b

θθθθ
 

                 ].}.
)()(

{[
0

Δ
Δ
Δ

Δ
−Δ+−=⇒

→Δ
C

t

JJ
uLimV

t
b

θ
θ

θθθ
 

as 0→Δ t makes 0→Δθ , we may write, 
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Again, )(xJ is assumed to be continuous and differentiable. 

θ
θθθ

θ Δ
−Δ+

→Δ

)()(
0

JJ
Lim  is the value of the gradient at that point and may be 

denoted by 
θ
θ

d

dJ )(
 or G . Therefore we have:                                                      

Δ−= CGVuV bb )(                                                     (5) 

where, ==
θ
θ

d

dJ
G

)(
 gradient of the objective function at θ. 
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In (5) argument of the unit step function is bGV− . Value of the unit step func-

tion is 1 if G and bV are of different sign and in this case the velocity is ΔC . 

Otherwise, it is 0  making bacterium motionless. So (5) suggests that bacterium 
will move the direction of negative gradient. Since the unit step function )(xu has 

a jump discontinuity at 0=x , to simplify the analysis further, we replace 
)(xu with the continuous logistic function )(xφ , where 

                                         
kxe

x −+
=

1

1
)(φ                                                        

We note that,               =)(xu  =
∞→

)(xLt
k

φ
∞→k

Lt
kxe−+1

1
                                (6) 

Figure 5 illustrates how the logistic function may be used to approximate the 
unit step function used for decision-making in chemotaxis. For analysis purpose k 
cannot be infinity. We restrict ourselves to moderately large values of k (say k = 
10) for which )(xφ fairly approximates )(xu . Thus, for moderately high values 

of k )(xφ fairly approximates ).(xu Hence from (5),  

bkGVb
e

C
V

+
Δ=

1
                                                   (7) 

 

 
Fig. 5 The unit step and the logistic functions 

According to assumptions (ii) and (iii), if C and G are very small and k ~10, 

then also we may have | |bkGV <<1.In that case we neglect higher order terms  

in the expansion of bkgve and have b
kgv kGVe b +≈ 1 . Substituting it in (7) we 

obtain,  
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After some manipulation we have,  
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Equation (9) is applicable to a single bacterium system and it does not take into 
account the cell-to-cell signaling effect. A more complex analysis for the two-
bacterium system involving the swarming effect has been included at the appen-
dix. It indicates that, a complex perturbation term is added to the dynamics of each 
bacterium due to the effect of the neighboring bacteria cells. However, the term 
becomes negligibly small for small enough values of C (~0.1) and the dynamics 
under these circumstances get practically reduced to that described in equation (9). 
In what follows, we shall continue the analysis for single bacterium system for 
better understanding of the chemotactic dynamics.  

3.2   Experimental Verification of Expression for Velocity 

Characteristic equation of chemotaxis (9) represents the dynamics of bacterium 
taking chemotactic steps. In order to verify how reliably the equation represents 
the motion of the virtual bacterium compare results obtained from (10) with that 
of according to BFOA. First the equation is expressed in iterative form, which is,  
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where n is the iteration index. The tumble vector is also a function of iteration 
count (i.e. chemotactic step number) i.e. it is generated repeatedly for successive 

iterations. We have taken 2)( θθ =J  as objective function for this experimenta-

tion. Bacterium was initialized at –2 i.e. 2)0( −=θ and C is taken as 0.2.  Gradi-

ent of )(xf is x2 . Therefore )1( −nG  may be replaced by )1(2 −nθ .Finally 

for this specific case we get,  

2

)(
)1()

4
1()(

2 nC
n

kC
n

Δ+−−= θθ                          (11)                      

We compute values of )(nθ for successive iterations according to above iterative 

relation. Also values of positions are noted following guidelines of BFOA. With 
current position is changed by ΔC  if objective function value decreases for new 
position. Results have been presented in Figure 6. Figure 6 (a) shows position in 
successive iteration according to BFOA and as obtained from (11). Here also we 
have assumed position of bacterium changes linearly between two consecutive 
iterations. Mismatch between actual and predicted values is also shown. In Figure 
6 (b) actual and predicted values of velocity is shown. Velocity is assumed to be 
constant between two successive iterations. According to BFOA magnitude of 
velocity is either C (0.2 in this case) or 0. Difference between actual and pre-
dicted velocity is shown as error. Time lapsed between two consequent iterations 
is spent for computation and is termed as unit time. This may be perceived as the 
time required by a bacterium to measure nutrient content of a new point on fitness 
landscape. Actually it is the time taken by the processor to perform numerical 
computations. 

