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Abstract

The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that 
includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a 
major regulatory post-translational modification and is as widespread as phosphorylation. N-
Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from 
small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins 
can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-
amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified 
into different groups on the basis of their substrate specificity, and in spite of a very low primary 
sequence identity, GNAT proteins display a common and conserved fold. This Current Topic 
reviews the different classes of bacterial GNAT proteins, their functions, their structural 
characteristics, and their mechanism of action.
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Histone acetylation and aminoglycoside resistance caused by acetylation were both 
discovered 50 years ago.1–3 Even though both discoveries were reported within a year of 
each other, most early work focused on histone acetylation and its consequences with 
respect to gene regulation.4,5 With the development of high-resolution mass spectrometry 
and genome sequencing, it has become clear that acetylation of proteins has emerged as a 
major modiffer of their activities in eukaryotes and prokaryotes.6 Acetylation can, however, 
occur in both non-enzymatic and enzyme-catalyzed processes. This is due to the extremely 
exothermic nature of the acetylation reaction. Acetyl-CoA (AcCoA) has an acetyl transfer 
potential higher than the phosphoryl transfer potential of ATP, and the acetylated amide 
product is extremely stable and considerably more so than the phosphomonoester product of 
the kinases.7 Thus, the high intracellular concentration of acyl-CoA’s, including AcCoA, 
will nonenzymatically react with any protein lysine residue with a reduced pK value. It is 
thus important in defining the “acetylome” to ensure that the acetylated protein be generated 
enzymatically by the action of an acetyltransferase and deacetylated by an appropriate 
deacetylase and that there be a catalytic or structural phenotype associated with the 
modification. Without this, the likelihood is that the protein simply contains a lysine residue 
that is accessible and is in an environment that reduces its pK value.

The use of the term GNAT to describe N-acetyltransferases was first derived from the yeast 
GCN5, which was shown to be a histone acetyltransferase.4,8 However, the first GNAT 
member was described by Okamoto in 1965 as a bacterial aminoglycoside acetyltransferase 
conferring kanamycin and gentamicin antibiotic resistance.3 Many aminoglycoside 
acetyltransferases have since been characterized and are clinically one of the most common 
reasons for aminoglycoside resistance.9 The GNAT superfamily currently contains more 
than 100000 members found in eukaryotes, prokaryotes, and archea.10

Despite the fact that all the members of the GNAT superfamily possess a very low primary 
sequence identity, their structures display a particularly conserved fold.11,12 The core 
secondary elements of all GNAT structures consist of six or seven β-strands and four α-
helices (β0–β1–α1–α2–β2–β3–β4–α3–-β5–α4–β6) (Figure 1). The loop connecting β4 to α3, 
the pyrophosphate binding loop, appears as a characteristic structural feature of the GNAT 
superfamily, and the sequence is highly conserved between members (R/Q-X-X-G-X-A/
G).13 The pyrophosphate binding loop plays a central role in AcCoA binding because it 
forms several hydrogen bonds between a number of amide backbone nitrogens and the 
pyrophosphate group of AcCoA.11,12 Another distinctive feature found in most structures of 
the GNAT members is a “β-bulge” located on β4, breaking apart parallel β-strands β4 and 
β5, resulting in a V-like shape that serves as a binding site for AcCoA. The pantothenate 
“arm” of AcCoA interacts with the C-terminal end of β4, while there are few interactions 
observed between the adenine ring and the active site. Typically, GNAT proteins function as 
dimers in solution, although we will discuss examples in which a monomeric unit is 
composed of two fused GNAT domains.

All members of the GNAT superfamily catalyze bireactant reactions, and the 
acetyltransferase reaction can proceed via either a ping-pong or sequential mechanism.12 

There is a single example of a reaction occurring via a ping-pong kinetic mechanism. The 
yeast ESA1 is a member of the MYST subfamily of histone acetyltransferases, and there are 
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compelling structural and mutagenesis data that support the kinetic necessity of an 
acetylated enzyme intermediate (C304 in the case of ESA1).14 For all other GNAT 
superfamily members, sequential kinetic mechanisms have been observed. Once both 
substrates are bound, a residue located in the active site, typically an aspartate or glutamate, 
acts as a general base and deprotonates the amine prior to nucleophilic attack on the 
thioester carbonyl. Residues acting as a general base have been identified by site-directed 
mutagenesis studies, and many ternary complex structures have been determined in recent 
years.11,12 In some cases, the deprotonation step involves an intervening water molecule 
connecting the side chain of a general base to the amine via hydrogen bonding.15,16 Thus, 
with the exception of the MYST subfamily of histone acetyltransferases or those GNATs 
with an appropriately positioned active site cysteine, the sequential mechanism involving the 
formation of a ternary complex is observed in a majority of the cases.11,12

GNAT members can acetylate the amino group of a large range of substrates and so have 
been classified into three groups: (1) small molecule acetyltransferases, such as 
aminoglycosides and mycothiol; (2) peptide acetyltransferases such as the peptidoglycan 
that is part of the bacterial cell wall; and (3) protein acetyltransferases, for instance, the 
histone family. In this Current Topic, we will focus on the classes of GNAT commonly 
found in bacteria, because the histone acetyltransferases have been reviewed in detail.17–19

