ORIGINAL ARTICLE

The ISME Journal (2010) 4, 799-808
© 2010 International Society for Microbial Ecology Al rights reserved 1751-7362/10 $32.00

npg)

www.nature.com/ismej

Bacterial gene abundances as indicators of
greenhouse gas emission in soils
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Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in
soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular
techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two
numerically dominant ribotypes (based on the >97% sequence similarity at the 16S rRNA gene) of
bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological
station long-term ecological research site. Quantification of nitrogen-related functional genes
(nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two
dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to
evaluate the hypothesis that microbial community differences are linked to greenhouse gas
emissions under different land management practices. Our results suggest that the successional
stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the
legacy of agricultural practices can be sustained over decades. We also link greenhouse gas
emissions with specific compositional responses in the soil bacterial community and assess the use
of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils.
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Introduction

The impact of agricultural practices on the environ-
ment has been studied extensively, leading to
changes in land management policy worldwide
(Tilman et al, 2002). Yet, surprisingly little is
known about the interactions between agroecosys-
tem management practices and the soil microbial
community, which has a key role in nutrient
transformation and chemical cycling (Staley and
Reysenbach, 2002). The Kellogg biological station
long-term ecological research (KBS-LTER) site has
hosted numerous microbiological studies (Bruns
et al., 1998, 1999; Broughton and Gross, 2000;
Phillips et al., 2000a,b; Buckley and Schmidt,
2001; Blackwood and Paul, 2003), but few studies
have focused on quantitative analysis of bacterial
community composition in relation to nitrogen
turnover rates, specifically those related to green-
house gas emissions. In addition, comparative
quantitative analysis of specific functional or
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phylogenetic groups within the soil community is still
limited. To date, genes encoding enzymes involved
in nitrogen cycling have been targets of choice for
studies focusing on functional groups (that is,
guilds) of bacteria (Leininger et al., 2006; Henry
et al., 2008). This focus is well founded as nitrogen
is essential for plant growth, along with phosphate,
carbon, hydrogen and oxygen. However, simulta-
neous comparison of the abundance of multiple
N-cycle-related genes across multiple treatments
and land-use types has not yet been conducted,
especially when framed around an ecosystem-
level process, such as, greenhouse gas emissions
from soils.

The United States Department of Agriculture
tracks emissions of multiple greenhouse gases
related to agricultural activities and ranks them
based on their global warming potential (GWP). Of
all the sources of GWP in cropping systems,
including CO, and CH,, none are more poorly
quantified than N,O production (Robertson and
Grace, 2004). This represents a tremendous know-
ledge gap regarding the role of N,O in global
warming, especially considering the fact that its
GWP is 296-fold greater than that of CO, and it is
frequently the major source of GWP in agricultural
systems (Robertson et al., 2000; Robertson and
Grace, 2004; EIA, 2008). Poor quantification of
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N,O is to a large extent linked to the challenges
of measuring N,O fluxes in the field, requiring
numerous measurements with inherently high
variability. This constraint has limited data collec-
tion, and, until refined, represents a rudimentary
measurement of a globally important activity.
The ability to construct more informative models,
predictions and mitigation strategies related to
greenhouse gas emissions depends on the develop-
ment of new analytical approaches that are more
efficient and accurate than currently available ones.
As microbial populations control natural production
and consumption of nitrous oxide, their abundance
and activities represent a potential method for
predicting gas emissions.