3.3   Chemotaxis and the Classical Gradient Decent Search 

From expression (9) of Section 3.1, we get 

28

2 Δ+−= C
G

kC
Vb

  // βαθ +−=⇒ G
dt

d                              (12) 

where /α is 
8

2kC− and /β  is
2

ΔC . The classical gradient descent search algo-

rithm is given by the following dynamics in single dimension [12]: 

βαθ +−= G
dt

d
.                                                   (13) 

where, α  is the learning rate and β   is the momentum. Similarity between equa-

tions (12) and (13) suggests that chemotaxis may be considered a modified gradi-

ent descent search, where /α , a function of chemotactic step-size can be identified 
as the learning rate parameter. 
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(a) Graphs showing actual, predicted positions of bacterium and error in estimation over 
successive iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                
 
 
                                                

(b) Similar plots for velocity of the bacterium. 

Fig. 6 Comparison between actual and predicted motional state of the bacterium 
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Already we have discussed that magnitude of gradient should be small within 
the region of our analysis. For chemotaxis of BFOA, when G becomes very mall, 

the gradient descent term G/α of equation (12) becomes ineffective. But the ran-

dom search term 
2

ΔC
 plays an important role in this context. From equation (12), 

considering 0→G , we have 

0
2

. ≠Δ= C

dt

dθ
                                                (14)  

So there is a convergence towards actual minima. The random search or momen-
tum term 

2
ΔC  in the RHS of equation (13) provides an additional feature to the 

classical gradient descent search. When gradient becomes very small, the random 
term dominates over   gradient decent term and the bacterium changes its position. 
But random search term may lead to change in position in the direction of increas-
ing objective function value. If it happens then again magnitude of gradient in-
creases and dominates the random search term.  

3.4   Oscillation Problem: Need for Adaptive Chemotaxis 

If magnitude of the gradient decreases consistently, near the optima or very close 

to the optima G/α  of expression (12) becomes comparable to β . Then gradually 

β  becomes dominant. When
2

|
2

|||||,0||
CC

dt

d
G =Δ=≈→ βθ  Q 1|| =Δ . Let us 

assume the bacterium has reached close to the optimum. But since we obtain 

,
2

||
C

dt

d =θ the bacterium does not stop taking chemotactic steps and oscillates 

about the optima.  This crisis can be remedied if step size C is made adaptive ac-
cording to the following relation, 
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|)(|

|)(|

θ
λλθ

θ

J
J

J
C

+
=

+
= ,                                         (15)                                 

where λ is a positive constant. Choice of a suitable value for λ has been discussed 
in the next subsection. Here we have assumed that the global optimum of the cost 
function is 0. Thus from (25) we see, if 0)( →θJ , then 0→C . So there would 

be no oscillation if the bacterium reaches optima because random search term van-
ishes as C 0→ .  The functional form given in equation (15) causes C to vanish 
nears the optima. Besides, it plays another important role described below. From 

(15), we have, when )(θJ is large 0
|)(|
→

θ
λ

J
 and consequently 1→C .  
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The adaptation scheme presented in equation (15) has an important physical 
significance. If magnitude of cost function is large for an individual bacterium, it 
is in the vicinity of noxious substance.  It will then try to move to a place with 
better nutrient concentration by taking large steps.  On the other hand the bacte-
rium, when in nutrient rich zone i.e. with small magnitude of the objective func-
tion value, tries to retain its position. Naturally, its step size becomes small. 

The BFOA is made adaptive according to the above rule and its performance 
improved with respect to speed of convergence, quality of solution and rate of 
success rate. 

3.5   A Special Case  

If the optimum value of the objective function is not exactly zero, step-size 
adapted according to (15) may not vanish near optima. Step-size would shrink if 
the bacterium comes closer to the optima, but it may not approach zero always. To 
get faster convergence for such functions it becomes necessary to modify the ad-
aptation scheme. Use of gradient information in the adaptation scheme i.e. making 
step-size a function of the function-gradient (say )),(( GJCC θ= ) may not be 

practical enough, because in real-life optimization problems, we often deal with 
discontinuous and non-differentiable functions. In order to make BFOA a general 
black-box optimizer, our adaptive scheme should be a generalized one performing 
satisfactorily in these situations too.   Therefore to accelerate the convergence un-
der these circumstances, we propose an alternative adaptation strategy in the fol-
lowing way: 