1. SMALL MOLECULES

1.1. Aminoglycosides N-Acetyltransferases

Amino-glycosides are broad-spectrum antibacterial compounds containing typically one 
aminocyclitol ring (the most common being 2-deoxystreptamine) linked by a glycosidic 
bond to one or more amino sugars (Figure 2). The first aminoglycoside to be discovered was 
streptomycin; it was isolated from Streptomyces griseus and originally used for the 
treatment of tuberculosis.20 Typically, aminoglycosides work synergistically with β-lactams 
or other antibiotics that enhance their uptake.21 More recently, aminoglycosides have also 
been investigated for the treatment of certain genetic disorders, for instance, cystic 
fibrosis22,23 or Duchenne muscular dystrophy,24,25 as well as HIV therapies.26–28 

Aminoglycosides inhibit protein translation in bacteria by binding to the 16S rRNA of the 
30S ribosome.29,30 The site of binding and mechanism of inhibition has been significantly 
clarified with the elucidation of the structures of 16S rRNA fragments and the 30S ribosome 
subunit with various bound AGs.31–37

Drug resistance to aminoglycosides emerged many decades ago. Several mechanisms have 
been identified, including mutation or methylation of certain 16S rRNA nucleotides 
involved in aminoglycoside binding, decreased aminoglycoside uptake, and chemical 
modification of aminoglycosides by aminoglycoside-modifying enzymes.38,39 Enzymatic 
modification is the most common and clinically relevant, although a combination of 
different mechanisms is sometimes observed.38–40 Three different classes of enzymes 
modify amino-glycosides: ATP-dependent phosphotransferases (O-phosphorylation, APH), 
ATP-dependent nucleotidyltransferases (O-nucleotidylation, ANT), and acetyl-CoA-
dependent N-acetyl-transferases (N-acetylation, AAC), which are members of the GNAT 
family.
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Aminoglycoside N-acetyltransferases were the first members of the GNAT family to be 
identified.3 Shaw et al. have established a nomenclature for describing the different 
aminoglycoside N-acetyltransferases.41 The enzymes are abbreviated by a three-letter code, 
AAC, followed by a number in parentheses that indicates the position of the acetylated 
amino group (Figure 2). A Roman numeral distinguishes between the different resistance 
profiles, and a lowercase letter specifically identifies the associated gene. Four types of 
AACs have been identified to date depending on the site of modification: AAC(1) when the 
1-NH2 is acetylated, AAC(3), AAC(2′), and AAC(6′). Examples in each category of AAC 
will be provided in this Current Topic.

AAC(1) was first identified in Escherichia coli (E. coli) and Actinomycete strains.42,43 On 
the basis of high-performance liquid chromatography analysis, Lovering et al. demonstrated 
that E. coli AAC(1) could catalyze the transfer of one acetyl group from AcCoA to the N1 
position of apramycin, lividomycin, paromomycin, and butirosin.42 Additionally, the 
enzyme could diacetylate neomycin and ribostamycin. However, the enzyme does not 
appear to be clinically relevant. Later, Sunada et al. identified another AAC(1) from an 
actinomycetes strain that predominantly acetylates paromomycin at the 1-NH2 position; 
however, the activity of the antibiotic was not significantly affected by this modification.43

The AAC(3) family includes nine subclasses of enzymes (I–X), but subclass V was later 
excluded after DNA analysis revealed that the genes encoding AAC(3)-II and -V were 
identical and conferred resistance to the same antibiotics.41 The subclass I group can be 
subdivided into five groups (a–e) exhibiting resistance to gentamicin, sisomicin, and 
fortimicin.41 Gentamicin acetyltransferase from E. coli catalyzing the acetylation of 
gentamicin at the 3-NH2 position was the first purified and kinetically characterized 
aminoglycoside-modifying enzyme.44–46 Kinetic analysis using a spectrophotometric assay 
revealed that the enzyme utilizes a random bi-bi mechanism. Serratia marcescens (S. 

marcescens) AAC(3)-Ia was the first aminoglycoside acetyltransferase GNAT structure to 
be determined, simultaneously with the first structure of the histone acetyltransferase, 
Hat1.47,48 The enzyme harboring a C-terminal truncation was cocrystallized with CoA, and 
the structure was determined to 2.3 Å by multiwavelength anomalous dispersion.47 The 
structure exhibits the typical GNAT fold that includes four α-helices and six β-strands 
(Figure 3A). The pyrophosphate group of CoA was found to form hydrogen bonds with the 
conserved motif R/Q-X-X-G-X-A/G, while the pantothenate group interacts with the end of 
strand β4. Although a dimer was observed in the asymmetric unit, the existence of a dimer in 
solution was not conclusively determined. AAC(3)-III enzymes confer resistance to 
gentamicin, kanamycin, neomycin, paromomycin, and tobramycin.41 Recently, one enzyme 
of this subclass, AAC(3)-IIIb from Pseudomonas aeruginosa, has been extensively 
characterized thermodynamically and kinetically to provide insights into the binding mode 
of CoA and aminoglycosides.49–51

The AAC(2′) family includes only one subclass. The enzymes generally promote the 
acetylation of dibekacin, gentamicin, kanamycin, netilmicin, and tobramycin.41 Initially, 
AAC(2′)-Ia was identified in Providencia stuartii in which overexpression of the 
acetyltransferase is observed in the presence of aminoglycosides.52,53 The other AAC(2′) 
enzymes are found in only mycobacteria, including AAC(2′)-Ib in Mycobacterium 
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fortuitum,54 AAC(2′)-Ic in Mycobacterium tuberculosis (M. tuberculosis), AAC(2′)-Id in 
Mycobacterium smegmatis (M. smegmatis), and AAC(2′)-Ie in Mycobacterium leprae.55 