Using real-time quantitative PCR (qPCR), we
examined the abundance of key soil microbial
guilds and taxa, including nitrogen-fixing bacteria
(through the nifH gene) and denitrifying bacteria
(through the nirS and nosZ genes). Although
nitrification represents a key step in the conversion
of ammonia nitrogen into its gaseous forms (NO,
and NO;), this process is less relevant to N,O
emissions. Further, nitrifier numbers are typically
low in soils and are challenging to quantify using
direct gqPCR as it is applied to all other genes
analyzed making nitrification measures beyond the
scope of this study. Quantification of two numeri-
cally predominant operational taxonomic units
(OTUs) belonging to the phyla Acidobacteria and
Thermomicrobia obtained at KBS (Morales and
Holben, 2009) was also performed for comparison
with data obtained using function-based primers.
These analyses were performed across 10 different
treatments based on land-use types at the KBS-LTER.
Analyses in other soils using 16S rRNA gene-based
PCR denaturing gradient gel electrophoresis have
shown that soil type may be the strongest selector of
soil microbial community structure (Wakelin et al.,
2008), but that study focused on large-scale rearran-
gements in community composition measured using
a broad-scale technique. However, changes in func-
tional or phylogenetic group abundance may go
undetected when using such 16S rRNA gene-based
approaches, as poor resolution between taxa due to
gene conservation, nonspecific primers and other
factors (for example, see Morales and Holben, 2009)
can lead to mistaken conclusions about functional
group abundance or population dynamics. To exam-
ine the extent to which this occurs in this system,
the current study employed gPCR targets directly
related to functional traits, as well as two 16S rRNA
gene-based ribotypes, to compare the patterns
observed based on the abundance of genes encoding
key enzymatic activities with those observed using
‘OTU-based primers’.

Four general hypotheses were tested. The first
stated that 16S-based taxon abundance estimates
would be higher than those observed for the
functional genes as the former can detect multiple
phylogenetic subgroups that might each harbor
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multiple different bacterial functional groups (for
example, denitrifiers and nitrogen fixers can both be
found within the same genus). Second, we hypothe-
sized that, due to the high number of leguminous
and other nitrogen-fixing symbiotic plants in certain
land-use treatments at the KBS-LTER site, nitrogen-
ase reductase gene (nifH) numbers would be
consistently higher in all treatments involving legu-
minous cover crops (that is, treatments 1-4 (T1-4),
soybean; and T6, alfalfa). The third hypothesis
predicted that abundance of denitrification bacterial
genes (nosZ and nirS) would be relatively uniform
across all treatments, given the widespread distribu-
tion of this metabolic activity across the breadth of
bacterial phylogenetic groups. Finally, as the bal-
ance between input and output of nitrogen gas in
soils is respectively controlled by nitrogen fixers
and denitrifiers, we hypothesized that differences in
bacterial gene abundances of these key nitrogen
cycling genes between annual, perennial and suc-
cessional sites would correspond to those observed
for greenhouse gas emission rates for these sites.

Materials and methods

Study site and sample collection

Samples were collected from the KBS-LTER Row-Crop
Agriculture site in mid-Michigan (for an overview of
that project see http://lter.kbs.msu.edu/). Our study
examined the bacterial community in the replicate
plots of Treatment 1-8 (T 1-8) of the main experi-
mental site, as well as two additional successional
and forest sites (Table 1). Four of the eight main site
treatments are annual crop rotations (T1-4), two
are perennial (T5, poplars; and T6, alfalfa), and two
are successional systems under native vegetation

Table 1 Kellogg biological station LTER treatment and
successional regimes

Treatment Crop cover Notes

T1 WCS STD, chisel plowed

T2 WCS STD, no-till

T3 WGCS Org red, N at planting,
WCCC, H, PPC

T4 WCS Rotary hoed, WCCGC, PCC

T5 Continuous poplar

T6 Continuous alfalfa

T7 Native successional Last plowed on spring of
1989

T8 Native mid-successional Never plowed, soil
organic matter historical
control

DFR Deciduous forest Late successional site

SFR Successional 40 to 60-year-old former

agricultural field

Abbreviations: DFR, deciduous forest; LTER, long-term ecological
research; N, nitrogen added; Org Red, reduced input organic; PCC,
post planting cultivation; SFR, successional forest; STD, standard;
WCCC, winter clover cover crop; WCS, wheat corn soy rotation.
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(T7, former agricultural site left fallow following
spring plowing in 1989; and T8, never plowed or
cultivated). The two forested sites comprised of a
set of 40 to 60-year-old successional sites (former
agricultural fields, SFR (successional forest) and
DFR (a deciduous forest site that has never been
cut)). All soils in these treatments are classified as
fine loamy, mixed and mesic Typic Hapludalfs.
Sampling was carried out on 2 May 2007 by
collecting five randomly positioned, 0-20cm soil
cores using a soil probe from each of the treat-
ment replicates as is standard at the LTER site
(http://lter.kbs.msu.edu/protocols/112). Each set of
five samples was sieved through 2mm mesh and
then mixed thoroughly in equal proportions, pro-
viding a single composite sample for each replicate
treatment plot (that is, there were either three or six
replicated plots per treatment, and one composited
sample was developed and examined for each
replicate plot). All soil samples were stored in
Whirl-Pak bags on dry ice or at —70 °C immediately
after sieving and mixing until processed for bacterial
community DNA extraction. All samples were
processed within 20 days of sampling.