λθ
θ

+−
−

=
best

best

JJ

JJ
C

)(

)(
                                              (16)                                         

bestJ  is the objective function value for the globally best bacterium (one with 

lowest value of objective function). bestJJ −)(θ  is the deviation in fitness 

value of  an individual bacterium from global best. Expression (16) can be rear-
ranged to give, 

bestJJ

C

−
+

=

)(
1

1

θ
λ .                                          (17)                                         

If a bacterium is far apart from the global best, bestJJ −)(θ would be large mak-

ing 0
)(

1 →
−

≈
bestJJ

C
θ

λ
Q . On the other hand if another bacterium is very 

close to it, step size of that bacterium will almost vanish, because bestJJ −)(θ  
becomes small and denominator of (17) grows very large.  The scenario is  
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Fig. 7 An objective function with optimum value much greater than zero and a group of 
seven bacteria are scattered over the fitness landscape. Their step height is also shown 

depicted in Figure 7. BFOA with adaptive scheme of equation (15) is referred as 
ABFOA1 and the BFOA with adaptation scheme described in (17) is referred as 
ABFOA2. 

Figure 7 shows how the step-size becomes large as objective function value be-
comes large for an individual bacterium. The bacterium with better function value 
tries to take smaller step and to retain its present position. For best bacterium of 

the swarm bestJJ −)(θ  is 0 . Thus, from (17) its step-size is λ
1 , which is quite 

small. The adaptation scheme bears a physical significance too. A bacterium lo-
cated at relatively less nutrient region of fitness landscape will take large step 
sizes to attain better fitness. Whereas, another bacterium located at a location, best 
in regard to nutrient content, is unlikely to move much. 

In real world optimization problems optimum value of objective function is 
very often found to be zero. In those cases adaptation scheme of (15) works satis-
factorily. But for functions, which do not have a moderate optimum value, (16) 
should be used for better convergence. Note that neither of two proposed schemes 
contains derivative of objective function so they can be used for discontinuous and 
non-differentiable functions as well. In [13], Dasgupta et al. have established the 
efficacy of the adaptive BFO variants by comparing their performances with clas-
sical BFOA, its other state-of-the-art variants, a recently proposed variant of PSO 
and a standard real-coded GA on numerical benchmarks as well as one engineer-
ing optimization problem.  
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4   Analysis of the Reproduction Step in BFOA 

This section presents a simple mathematical analysis of the reproduction operator 
of BFOA for a two-bacterium system [14]. Let us consider a small population of 
two bacteria that sequentially undergoes the four basic steps of BFOA over a one-
dimensional objective function. The bacteria live in continuous time and at the t-th 
instant its position is given by )(tθ . Below we list a few assumptions that were 

considered for the sake of gaining mathematical insight into the dynamics of re-
production.  
 
Assumptions: 
 

i) The objective function J(θ) is continuous and differentiable at all points 
in the search space. 

ii) The analysis applies to the regions of the fitness landscape where gradi-
ents of the function are small i.e., near to the optima. The region of  

fitness landscapes between 1θ and 2θ is monotonous at the time of  

reproduction. 
iii) During reproduction, two bacteria remain close to each other and one  

of them must not superpose on another (i.e. 0|| 12 →−θθ may happen 

due to reproduction but 12 θθ ≠ . Suppose P and Q represent the respec-

tive positions of the two bacteria as shown in fig.6). At the start of  

reproduction 1θ and 2θ  remain apart from each other but as the process 

progresses they come close to each other gradually. 
 
iv) The bacterial system lives in continuous time. 

4.1   Analytical Treatment 

In our two bacterial system, )(1 tθ  and )(2 tθ represent the position of the two 

bacteria at time t and )(),( 21 θθ JJ  denote the cost function values at those posi-

tions respectively. During reproduction, the virtual bacterium with a relatively 
larger value of the cost function (for a minimization problem) is liquidated while 
the other is split into two. These two offspring bacteria start moving from the 
same location. Hence in effect, through reproduction the least healthy bacteria 
shift towards the healthier bacteria. Health of a bacterium is measured in terms of 
the accumulated cost function value, possessed by the bacterium until that time 

instant. The accumulated cost may be mathematically modeled as dttJ
t

))((
0

1∫ θ . 

For a minimization problem, higher accumulated cost represents that a bacterium  
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Fig. 8 A two-bacterium system on arbitrary fitness landscape 

did not get as many nutrients during its lifetime of foraging and hence is not as 
“healthy” and thus unlikely to reproduce .The two-bacterial system working on a 
single-dimensional fitness landscape has been depicted in Figure 8. 