AAC(2′)-Ic from M. tuberculosis has been very well characterized, both enzymatically and 
structurally.56,57 Kinetic analysis reveals that the enzyme can acetylate the amino group at 
position 2′ of a broad range of AGs.56 An interesting feature of AAC(2′)-Ic specificity is the 
demonstration that the enzyme can also perform O-acetylation and acetylate AGs such as 
kanamycin A or amikicin, each of which contains a 2′-hydroxyl group. Dead-end inhibition 
studies indicate that the acetylation reaction, like other AACs, follows a sequential kinetic 
mechanism in which AcCoA binds first, promoting the binding of the AG. The crystal 
structure of AAC(2′)-Ic was determined in an apo form and in complex with CoA and 
various aminoglycosides (kanamycin A, ribostamycin, and tobramycin) (Figure 3B).57 The 
overall fold of the enzyme, in addition to the presence of the characteristic “β-bulge” (G83) 
and pyrophosphate binding loop, confirms that it belongs to the GNAT family. As observed 
for other GNAT proteins, AAC(2′)-Ic forms a dimer. The binding mode of CoA is similar to 
that observed in GNAT structures. However, this was the first reported structure of an 
aminoglycoside N-acetyltransferase in a ternary complex with CoA and aminoglycoside 
bound. The different aminoglycosides bind within a proximal site to the CoA binding 
pocket, in a region containing acidic residues and a tryptophan residue (W181) that are 
conserved among the AAC(2′) enzymes. Most of the interactions occur with the amino and 
hydroxyl groups from the 2-deoxystreptamine ring, which explains the specificity of the 
AAC(2′) enzymes for aminoglycosides containing this ring. The 2′-substituent, either an 
amino group or a hydroxyl group, is located 3.6–4.1 Å from the thiol group of CoA, 
supporting the direct nucleophilic attack mechanism.

AAC(6′) is the most common class of aminoglycoside N-acetyltransferases because the 6′-
substituent is important in the binding of aminoglycosides to the 30S ribosome 
subunit.31,33,36 Two different classes of enzymes have been determined on the basis of their 
ability to confer resistance, and both can acetylate netilmicin, tobramycin, and 2′-N-

ethylnetilmicin. However, type I enzymes confer resistance to amikacin and gentamicin C1a 
and C2 but not to gentamicin C1, while type II enzymes exhibit activity with all types of 
gentamicin, but not amikacin.58 AAC(6′)-I is the most common aminoglycoside N-
acetyltransferase,38 and an extensive list of enzymes belonging to the AAC(6′) family has 
recently been reviewed by Ramirez et al.39 AAC(6′)-Ii from Enterococcus faecium59–62 and 
AAC(6′)-Iy from Salmonella enterica (S. enterica)63–65 were the first AAC(6′) enzymes to 
be extensively characterized, both kinetically and structurally. Interesting examples among 
the members of the AAC(6′) family are AAC(6′)-Ib and its two variants AAC(6′)-Ib-cr, a 
bifunctional enzyme that confers resistance to both aminoglycosides and fluoroquinolones,66 

and AAC(6′)-Ib11, an enzyme that displays activity with both amikacin and gentamicin.67 

This enzyme is the most widespread AG-modifying enzyme and is found in more than 70% 
of Gram-negative clinical isolates that produce AAC(6′)-I enzymes.68 Kinetic analysis and 
dead-end inhibition studies demonstrate that both AAC(6′)-Ib and AAC(6′)-Ib-cr use an 
ordered sequential kinetic mechanism in which AcCoA binds first, followed by the addition 
of either aminoglycoside or fluoroquinolone.69 Both enzymes exhibit a bell-shaped pH–
activity profile, suggesting that they use a catalytic base and a catalytic acid in the reaction. 
In the case of AAC(6′)-Ib-cr, the pH optima are different depending on the substrate used, 
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either aminoglycoside or fluoroquinolone. Both AAC(6′)-Ib and AAC(6′)-Ib11 structures 
have been determined.69,70 Both structures exhibit a characteristic GNAT fold. Surprisingly, 
AAC(6′)-Ib and AAC(6′)-Ib-cr are monomeric in solution, while AAC(6′)-Ib11 is in a 
monomer/dimer equilibrium.70 Variant AAC(6′)-Ib11 possesses two mutations compared to 
wild-type AAC(6′)-Ib (Q106L and L107S). These two mutations are located in the vicinity 
of the binding pocket of AcCoA, more specifically where the pantothenate arm is 
positioned, and lead to a severe structural change compared to the AAC(6′)-Ib structure 
(Figure 3C).70 The central β-strand is disrupted, and the α-helical flap, which forms a lid 
above the aminoglycoside binding site in AAC(6′)-Ib, is more flexible. This structural 
difference between the wild-type enzyme and its variant could explain the substrate 
specificity of both enzymes. Minor differences in the binding interactions were observed 
depending on the AG bound, either kanamycin or 4,5-disubstituted aminoglycosides 
(ribostamycin and paromomycin).69 On the basis of the positions of the substrates, the 
structures of AAC(6′)-Ib ternary complexes suggest a direct nucleophilic attack with D115 
and Y164 acting as the proposed catalytic base and acid.