DNA extraction

Total community DNA was extracted from 0.25g
of each soil sample, in triplicate, using the MoBio
PowerSoil DNA Isolation Kit (MoBio, Solana Beach,
CA, USA) according to the manufacturers instruc-
tions and using sterile MilliQQ water in the final
elution step. All DNA samples were stored at —20 °C
until used in downstream analyses.

Real-time qPCR assays

Real-time qPCR was performed using an iCycler iQ
thermocycler (Bio-Rad, Hercules, CA, USA) with an
ABsolute QPCR SYBR green mix (AbGene, Epsom,
UK) using primers and conditions previously de-
scribed (nitrogenase reductase (nifH gene) (Résch
and Bothe, 2005; Yergeau et al., 2007); nitrite
reductase (nirS gene) (Throback et al., 2004; Yergeau
et al., 2007); nitrous oxide reductase (nosZ) (Henry
et al., 2006); Thermomicrobia group 4 (OTU-specific
based on >97% sequence similarity at the 16S rRNA
gene) (Morales and Holben, 2009); Acidobacteria
group 6 (OTU-specific based on >97% sequence
similarity at the 16S rRNA gene) (Morales and
Holben, 2009)) and are summarized in Appendix
Table S1. Although no function- or 16S-based
primer sets are necessarily comprehensive across
the spectrum of microbial diversity, they have been
widely used to good effect in comparative studies
(for example, between treatments), as is the case in
the current study. Known template standards
were made from cloned PCR products amplified
from whole-genome extracts of pure bacterial
isolates (see Appendix Table S1), and each stan-
dard was sequenced to confirm target identity.
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Primer validation analyses were performed before
use as previously described (Morales and Holben,
2009).

Variance in gene abundance measurements was
determined between replicate plots of the same
treatment by pooling three individual DNA prepara-
tions from each replicate plot in equimolar amounts
to provide a representative sample for that replicate
plot. A total of 5ng of DNA was used to compare
gene abundance in each plot. For comparing the
effect of different treatments on the overall abun-
dance of each gene, DNA preparations from all
replicate plots and extractions within a treatment
were combined in equimolar amounts to provide a
representative sample for that treatment. All gPCR
reactions for any single sample were run at least in
triplicate, as described above.

Correct target amplification from soil DNA was
confirmed by cloning PCR fragments from T1.
Triplicate standard PCR reactions were performed
separately as described above for each primer pair
using total community DNA from T1, which
represents the canonical treatment practice for the
KBS-LTER site. The resultant PCR products were
purified and cloned as previously described (Mor-
ales and Holben, 2009) to confirm that specific
amplification of the corresponding target had
occurred.

Statistical analysis

Relationships between microbial gene abundance,
successional stage, greenhouse gas flux and other
environmental parameters, were determined by
principal components analysis (PCA) with data
matrices composed of chemical and bacterial gPCR
data (Supplementary Table S2) for T1-8, SFR and
DFR of the KBS-LTER, collectively representing
annual, perennial and successional sites. Chemical
data were extracted from Robertson et al. (2000)
and represented gas fluxes and their respective
greenhouse warming potentials, aboveground net
primary productivity, NO;-N, N mineralization
potentials and soil carbon concentrations over
an 8-year period. The chemical metadata set
used was from 1991 to 1999 (as reported in
Robertson et al.,, 2000) because this timeframe
maximized the number of variables available for
analysis, as several of the measurements were not
continued beyond that point. However, more recent
gas emission data through 2007 (presented in
Supplementary Figure S6) strongly support the
suggestion that the same soil processes and relation-
ships persisted at KBS through our sampling time
and beyond, as observed differences in these
parameters are consistent across treatments and
the relative relationships between treatments remain
constant. Further, the classification of treatments as
a sink or source of gases on the basis of current or past
mean gas fluxes for any treatment remains the same.
Data were organized with rows representing treat-
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ments and columns representing individual vari-
ables. Principal component scores were plotted by
site, abbreviated as shown in the site description
and in Table 1, for the first two principal compo-
nents. Parameters driving the distribution of the
PCA plots were determined by querying all variables
against the first three principal components. Indivi-
dual chemical factors were also independently
queried to qPCR results on a per gene basis by
conducting pairwise correlations.