To simulate the bacterial reproduction we have to take a decision on which bac-
terium will split in next generation and which one will die. This decision may be 
modeled with the help of the well-known unit step function )(xu defined in equa-

tion (3). In what follows, we shall denote )(1 tθ and )(2 tθ as 1θ  and 2θ  respec-

tively. Now if we consider that 1θΔ is the infinitesimal displacement 

( 01 →Δθ ) of the first bacterium in infinitesimal time tΔ )0( →Δt towards 

the second bacterium in favorable condition i.e. when the second is healthier than 

the first one, then the instantaneous velocity of the first one is given by, 
tΔ

Δ 1θ
. 

Now when we are trying to model reproduction we assume the instantaneous ve-
locity of the worse bacterium to be proportional with the distance between the two 
bacteria, i.e. as they come closer their velocity decreases but this occurs unless we 
incorporate the decision making part. So, if the first bacterium is the worse one 
then,  

             )( 12
1 θθθ −∞

Δ
Δ

t
                                                      

⇒  )( 12
1 θθθ −=

Δ
Δ

k
t

                [Where, k  is the proportionality constant] 
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⇒ )().(1 1212
1 θθθθθ −=−=

Δ
Δ

t
                                                  (18)                      

                                                                              [If we assume that 1=k  1sec− ] 

Since we are interested in modeling a dynamics of the reproduction operation, the 
decision making i.e. whether one of the bacteria will move towards the other, can 
not be discrete i.e. it is not possible to check straightaway whether the other bacte-

rium is at a better position or not. So a bacterium (suppose 1θ ) will be checking 

whether a position situated at an infinitesimal distance from 1θ  is healthier or not 

and then it will move (see Figure 9). The health of first bacterium is given by the 

integral of )( 1θJ from zero to time t  and the same for the differentially placed 

position is given by the integral of )( 11 θθ Δ+J  from zero to time t . Then we may 

model the decision making part with the unit step function in the following way: 

)].()()([ 12

0

11

0

1
1 θθθθθθ

−Δ+−=
Δ

Δ
∫∫
tt

dtJdtJu
t

               (19) 

Similarly, when we consider the second bacterium, we get, 

)].()()([ 21

0

22

0

2
2 θθθθθθ

−Δ+−=
Δ

Δ
∫∫
tt

dtJdtJu
t

                (20) 

In equation (19), dtJ
t

)(
0

1∫ θ represents the health of the first bacterium at the time 

instant t and dtJ
t

)( 1

0

1 θθ Δ+∫  represents the health corresponding to )( 11 θθ Δ+  

at the time instant t. We are going to carry out calculations with the equation for 
bacterium 1 only, as the results for other bacterium can be obtained in a similar 
fashion.  

Fig. 9 Change of position of the 
bacteria during reproduction 
 

11 θθ Δ+

2θ
11 θθ Δ+

1θ

Time instant 1 

Time instant 2 

2θ

1θ

θ

θ
 

Since we are considering only the monotonous part of any function, so if 2θ is 

at a better position, then any position, in-between 1θ and 2θ , has a lesser objective 

function value compared to 1θ . So we may conclude )( 11 θθ Δ+J is less 
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than )( 1θJ . In that case we can imagine that dt.)(J
t

∫ θΔ+θ
0

11
is less than 

∫ θ
t

dt).(J
0

1
as t  is not too high, the functional part under consideration is mo-

notonous and change of 11 θθ d+ with respect to t  is same as that of 1θ .  We re-

write the equation (19) corresponding to bacterium 1 as,        
 

)](
)()(

[ 12

0

1111 θθθθθθ
−

Δ
−Δ+

−=
Δ

Δ
⇒ ∫ dt

t

JJ
u

t
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[Q 0>Δt . We know for a positive constant tΔ , )()( xu
t

x
u =

Δ
as x and 

t

x

Δ
 are of same sign and unit step function depends only upon sign of the  

argument. ] 
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Again, )(xJ is assumed to be continuous and differentiable. 

1

111

0

)()(

θ
θθθ

θ Δ
−Δ+

→Δ

JJ
Lim is the value of the gradient at that point and may be 

denoted by 
1

1)(

θ
θ

d

dJ  or 1G .  So we write,                                                          

)].()([ 12
1

0 1

1 θθθ
θ

θ
−−=⇒ ∫ dt
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d

d

dJ
u
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d t

[Where
dt

d 1θ
is the instantaneous 

                                                                         velocity of the  first bacterium] 

)].([ 121

0

11 θθ −−=⇒ ∫ dtvGuv
t

                                                                      (22) 

[Where 
dt

d
v 1

1

θ=  and 1G  is the gradient of J at 1θθ = .] 