It should also be noted that AAC enzymes can be fused into bifunctional enzymes and can 
be associated with either another AAC enzyme [e.g., AAC(3)-Ib/AAC(6′)-Ib′]71 or another 
AG-modifying enzyme [e.g., AAC(6′)/APH(2′′)].72,73

1.2. Mycothiol Transferase

Mycothiol (MSH), whose function is analogous to that of glutathione in eukaryotes and 
eubacteria, is found only in actinomycetes. MSH is the major low-molecular weight thiol 
and serves as a cellular antioxidant to protect the bacteria against oxidative damage and 
electrophilic toxins.74,75 High levels of MSH are found in mycobacteria, especially in M. 

tuberculosis.76 Four unique enzymes conduct the biosynthesis of MSH in five steps (Figure 
4A).77 First, N-acetylglucosamine is transferred from UDP-N-acetylglucosamine to 1-L-
myo-inositol-1-phosphate, leading to the formation of 3-phospho-1-D-myo-inositol-2-
acetamido-2-deoxy-α-D-glucopyranoside (GlcNAc-Ins-P). This step is catalyzed by the 
glycosyltransferase MshA.78 The intermediate is then dephosphorylated by a phosphatase, 
MshA2, yet to be identified.79 The zinc-dependent metalloprotein MshB subsequently 
deacetylates the intermediate to generate 1-D-myo-inositol-2-amino-2-deoxy-α-D-
glucopyranoside (GlcN-Ins).80 MshC catalyzes the ATP-dependent ligation between L-
cysteine and the 2-amino group from GlcN-Ins, yielding 1-D-myo-inosityl-2-L-
cysteinylamino-2-deoxy-α-D-glucopyranoside (Cys-GlcN-Ins).81 Finally, Cys-GlcN-Ins is 
acetylated by MshD at the cysteinyl amine, resulting in the formation of MSH.82

The enzyme MshD that catalyzes the final acetylation step in MSH biosynthesis is a GNAT 
protein. This enzyme was first identified in M. smegmatis and M. tuberculosis.82 A 
comparison of the MshD sequence with other acetyltransferase proteins revealed that MshD 
possesses twice the number of amino acids compared to other GNAT proteins and appeared 
to include two GNAT motifs in its sequence. Because the C-terminal region displays the 
highest degree of similarity to acetyltransferases, Koledin and co-workers hypothesized that 
MshD is the result of gene duplication and the C-terminal region is involved in the 
acetylation reaction while the N-terminal region is inactive.82
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M. tuberculosis MshD (Rv0819) was crystallized in the presence of both AcCoA and 
CoA.83 The structure of a ternary complex of MshD cocrystallized with CoA and 
desacetylmycothiol (DAM) was also determined (Figure 4B).16 The structure confirms the 
presence of two GNAT motifs with the N-terminal domain (residues 1–140) and the C-
terminal domain (residues 151–315) linked by a random coil. While most members of the 
GNAT family form dimers in solution, dynamic light scattering experiments and gel 
filtration revealed that MshD is a monomer in solution.83 Typically, the terminal β-strands 
(β6) of each subunit of the dimer exchange across the dimer interface to establish a 
continuous β-sheet. The same pattern is observed in the MshD structure. The two domains 
exhibit very similar structures as highlighted by a low root-mean-square (rms) displacement 
value for the Cα atom positions (1.7 Å) when superimposing one domain onto the other. 
However, the two domains appear to utilize different binding modes for AcCoA. In fact, the 
acetyl moiety of AcCoA is found buried in a hydrophobic pocket and is not correctly 
positioned to donate its acetyl group to Cys-GlcN-Ins in the N-terminal domain.83 

Additionally, the βbulge is lacking in the latter domain. These two structural observations 
support the hypothesis that only the C-terminal domain is catalytically active. The structure 
of the ternary complex confirmed this hypothesis.16 In the binary complexes, a large cavity 
was observed between the two domains, and it was considered that upon binding of CoA 
and the acetyl acceptor, a conformational change between the two motifs might occur.83 In 
the ternary complex structure, the N-terminal domain is rotated toward the C-terminal 
domain, resulting in a narrower central cavity where DAM is bound.16 The amine moiety 
from DAM is oriented toward CoA bound in the C-terminal domain. Residues from both N-
terminal and C-terminal domains participate in specific interactions with DAM. 
Interestingly, although only CoA and DAM were added to MshD prior to crystallization, an 
AcCoA molecule was found in the N-terminal domain, suggesting that AcCoA remained 
bound to the C-terminal domain during purification. The pH dependence of the maximal 
velocity suggested that MshD uses both a catalytic base and a catalytic acid. On the basis of 
their positions in the ternary complex structure, E234 (deprotonates a water molecule, which 
in turn accepts the proton from the amino group of DAM) and Y294 are believed to play 
those roles.16

1.3. Other Small Molecule Acetyltransferases

In addition to the aminoglycoside N-acetyltransferases and the mycothiol transferase that 
have been extensively studied, many other types of small molecule acetyltransferases have 
been partially or fully characterized. To give the reader a taste of acetyltransferase substrate 
diversity, a short list of diverse bacterial acetyltransferases is compiled in Table 1. This table 
highlights acetyltransferases involved in peptidoglycan recycling,84 detoxification 
pathways,85–88 production of virulence factor,89,90 iron acquisition,91,92 and redox 
balance.93