To show co-trends between genetic and chemical
variables, data were also analyzed using co-inertia
analysis (CIA) (Dray et al., 2003), computed with the
MADE4 package in the R statistical software envi-
ronment (Culhane et al., 2005). CIA is a dimensional
reduction procedure designed to measure the simi-
larity of two sets of variables (measurements), as
they are associated with a single set of cases. Due
to very strong correlations (>0.99) between some
chemistry measurements, we were able to unclutter
the CIA plot by using CH,, N,O and Organic C as
proxies for CH,-C, N,O-N and Organic C (kg),
respectively.

Results

Bacterial gene abundance and diversity
The efficiencies of real-time PCR assays for all
targets averaged 92% (s.d. +4%), allowing for direct
comparison of results for all targets. Statistically
significant differences in gene target abundances
were observed between replicate plots under the
same treatment (T1) for all tested genes (Table 2). As
anticipated, qPCR results obtained from pooling
DNA extracted from each individual replicate plot
and run as a representative sample for that treatment
resulted in mean values within the standard devia-
tion of the true replicates (Figure 1). Two 16S rRNA
gene targets representing the numerically dominant
bacterial groups Thermomicrobia and Acidobacteria
based on sequences generated from this site
(Morales et al., 2009) were the most abundant of
all targets tested (Figure 1), supporting the first
hypothesis regarding higher abundances based on
phylogenetic targets (that is, ‘genus-level’ 16S rRNA
genes) compared with functional gene (that is,
enzyme coding) targets.

By contrast, the measured abundances of the
nitrogenase gene (nifH) did not support our second

hypothesis that predicted higher abundance in
treatments containing crops with known symbiotic
nitrogen fixation associations (for example, soybean
rotations). Indeed, the abundance of nifH was
generally higher in the successional treatments
(SFR and DFR) than in traditional agricultural sites
(Figure 1). Denitrifier abundance, as indicated by
nirS and nosZ gene abundance, varied significantly
between treatments, which did not support the
third hypothesis predicting comparable denitrifier
numbers between treatments.

Correlating bacterial gene abundance to environmental
variables

Principal component analysis of annual ecosystem
averages for key environmental parameters, global
warming potential (GWP), bacterial gPCR results and
a combined data set comprised of all variables was
employed to assess relationships between bacterial
gene abundance and process-level measurements.
Strong clustering of samples based on aboveground
plant cover type (that is, annual, perennial, succes-
sional) was observed (Figure 2), supporting the
fourth hypothesis predicting differences in green-
house gas emissions as being correlated to differ-
ences in the balance between nitrogen fixing and
denitrifying bacteria. PCA based solely on qPCR
results from bacterial gene targets accounted for
the most variance within the first two components
(~89%). Lower combined principal component 1
and 2 scores were observed for annual ecosystem
averages and GWP values (~75%) and for the
combined data set (~68%) (Figure 2). All three
PCA plots showed general clustering of sites based
on land-use type, with the exception of T7 (the
early-successional site which was previously a
woodpile). Loadings for principal components 1
and 2 (that is, loading vectors) were plotted to
show independent variable contributions to variance
between the treatments (Figure 2). Successional
sites were generally associated with higher organic
carbon levels and nifH gene abundance. Perennial
plant-based treatments, as well as the early native
successional plot T7, exhibited increased nitrous
oxide reducer abundance (nosZ), total carbon
levels and abundance of Thermomicrobia and
Acidobacteria. Aboveground annual productivity,
nitrite reducers (nirS) and GWP were all strongly

Table 2 t-Test analysis of replicate plot qPCR values for each gene target within T1.