Now in equation (19) we have not yet considered the fact that the event of repro-
duction is taking place at t=1 only. So we must introduce a function of  
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Fig. 10 Function r (t) and g(t) 

time ))1((*2)( 2−−= tutr (unit step) ( ))1(( 2−− tu is multiplied with 2 for  

getting 1)( =tr , not 0.5, when t=1) in product with the right hand side of equa-

tion (19). This provides a sharp impulse of strength 1 unit at time t = 1. Now it is 
well known that )(xu may be approximated with the continuous logistic func-

tion )(xφ , where 
kxe

x −+
=

1

1
)(φ .                              

We note that,  

=)(xu  =
∞→

)(xLt
k

φ
∞→k

Lt
kxe−+1

1
                                 (23) 

Following this we may write: 

                           2)1(

2

1

2
))1((*2)(

−+
≈−−=

tke
tutr  

For moderately large value of k, since 1→t , we can have 1)1( 2 <<−tk and 

thus 2)1( )1(1
2

−+≈− tke tk . Using this approximation of the exponential term 

we may replace the unit step function )(tr  with another continuous function g(t) 

where 

                               
2)1(2

2
)(

−+
=

tk
tg ,              (we can take k = 10)  

)(tr , Approximated as 

2)1(2

2
)(

−+
=

tk
tg  

 

Impulse function at t=1, 

which is actually  

=)(tr ))1((*2 2−− tu  

Time (t)
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which is not an impulsive function just at t = 1 rather a continuous function as 
shown in Figure 10. Higher value of k will produce more effective result. Due to 

the presence of this function we see that ),.( 1
1 dt

d
eiv

θ
will be maximum at t =1 

and decreases drastically when we move away from t =1 in both sides. 
So equation (22) is modified and becomes, 

2121

0

11 )1(2

2
).]([

−+
−−= ∫ tk

dtvGuv
t

θθ                     (24) 

For ease of calculation we denote the term within the unit step function as 

dtvGM
t

1

0

1∫−= to obtain, 

2121 )1(2

2
).)((

−+
−=

tk
Muv θθ                                (25) 

Since
Me

Mu αα −∞→ +
=

1

1
Lt  )(  

We take a smaller value of α  for getting into the mathematical analysis (say 

10=α ). Since, we have the region, under consideration with very low gradient 

and the velocity of the particle is low, (so product 11vG is also small enough), and 

the time interval of the integration is not too large (as the time domain under con-
sideration is not large), so we can write, by expanding the exponential part and 
neglecting the higher order terms: 

)1(1

1
)(

M
Mu

α−+
=  

            
)2/1(2

1

Mα−
=  

Putting this expression in equation (25) we get, 
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⇒                                               (26) 

                                                                      [Q 0|| 12 →−θθ but 0|| 12 ≠−θθ    

     alsoQ
2

Mα <<1, neglecting higher order terms, )
2

1()
2

1( 1 MM αα +≈− − ]      
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Now the equation given by (26) is true for all values possible values of t, so we 
can differentiate both sides of it with respect to t and get, 

dt

Md
tk

v
tkdt

d

dt

d
v

dt

dv
)(
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(27)             

Now, 11
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 [By putting the expression for M 

and applying the Leibniz theorem 
for differentiating integrals] 

So from (27), we get, 
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Putting 1
1 v

dt

d =θ
 and 2

2 v
dt

d =θ
 after some further manipulations (where  

we need to cancel out )( 12 θθ − , which we can do as 0|| 12 →−θθ towards  

the end of reproduction but never 0|| 12 ≠−θθ  according to assumption (iii)), 

we get,  
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Where, 
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The above equation is for the first bacterium and similarly we can derive the equa-
tion for the second bacterium, which looks like, 

                2
'2

2
'2 vQvP
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4.2   Physical Significance 

A possible way to visualize the effect of the dynamics presented in equations (28) 
and (29) is to see how the velocities of the bacteria vary over short time intervals 
over which the coefficients P and Q can be assumed to remain fairly constant. The 
velocity of a bacterium (which is at the better place) has been plotted over five 
short time intervals in Figure 11(P and Q are chosen arbitrarily in those intervals). 
Note that at the time of reproduction (t = 1) the graph is highly steep indicating 
sharp decrease in velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                
                                      

Fig. 11  Piece-wise change in velocity over small time intervals 

Now if we study the second term in the expression of Q from equation (28) i.e. 