2. PEPTIDES

2.1. Fem Family

Members of the family of Fem amino-acyltransferases catalyze the addition of amino acids 
to the nascent peptidoglycan using aminoacylated tRNA as a substrate to form an elongated, 
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branched cell wall cross-link.94 Fem family members are found primarily in Gram-positive 
bacteria such as Staphylococcus, Streptococcus, Lactobacillus, Clostridium, and 
Streptomyces and in few Gram-negative pathogenic spirochetes, including Borrelia 

burgdorferi and Treponema pallidum. The peptidoglycan, a critical component of the cell 
wall, is composed of alternating N-acetylglucosamine and N-acetylmuramic acid, on which 
the pentapeptide is linked via a lactyl group (Figure 5).95 In organisms containing the Fem 
enzymes, the pentapep-ide (L-Ala)-(D-Glu)-X-(D-Ala)-(D-Ala) is further modified by the 
addition of up to five amino acids at position X, where X is either lysine, ornithine, or the 
D,L-diamino acid, meso-diaminopimelic acid (Dap) (Table 2). The enzymes that synthesize 
the interchain peptide were first discovered in a methicillin-resistant Staphylococcus aureus 

(S. aureus) strain (pentaglycine extension at position X) and were initially believed to be 
factors essential for methicillin resistance, from which the name Fem is derived.96 In the 
1990s, three fem genes were identified by insertional mutagenesis in S. aureus: femX (also 
known as fmhB), femA, and femB. femX was shown to be an essential gene in S. aureus that 
catalyzed the addition of the first glycine substituent onto the peptidoglycan precursor 
associated with the membrane (lipid II).97 On the other hand, femA and femB insertional 
mutants were not detrimental and lead to the formation of a one-glycine extended branched 
peptide and a three-glycine extended branched peptide, respectively.98 These results 
suggested that FemX adds the first glycine, FemA the second and third, and FemB the last 
two glycines. In the early 2000s, the first Fem was successfully expressed and assayed.99 

FemX from Lactobacillus viridescens [also known as Weissella viridescens (W. 

viridescens)] was shown to catalyze the amino acyl transfer of glycine from charged 
tRNAGly to a soluble UDP-N-acetylmuramyl pentapeptide (Figure 5).100 In the literature, 
several Fem homologues have been reported. In Streptococcus pneumonia, MurM adds L-
alanine or L-serine to ε-L-lysine, and subsequently, MurN adds a second L-alanine 
residue.101,102 In Enterococcus faecalis, BppA1 and BppA2 transfer L-alanine from Ala-
tRNA to the first and second positions of the interchain peptide, respectively.103 All Fem 
enzymes and homologues use an amino-acylated tRNA as an acyl donor. S. aureus encodes 
three tRNAGly isoacceptors that bind poorly to elongation factor EF-Tu, thus preventing 
their use in ribosomal protein synthesis, and two “adequate” tRNAGly molecules suitable for 
protein synthesis.104 Specific nucleotide pairing changes or additional base pairing in the 
isoacceptor tRNA conserved loops led to the distortion of the anticodon loop and the 
inability to bind to the translational machinery.105 Because FemX is essential for bacterial 
survival, the enzyme constitutes an ideal drug target. To date, analogues of nonribosomal 
tRNA containing an oxadiazole group mimicking the 3′-amino acyl ester of the tRNA and 
peptidyl-RNA bisubstrate analogues have been developed and shown to be effective FemX 
inhibitors in vitro.106,107 The three-dimensional structures of two Fem enzymes have been 
determined, FemA from S. aureus and FemX from W. viridescens (Figure 6).108,109 The 
FemA structure revealed a globular domain composed of two GNAT subdomains and a pair 
of antiparallel α-helix domains located between β2′ and β3′ of the second GNAT 
subdomain. The α-helical coiled coil arm was suggested to play a role in the binding of Gly-
tRNAGly during glycine transfer based on similar structural features found for seryl-tRNA 
synthetases.110 The main difference between the FemX structure complexed with UDP-
MurNac-pentapeptide and the FemA structure is the absence of the coiled coil domain, 
which is replaced by a tight five-residue loop. FemX is also composed of two GNAT 
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domains, separated by a cleft where the UDP-MurNac-pentapeptide is interacting primarily 
with the second GNAT domain.109 A newer FemX structure in complex with a bisubstrate 
analogue revealed crucial mechanistic information.111 The bisubstrate analogue is composed 
of a peptidoglycan precursor analogue linked by a 1,4-triazole ring to a RNA molecule 
mimicking the acceptor arm of tRNAAla. Superimposition of the FemX-UDP-MurNac-
pentapeptide and FemX-peptidyl-RNA structures gave a rms displacement value of 0.4 Å 
for the Cα atom positions, indicating almost no change in the protein conformation. The 
only exception is the rearrangement of the loop between strands β5 and β6 (residues 136–
140) toward the catalytic cavity, which is critical for maintaining the position of the 
pentapeptide lysine, which is ε-aminoacylated. The triazole ring of the pentapeptide is in the 
proximity of K305 and was proposed to be the residue participating in the chemical step. 
K305 and F304 are highly conserved in Fem enzymes, and mutation of those residues to 
alanine decreased the rate of turnover of FemX by 1.3 × 104- and 16-fold, respectively. On 
the basis of those results, a structure-based mechanism for substrate-assisted catalysis was 
proposed.

3. PROTEINS

GNAT enzymes also acetylate proteins, either at the N-terminus (αN-acetylation) or on the 
side chain of internal lysine residues (εN-acetylation). The largest family of protein N-
acetyltransferases is the histone acetyltransferase family found in eukaryotes, which 
acetylate histones predominantly at the N-terminus.11 Because this Current Topic is focused 
on GNAT proteins in bacteria, the histone acetyltransferase family will not be discussed 
here.