Target Test value Count Mean Std dev Std Error of mean t df P-level
AB#6 10 24 2.63E+05 1.36E+ 05 2.79E + 04 9.44 23 <0.001
TM#4 10 23 9.97E + 04 6.91E + 04 1.44E + 04 6.92 22 <0.001
I‘lifH 10 21 3.59E + 03 1.75E+ 03 3.82E + 02 9.37 20 <0.001
nirS 10 19 4.63E + 04 1.98E + 04 4.53E+ 03 10.2 18 <0.001
nosZz 10 20 8.16E + 03 4.71E+03 1.05E+03 7.74 19 <0.001

Abbreviations: t, test score; df, degrees of freedom; qPCR, quantitative PCR; Std dev, standard deviation.
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Figure 1 Specific detection of bacterial groups by quantitative PCR (qPCR). Values indicate gene copy numbers, as determined from 5 ng
of DNA extracted from soil using a dilution curve with known standards. Error bars are one standard error of the mean (s.e.) of at least
triplicate gPCR reactions (n>3). AB#6 and TM#4: operational taxonomic units based on >97% sequence similarity to the 16S rRNA gene
representing Acidobacteria group 6 and Thermomicrobia group 4, respectively. nifH, nitrogenase gene; nirS, nitrite reductase gene; nosZz,

nitrous oxide reductase gene.

correlated with PC1, which was responsible for
clustering of sites into annual, perennial and
successional treatments, with annual sites showing
the highest levels of nitrite reducers and GWP.
Although plotting the first two principal compo-
nents accounted for much of the variance in the
data, the third component significantly increased
the percentage of variance accounted for. On the
basis of the first three principal components for
the qPCR data alone, ~98% of the variance was
accounted for, whereas the number decreased to
~86% when only the annual ecosystem averages
and GWP values were analyzed. The combined data

set of all measured variables accounted for ~82%
of the variance within the first three components,
with nosZ gene abundance being significantly
and negatively correlated (—0.85, P<0.05) to the
third component. Correlation values of individual
variables with each principal component are
summarized in Supplementary Table S3.

An alternative way of analyzing the data based on
CIA showed a pattern similar to that in the PCA
analysis (Appendix S4). The CIA gives an RV
coefficient, a global measure of similarity between
data sets based on a multivariate extension of the
Pearson correlation coefficient, scaled from 0 (no
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combined data sets (far left) summarized in Appendix S1 for different management systems at the KBS-LTER site (described in Table 1).
The percentage of the variation in the samples described by the plotted principle components is indicated on the axis.

similarity) to 1.0 (identical). The genetic and chemical
variables show strong similarity with an RV =0.76.
The significance of the similarity is underscored by
a permutation test (Culhane et al., 2003), in which
total co-inertia (the measure of co-variability of the
two data sets) is computed after permutations to one
of the two data sets (randomly chosen before each
permutation). This shuffles the data, disassociating
the soil sites from the genetic and chemical sample
values. The test yielded 100000 permutation-based
values of total co-inertia. Under the null hypothesis
that the data sets are independent, only five of
these 100 000 values were as large or larger than that
observed for the genetic and chemical data sets, for
a P-value of 0.00005. The plots also provide a view
of the relative strengths of relationships between
genetic and chemical variables with respect to each
other and to the different soil environments. Genetic
and chemical variables show the strongest overall
co-trend (shortest arrows) in the group of annuals
(Appendix S4). This figure also indicates that,
although chemical profiles in transition treatments
(former agricultural sites left to undergo natural
succession; namely T7 and SFR) closely resembled
expected values for successional sites, genetic
variables were slower to change, retaining their
original signature for longer periods. This is to say,
the original bacterial community signature asso-
ciated to agricultural treatments is seemingly per-
sistent (that is, apparent) after >40 years, but this
cannot be unequivocally confirmed with our data as
no temporal comparisons are available.
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Pairwise correlations between all of the variables
showed strong (>0.65) positive correlation between
bacterial gene numbers and either greenhouse gas
fluxes, GWP, annual productivity or carbon levels
(Appendix S5). Nitrite reductase (nirS) gene abun-
dance was positively correlated to greenhouse gas
(N,O-N, NO;-N and CH,-C) emission values, GWP
values and aboveground net primary productivity,
while being negatively correlated to organic carbon.
Nitrogenase (nifH) gene abundance was positively
correlated to organic carbon levels. The abundance
of the nifH gene shared a weak negative correlation
(—0.358) with the abundance of the nirS gene (nitrite
reductase) (Appendix S5). A second denitrification
gene (nosZ), responsible for the reduction of nitrous
oxide to dinitrogen, did not exhibit the same trend
as nirS (Figure 1). The two target genes correspond-
ing to the numerically dominant OTUs belonging
to Thermomicrobia and Acidobacteria (Morales
et al., 2009) were the most abundant of all targets
measured (Figure 1). These genes also showed a
strong positive correlation (Appendix S5) across all
treatments, with the highest values found in single
cultivar perennial treatment plots (Figure 1).