the term 
))1)(2/(1(4

)(
2

121

−+
−
tk

G θθα
, as 01 →G , )( 12 θθ −  is also small and α  is 

not taken to be very large. At the denominator also we have got some divisors 
greater than 1. So the term becomes insignificantly small and all we can neglect it 
fromQ . In equation (29) also we can similarly neglect the 

term
))1)(2/(1(4

)(
2

212

−+
−
tk

G θθα
 from 'Q . Again we assume, the velocity of both the 

particles to be negative for the time being. So we can replace, || 11 vv −=  and  

 
 



48 S. Das et al. 
 

 

|| 22 vv −=  in Q and 'Q  in equations (28) and (29). After doing all this simpli-

fications for getting a better mathematical insight, equations (28) and (29) be-
come, 

1
2
1

1 QvPv
dt

dv −−= ,                                         (30) 

where, 
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where, 
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tk
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Now, for 12 θθ >  P  and Q are both positive. That means the first bacterium 

slows down very quickly. Whereas the second particle has 'P and 'Q (assuming 

the other term independent of )( 21 θθ − in 'Q is lesser than this) both negative. 

That means this bacterium accelerates. This acceleration is hopefully towards the 
first bacterium. 

 

Fig. 12 Initial and final positions of the two bacteria (after one chemotactic lifetime) 

2
iP  

2
fP  1

iP  

1
fP

=k
iP Initial position of k -th bacterium. 

=k
fP Final position of k-th bacterium  

           after one chemotactic lifetime. k=1,2. 
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Since the rate of change of velocity of bacterium 1 and 2 are dependent on 

)( 12 θθ −  and )( 21 θθ − respectively, it is evident that the distance between the 

two bacteria guides their dynamics. If we assume, 12 θθ >  and they don’t traverse 

too long, the first bacterium is healthier (less accumulated cost) than the second 
one, when the function is decreasing monotonically in a minimization problem 
and also the time rate change of first bacterium is less than that of the second (as 

depicted in Figure 12 clearly, where we take 2)( θθ =J ).  

So at the time of reproduction, in a two bacteria system, the healthier bacterium 
when senses that it is in a better position compared to its fellow bacterium, it 
hopes that the optima might be very near so it slows down and its search becomes 
more fine-tuned. This can be compared with the real bacterium involved in forag-
ing. Whenever it senses that food might be nearby then it obviously slows down 
and searches that place thoroughly at cost of some time [15 - 17]. 

The second bacterium moves away from that place with a high acceleration 
quite naturally getting the information from the first bacterium that the fitter place 
is away from its present position. In biological system for grouped foraging when 
one member of the group share information from its neighbors it tries to move 
towards the best position found out by the neighboring members [15].  

Thus we see that reproduction was actually included in BFOA in order to facili-
tate grouped global search, which is explained from our small analysis.  

4.3   Avoiding Premature Convergence 

Again if we observe the bacterium at the better position more carefully we will be 
seeing, that this has a tendency to decelerate at a very high rate and it becomes at 
rest very quickly. Now when it is near the optima, we can conclude that as 

,∞→t 0→betterv (velocity of the better one). Thus as it reaches the optima it 

stabilize without any further oscillation. Thus reproduction helps the better bacte-
rium to stabilize at the optima. 

But the darker side of this fact lies in premature convergence i.e. the best bacte-
rium can converge towards a local optima and the search process gets disturbed. 
So we understand that at the start of search process reproduction can cause prema-
ture convergence but the same can lead to a stable system if applied near the 
global optima. So we suggest an adaptive scheme related to reproduction operator. 
The reproduction rate should be made adaptive and it should be increased gradu-
ally towards the end of this search process. This has been proved experimentally. 

5   Hybridization of BFOA with Other Approaches 

We have a handful of optimization algorithms for applying in practical problems 
but as we know from NFL (No Free Lunch theorem) [18] that no algorithm can 
perform satisfactorily well over every possible optimization problems. Some algo-
rithms are inspired by natural evolution whereas some are by natural flocking of 
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birds or swarming of bees. Some algorithm can have an extremely good local 
search behavior while some other can have a good global search property. This 
may be the reason why hybridization of different algorithms can give better per-
formance as compared to the parent algorithms. 

In 2007, Kim et al. proposed a hybrid approach involving genetic algorithm 
(GA) and BFOA for function optimization [19]. The proposed algorithm outper-
formed both GA and BFOA over a few numerical benchmarks and a practical PID 
tuner design problem. 