3.1. Rim Proteins

αN-Acetylation of proteins is a common post-translational modification in eukaryotes, but 
there are relatively few examples in prokaryotes.112 Three ribosomal proteins, S5, S18, and 
L12, are known to be αN-acetylated in bacteria.113 Using nitrosoguanine mutagenesis 
followed by two-dimensional gel electrophoresis, Isono and co-workers identified the three 
proteins responsible for the αN-acetylation of these ribosomal proteins: RimI, RimJ, and 
RimL acetylate S18, S5, and L12, respectively.113–116 The function of αN-acetylation of 
these proteins is not fully understood.

The acetylation of L12 leads to the formation of L7, an acetylated version of L12. L12 and 
L7 are dimers that interact with the ribosome through an adaptor ribosomal protein, L10.117 

Contrary to other ribosomal proteins, multiple copies of L12/L7 are present in the 
ribosome.118 More recently, Gordiyenko et al. demonstrated that the αN-acetylation of L12 
allows for tighter binding between L12/L7 and L10, stabilizing the ribosomal stalk 
complex.119 Three RimL structures from different organisms have been determined to date: 
RimL from Salmonella typhimurium LT2 (S. typhimurium),120 RimL from Thermus 

thermophilus (T. thermophilus),121 and YdaF (a homologue of RimL) from Bacillus subtilis 

(B. subtilis).122 Although the YdaF structure exhibits a typical GNAT fold, its 
acetyltransferase activity has not been confirmed. Experiments including gel filtration and 
dynamic light scattering suggest that S. typhimurium RimL forms a dimer in solution.120 In 
the RimL–CoA complex, CoA is bound between the splayed β4 and β5 strands, and few 
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specific interactions are observed between the adenine/ribose moieties and the protein 
(Figure 7A). Additionally, backbone amides from the pyrophosphate binding loop, as well 
as a conserved water molecule, interact with the pyrophosphate moiety through hydrogen 
bonds while the pantothenate “arm” interacts with residues located at the C-terminal end of 
strand β4. A conformational change involving the loop linking α1 to α2 is observed upon 
the binding of CoA. One characteristic structural feature of the GNAT family is the presence 
of a “β-bulge” on β4, responsible for the splaying of strands β4 and β5, but this structural 
feature is not observed in the S. typhimurium RimL structure. A cysteine (C134) proximal to 
the active site is involved in a disulfide bond with CoA in one of the S. typhimurium RimL–
CoA structures, suggesting that the reaction catalyzed by RimL could exploit a ping-pong 
mechanism. However, this residue does not appear to be conserved among the other RimL 
enzymes. The mutant enzyme (C134A) displays kinetic properties similar to those of the 
wild-type enzyme, indicating that the enzyme utilizes a direct nucleophilic attack. S141 and 
E160 are hypothesized as the general acid and base, respectively. Finally, the cleft formed at 
the dimer interface could be the binding site for L12 as it is also observed in the T. 

thermophilus RimL and B. subtilis YdaF structures.121,122

The S. typhimurium RimI that acetylates S18 has been extensively characterized, both 
kinetically and structurally.123,124 RimI utilizes an ordered kinetic mechanism involving the 
binding of AcCoA first, followed by the binding of S18.123 Because full-length S18 from S. 

typhimurium was not successfully expressed, a peptide representing the first six amino acids 
of S18 was used for the kinetic and inhibition studies (abbreviated as S181–6). S. 

typhimurium RimI was crystallized in the presence of AcCoA, CoA, and a bisubstrate 
inhibitor.124 The structures exhibit all the characteristic features of the GNAT fold. 
However, the enzyme appears to be a monomer in solution. The cocrystal structure with a 
bisubstrate inhibitor (CoA-S-acetyl-S181–6) reveals how the inhibitor binds to the active site 
(Figure 7B). The peptide from the bisubstrate inhibitor binds perpendicularly to the 
pantothenate group of CoA. Several residues of the active site are specifically interacting 
with the peptide portion through hydrogen bonds, as well as van der Waals interactions. 
Several conformational changes are observed upon the binding of the peptide compared to 
the structure containing CoA, the most significant involving the orientation of the loop 
connecting β6 and β7.

The structure of a putative RimJ protein from Vibrio fischeri has been determined (PDB 
entry 3IGR) and exhibits a structural fold similar to that of the RimI and RimL structures. In 
addition to acetylating S5, RimJ has been proposed to be involved in ribosome assembly125 

and to acetylate thymosin α1, an immunomodulating peptide.126

3.2. Protein Acetyltransferase, Pat

Acetylation at the ε-amino group of a lysine residue is a major post-translational protein 
regulation mechanism found in all kingdoms of life. Since the discovery of εN-lysine-
acetylated AcCoA synthase (ACS) in S. enterica127 and acetylome studies in E. coli128,129 

and S. enterica,130 εN-lysine acetylation appears to be widespread in prokaryotes. The first 
εN-lysine acetyltransferase was identified in S. enterica as SePat (formerly yhiQ) and is 
responsible for ACS acetylation leading to enzyme inhibition.131 The SePat enzyme is 
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composed of two domains: a GNAT acetyltransferase domain at the C-terminus and a NDP-
forming AcCoA synthetase domain at the N-terminus, which is 96% identical to E. coli 

PatZ.132 However, the NDP-forming AcCoA domain is unable to produce AcCoA from 
acetate, ATP, and CoA because the catalytic histidine, present in PatZ, is replaced with an 
asparagine (N114) in SePat. SePat has been reported to acetylate several metabolic enzymes, 
including ACS,131 glyceraldehyde-3-phosphate dehydrogenase (GapA), isocitrate lyase 
(AceA), and isocitrate dehydrogenase kinase (aceK),130 and to propionylate propionyl-CoA 
synthetase (PprE).133 It has been proposed that Pat acetylates AcCoA synthase at high 
intracellular concentrations of AcCoA to prevent further increases in its concentration, 
maintain the acetate pool, and prevent unnecessary ATP hydrolysis.134

Enzyme acetylation is reversed by deacetylase enzymes, including the NAD+-dependent 
sirtuin-like deacetylases, which allows for the rapid response and adaptation to new 
metabolic needs or physiological changes. In B. subtilis, ACS activity is also post-
translationally modified by AcuA, a GNAT protein acetyltransferase.135 The ACS gene and 
AcuABC operon are adjacent to each other, with AcuA functioning as the acetylase and 
AcuC as an NAD+-independent deacetylase. A second NAD+-dependent deacetylase, CobB, 
is also able to deacetylate ACS, suggesting that depending on growth conditions, two 
independent acetylases could be differentially used.135 Reversible ACS acetylation by Pat 
enzymes has been reported in many organisms, including Rhodopseudomonas palutris,136 

Streptomyces coelicolor,137 Streptomyces lividans (S. lividans),138 M. smegmatis,139 and M. 

tuberculosis.140 The recently determined structure of an active catalytic complex between 
the S. lividans Pat GNAT domain and S. enterica ACS revealed key determinants for protein 

substrate recognition and subsequent acetylation.141 In addition to the conserved PX4GK 
motif on the C-terminus of the ACS protein substrate, a trio of arginines located after the 

PX4GK motif also conserved in ACS homologues was shown to interact with a negative 
patch on Pat. Those complementary ionic interactions contribute to Pat substrate specificity. 
A unique feature of M. tuberculosis Pat and M. smegmatis Pat acetyltransferase structures is 
the fusion of an N-terminal cyclic nucleotide binding domain to the GNAT domain.142,143 

This cyclic nucleotide binding domain specifically recognizes cAMP, allowing allosteric 
activation of Pat. Following macrophage phagocytosis of M. tuberculosis, a dramatic 
increase (50-fold) in cAMP concentration was observed in the macrophage cytoplasm as 
well as within the bacteria.144 cAMP is a key regulatory molecule in mycobacterial 
physiological adaptation during infection and influences the host response. The M. 

tuberculosis Pat crystal structure reveals that after cAMP binds to the N-terminal domain, a 
conformational change causes M. tuberculosis Pat to switch from an autoinhibited state to a 
cAMP-activated state (Figure 8). Activated M. tuberculosis Pat acetylates and inhibits the 
activity of multiple downstream enzymes such as ACS, fatty acyl-CoA ligase FadD13, and 
fatty acyl-AMP ligase FadD33, which regulate fatty acid metabolism and siderophore 
biosynthesis, respectively.140,145,146

4. CONCLUSION

It has been 50 years since the discovery of the AcCoA-dependent N-acetyltransferases, and 
our understanding of their roles in antibiotic resistance, metabolism, and biosynthesis and 
most recently control and regulation of central carbon metabolism has improved 
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dramatically. Their kinetic and chemical mechanisms have been dissected, and numerous 
structures of the different “classes” of GNATs have been reported. Although originally 
thought to use exclusively AcCoA, there are examples shown in this review in which the 
acyl transfer substrate can be an aminoacylated tRNA molecule and other examples in which 
the nature of the fatty acyl substituent is proprionyl, and longer acyl chains (e.g., yeast 
myristoyltransferase,147 also a monomeric enzyme composed of two GNAT domains). The 
size and nature of the eubacterial “acetylome” are largely unknown and, in some reported 
cases, unlikely to be correct due to nonenzymatic acetylation reactions. Today, a majority of 
the identifiable bacterial GNATs are of unknown biochemical function, and further efforts 
are necessary to unravel the full picture of a promising field of research.
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ABBREVIATIONS

AAC aminoglycoside N-acetyltransferase

AcCoA acetyl-coenzyme A

ANT aminoglycoside nucleotidyltransferase

APH aminoglycoside phosphotransferases

CoA coenzyme A

Cys-GlcN-Ins 1-D-myo-inosityl-2-L-cysteinylamino-2-deoxy-αD-glucopyranoside

DAM desacetylmycothiol

Dap diaminopimelic acid

GlcNAc-Ins-P 3-phospho-1-D-myo-inositol-2-acet-amido-2-deoxy-α-D-
glucopyranoside

GlcN-Ins 1-D-myo-inositol-2-amino-2-deoxy-α-D-glucopyranoside

GNAT GCN5-related N-acetyltransferase

MSH mycothiol

PDB Protein Data Bank

rms root-mean-square
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Figure 1. 
Topology scheme of the GNAT proteins. Starting at the N-terminal end, the secondary 
structure elements are colored dark green (β0, β1, α1, and α2), yellow (β2–β4), red (α3 and 
β5), and cyan (α4 and β6).
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Figure 2. 
General structures of various aminoglycosides. The amino-cyclitol (2-deoxystreptamine) is 
colored blue. Arrows indicate the positions that are commonly modified by AACs. (A) 4,6-
Disubstituted deoxystreptamine aminoglycoside. Examples cited in this review are butirosin, 
paromomycin, and neomycin. (B) 4,5-Disubstituted deoxystreptamine aminoglycoside. 
Position 2′ can be either an amino group (kanamycin B, gentamicin C1a and C1, etc.) or a 
hydroxyl group (kanamycin A, amikacin, etc.).
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Figure 3. 
Structures of aminoglycoside N-acetyltransferases. The secondary structure elements are 
colored like the topology scheme presented in Figure 1. The substrates or products bound 
are rendered as sticks with white carbons. (A) Structure of S. marcescens AAC(3)-Ia (PDB 
entry 1BO4). (B) Structure of M. tuberculosis AAC(2′)-Ic in complex with CoA and 
kanamycin A (KAN) (PDB entry 1M4I). (C) Superimposition of the S. enterica AAC(6′)-Ib 
structure in complex with CoA and its variant AAC(6′)-Ib11 (PDB entries 2PRB and 2PR8, 
respectively). The α-helical flap (highlighted with an arrow in each structure) located above 
the aminoglycoside binding site is colored purple in the AAC(6′)-Ib structure and orange in 
the AAC(6′)-Ib11 structure.
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Figure 4. 
Role and structure of MshD in mycothiol biosynthesis. (A) Biosynthetic pathway of 
mycothiol. The box highlights the reaction catalyzed by MshD. (B) Structure of M. 