Biswas et al. coupled BFOA and PSO to develop a new algorithm called BSO 
(Bacterial Swarm Optimization) [20]. This algorithm provided some very good 
results when tested over a set of benchmark problems and a difficult engineering 
problem of spread spectrum radar poly-phase code design. BSO performs local 
search through the chemotactic movement operation of BFOA whereas a PSO 
operator accomplishes the global search over the entire search space. In this way it 
balances between exploration and exploitation, enjoying best of both the worlds. 
In BSO, after undergoing a chemo-tactic step, a PSO operator also mutates each 
bacterium. In this phase, the bacterium is stochastically attracted towards the 
globally best position found so far in the entire population at current time and also 
towards its previous heading direction. The PSO operator uses only the globally 
best position found by the entire population to update the velocities of the bacteria 
and eliminates term involving the personal best position as the local search in dif-
ferent regions of the search space is already taken care of by the chemo-tactic op-
erator of BFOA. 

The chemotaxis step of BFOA have been hybridized with another powerful op-
timization algorithm of current interest called the Differential Evolution (DE) [21] 
and gave rise to an algorithm known as CDE (Chemotactic Differential Evolution) 
[22]. Biswas et al. proved efficiency of this algorithm too on a set of optimization 
problems, both numerical benchmark and practical. In this algorithm a bacterium 
undergoes a differential mutation step just after one chemotaxis step and the rest is 
kept similar to that of the original BFOA algorithm. Thus each of the bacteria ex-
plores the fitness landscape more carefully.  

6   Applications of BFOA 

Ulagammai et al. applied BFOA to train a Wavelet-based Neural Network (WNN) 
and used the same for identifying the inherent non-linear characteristics of power 
system loads [23]. In [24], BFOA was used for the dynamical resource allocation 
in a multiple input/output experimentation platform, which mimics a temperature 
grid plant and is composed of multiple sensors and actuators organized in zones. 
Acharya et al. proposed a BFOA based Independent Component Analysis (ICA) 
[25] that aims at finding a linear representation of non-gaussian data so that the 
components are statistically independent or as independent as possible. The pro-
posed scheme yielded better mean square error performance as compared to a 
CGAICA (Constrained Genetic Algorithm based ICA). Chatterjee et al. reported  
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Table 1 A Summary of State-of-the-art research works on BFOA 

Area of research Sub-topic Researchers References 
Hybridization BFOA-GA, BFOA-PSO, 

BFOA-DE Hybridization 
Dong Hwa Kim, Jae Hoon 

Cho,  Ajith Abraham, 
Swagatam Das, Arijit Biswas, 

Sambarta Dasgupta,   

[19], [20], [22] 

Mathematical 
Analysis 

Chemotaxis, Reproduction, 
modeling in varying and 
dynamics environment 

Swagatam Das, Sambarta 
Dasgupta,  Arijit Biswas, Ajith 

Abraham, W. J. Tang, Q. H. 
Wu,  J. R. Saunders

[13], [14], [30], [31] 

Modification of 
BFOA 

Adaptive chemotactic step 
size, modified step size using 

Hybrid least square-Fuzzy 
Logic, advanced BFOA using 

fuzzy logic and clonal 
selection, BFOA in dynamic 
environments, BFOA with 

varying population, 
cooperative approach to 

BFOA 

Kevin M. Passino, Sambarta 
Dasgupta, Arijit Biswas, 

Swagatam Das, Ajith 
Abraham, Dong Hwa Kim, Jae 

Hoon Cho, S. Mishra, W. J 
Tang, Q H Wu, J R Saunders, 

Carlos Fernandes, Vitorino 
Ramos, Agostinho C. Rosa, 

Hanning Chen, Yunlong Zhu, 
Kunyuan Hu. 

[1], [9], [19], [29], 
[27], [28], [32], [37] 

Application in the 
field of electrical 
engineering and 

Control 

Optimization of real power 
loss and voltage stability and 

distribution static 
compensator, Harmonic 
estimation, Active power 

filter for load compensation, 
dynamic resource allocation 
in multi-zone temperature 

experimentation, PID 
controller design, 

S. Mishra, M. Tripathi, C.N. 
Bhende, L.L Lai, Mario A. 

Munoz, Jesus A. Lopez, 
Eduardo Caicedo,  Dong Hwa 

Kim 

[27], [28], [32], [33], 
[34] 

Filtering Problem Application of BFOA to 
extended Kalman filter based 
simultaneous localization and 

mapping problems 

Amitava Chatterjee, Fumitoshi 
Matsuno 

[26] 

Learning and 
Neural network 

problems 

Wavelet neural network 
training, Optimal learning of 

Neuro fuzzy structure, 
Parameter optimization of 
extreme learning machine 

M. Ulagammai, P. Venkatesh, 
P.S. Kannan, Narayan Prasad 
Padhy, D.H Kim, Jae-Hoon 

Cho, Dae-Jong Lee 

[23], [35],  

Pattern 
Recognition 

Circle detection with 
Adaptive BFOA, Independent 

component analysis 

Sambarta Dasgupta, Arijit 
Biswas, Swagatam Das, Ajith 

Abraham, D P Acharya, G 
Panda, S Mishra, Y V S Laxmi 

[36], [25] 

Scheduling 
Problem 

BFOA for job shop 
scheduling 

Chunguo Wu, Na Zhang, 
Jingqing Jiang, Jinhui Yang 

and Yanchun Liang

[38] 

 

an interesting application of BFOA in [26] to improve the quality of solutions for 
the extended Kalman Filters (EKFs), such that the EKFs can offer to solve simul-
taneous localization and mapping (SLAM) problems for mobile robots and 
autonomous vehicles. 

Tripathy and Mishra proposed an improved BFO algorithm for simultaneous 
optimization of the real power losses and Voltage Stability Limit (VSL) of a mesh 
power network [27]. In their modified algorithm, firstly, instead of the average 
value, the minimum value of all the chemotactic cost functions is retained for de-
ciding the bacterium’s health. This speeds up the convergence, because in the av-
erage scheme described by Passino [1], it may not retain the fittest bacterium for 



52 S. Das et al. 
 

 

the subsequent generation. Secondly for swarming, the distances of all the bacteria 
in a new chemotactic stage are evaluated from the globally optimal bacterium to 
these points and not the distances of each bacterium from the rest of the others, as 
suggested by Passino [1]. Simulation results indicated the superiority of the pro-
posed approach over classical BFOA for the multi-objective optimization problem 
involving the UPFC (Unified Power Flow Controller) location, its series injected 
voltage, and the transformer tap positions as the variables. Mishra and Bhende 
used the modified BFOA to optimize the coefficients of Proportional plus Integral 
(PI) controllers for active power filters [28]. The proposed algorithm was found to 
outperform a conventional GA with respect to the convergence speed. 

Mishra, in [29], proposed a Takagi-Sugeno type fuzzy inference scheme for  
selecting the optimal chemotactic step-size in BFOA. The resulting algorithm, 
referred to as Fuzzy Bacterial Foraging (FBF), was shown to outperform both 
classical BFOA and a Genetic Algorithm (GA) when applied to the harmonic es-
timation problem. However, the performance of the FBF crucially depends on the 
choice of the membership function and the fuzzy rule parameters [29] and there is 
no systematic method (other than trial and error) to determine these parameters for 
a given problem. Hence FBF, as presented in [29], may not be suitable for opti-
mizing any benchmark function in general. In Table 1 we summarize the current 
researches on different aspects and applications of BFOA. 

7   Conclusions 

Search and optimization problems are ubiquitous through the various realms of 
science and engineering. This chapter has provided a comprehensive overview of 
one promising real-parameter optimization algorithm called the Bacterial Foraging 
Optimization Algorithm (BFOA).  BFOA is currently gaining popularity due to its 
efficacy over other swarm and evolutionary computing algorithms in solving en-
gineering optimization problems. It mimics the individual as well as grouped for-
aging behavior of E.coli bacteria that live in our intestine. 

The chapter first outlines the classical BFOA in sufficient details. It then devel-
ops a simple mathematical model of the simulated chemotaxis operation of BFOA. 
With the help of this model it analyses the chemotactic dynamics of a single bacte-
rium moving over a one-dimensional fitness landscape. The analysis indicates that 
the chemotactic dynamics has some striking similarity with the classical gradient  
descent search although the former never uses an analytic expression of the  
derivative of the objective function. A problem of oscillations near the optimum is 
identified from the presented analysis and two adaptation rules for the chemotactic 
step-height have been proposed to promote the quick convergence of the  
algorithm near the global optimum of the search space. The chapter also provides 
an analysis of the reproduction step of BFOA for a two-bacterium system. The 
analysis reveals how the dynamics of reproduction helps in avoiding premature 
convergence.  

In recent times, a symbiosis of swarm intelligence with other computational  
intelligence algorithms has opened up new avenues for the next generation  
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computing systems. The chapter presents an account of the research efforts aiming 
at hybridizing BFOA with other popular optimization techniques like PSO, DE, 
and GA for improved global search and optimization. It also discusses the signifi-
cant applications of BFOA in diverse domains of science and engineering. The 
content of the chapter reveals that engineering search and optimization problems 
including those from the fields of pattern recognition, bioinformatics, and machine 
intelligence will find new dimensions in the light of swarm intelligence techniques 
like BFOA. 
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