tuberculosis MshD in complex with CoA and DAM (PDB entry 2C27). The secondary 
structure elements are colored like the topology scheme presented in Figure 1. The 
substrates or products bound are rendered as sticks with white carbons. (C) Superimposition 
of MshD in complex with CoA and DAM (PDB entry 2C27, gray) and MshD in complex 
with AcCoA (PDB entry 1OZP, beige). Upon substrate binding, the N-terminal domain 
rotates closer to the C-terminal domain to allow a narrower binding cavity for DAM as 
highlighted by the arrow.
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Figure 5. 
Scheme of peptidoglycan layer formation. Fem enzymes act at different stages of the peptide 
bridge formation depending on the bacterial species. In W. viridescens, FemX adds only the 
first amino acid. In S. aureus, FemX adds the first glycine residue whereas FemA adds the 
second and third glycine residues and FemB the last two glycine residues. For the sake of 
simplicity, only three of five amino acids in the peptide bridge are represented in the figure. 
After peptide bridge formation, the terminal Gly5 α-NH2 group of the peptide bridge is 
cross-linked to the penultimate amino acid of the neighboring pentapeptide stem by 
transpeptidation leading to the release of the terminal amino acid from the stem peptide.
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Figure 6. 
Structural comparison of W. viridescens FemX and S. aureus FemA. The GNAT secondary 
structure elements are colored like the topology scheme presented in Figure 1. The 
bisubstrate is rendered as sticks with white carbons. (A) The W. viridescens FemX consists 
of two similar GNAT domains, 1A and 1B (PDB entry 1P4N). (B) The S. aureus FemX 
structure also displays domains 1A and 1B and contains an additional coiled coil segment 
that is colored orange (PDB entry 1LRZ).
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Figure 7. 
Structures of Rim proteins. The secondary structure elements are colored like the topology 
scheme presented in Figure 1. CoA and the bisubstrate are rendered as sticks with white 
carbons. (A) Structure of S. tphimurium LT2 RimL in complex with CoA (PDB entry 
1S7N). (B) Structure of S. typhimurium LT2 RimI in complex with a bisubstrate CoA-S-
acetyl-S181–6 (PDB entry 2CNM).
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Figure 8. 
Activation of M. tuberculosis Pat via cAMP binding (left structure, PDB entry 4AVA; right 
structure, PDB entry 4AVC). The N-terminal regulatory domain (orange) is linked to C-
terminal catalytic GNAT domain. Upon cAMP binding, the Pat protein undergoes a 
conformational rearrangement allowing protein–substrate binding in the catalytic domain 
active site. The GNAT secondary structure elements are colored like the topology scheme 
presented in Figure 1. The substrates and activators bound are rendered as sticks with white 
carbons.
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Table 1

Examples of GNAT Enzymes and Their Targets

names targets notes

PA4794148 potential protein acetyltransferase

ApxC89 prototoxin HlyA acyltransferase

GAT, SaGNAT149,150 unknown small molecule acetyltransferase, herbicide

CBG151 clavaminic acid acetyltransferase, tandem GNAT

MccE90 antibiotic microcin C7 acetyltransferase, bidomain

PseH84 UDP-4-amino-4,6-dideoxy-β-L-AltNAc acetyltransferase

SpeG/PaiA85,86 spermidine acetyltransferase, dodecamer GNAT

WecD152 4-amido-4,6-dideoxy-D-galactose acetyltransferase

MddA/ADP187,88 methionine sulfoxide, methionine sulfone acetyltransferase

MbtK91,92 mycobactin acyltransferase

PhnO153 aminoalkylphosphonic acid acetyltransferase

Rv0802c154 unknown succinyl transferase

GlmA93 glucosamine acetyltransferase
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Table 2

Interpeptide Bridge Composition of Various Bacterial Species

species interpeptide bridge composition position X of the pentapeptide

Lactobacillus coprophilus (L-Ala)2 ε-lysine155

S. aureus (Gly)5 ε-lysine156

Staphylococcus epidermidis Gly-L-Ala ε-lysine157

W. viridescens L-Ala-L-Ser ε-lysine100

Streptococcus pneumoniae L-Ser-(L-Ala)2 ε-lysine158

Borrelia burgdorferi Gly δ-L-ornithine159

Treponema palladium Gly δ-L-ornithine159

Clostridium perfringens Gly ω-L,L-diaminopimelic acid160

M. tuberculosis Gly ω-L,L-diaminopimelic acid161

B. subtilis none ω-L,L-diaminopimelic acid162

Streptomyces coelicolor Gly ω-L,L-diaminopimelic acid163
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