nirS-nosZ gene abundance as proxy for greenhouse gas
(N,O) emissions

A simple regression analysis was conducted to
compare direct measurements of nitrous oxide
emissions from soils with the abundance of nirS
gene targets minus nosZ gene targets (Figure 3),
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Figure 3 Simple regression analysis of nitrous oxide emission
and the nirS gene abundance minus nosZ gene abundance.
Annual crops (black fill); Perennial crops (gray fill); Successional
sites (white fill).

which showed a strong correlation (r*=0.74). Two
discrete data clusters were observed related to direct
N,O measurements, whereas a more incremental
relationship was found between site successional
stage and nirS—nosZ gene abundance (Figure 3).

Discussion

Multivariate analysis of annual ecosystem parameter
averages, global warming potential and bacterial
gene abundances in the current study support the
hypothesis that the legacy of agriculture (that is,
resilience of treatment effects) has a stronger
influence on soil biogeochemistry than current
environmental parameters (that is, real-time soil
conditions), as previously suggested by other
studies (Buckley and Schmidt, 2001, 2003). Strong
correlations were obtained that suggest a key role for
bacterial activities in controlling responses between
agricultural practice or land-use regimes and green-
house gas emissions. The data also support the
interpretation of long-term repercussions at the
microbial community level to certain land-use
practices. However, given that our study does not
include a temporal sampling sequence, these inter-
pretations are based on hypothesized ecosystem
successions, as observed on successional treatment
plots at the KBS-LTER site after 40-60 years of
cessation of agricultural management. Those plots
represent more advanced successional stages of the
current agricultural treatments, and can be used as
references for comparisons.

Previous research at KBS showed differences in
microbial community structure between treat-
ments (for example, indicating effects on bacterial
community composition based on 16S rRNA sequ-
ences (Buckley and Schmidt, 2001, 2003); denitri-
fiers (Cavigelli and Robertson, 2001; Stres et al.,
2004); and ammonia oxidizers (Bruns et al., 1999)).
In addition, treatment-based differences at KBS have
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been reported for greenhouse gas emission and have
suggested possible mitigating properties of certain
treatments (Robertson et al., 2000; Suwanwaree and
Robertson, 2005). Related findings have also been
reported for other systems, with plant species
identity affecting denitrifying communities (Bremer
et al., 2007), and vegetation type driving separation
of community structure (Chim Chan et al., 2008).

We found carbon levels to be strongly correlated
to the clustering of treatments based on cropping
system, suggesting a strong role for carbon as a
driver of bacterial community structure. Although
higher emission values of the greenhouse gas nitrous
oxide were positively correlated to traditional
annual crop rotations, previous work has suggested
that nitrate, as applied in fertilizer, does not select
for denitrifiers (Tiedje, 1988). Instead, it has been
proposed that denitrifiers are generally functioning
as aerobic competitors for carbon, using their
denitrification capabilities only under metabolically
advantageous conditions (Tiedje, 1988). Although it
appears that carbon has a major role in community
structure in these treatments, the activity of an
established community can be significantly altered
by real-time events such as nitrogen deposition
(Suwanwaree and Robertson, 2005). This leads us to
suggest that community composition measurements
(for example, DNA-based measurements of gene
abundance in treatments) are good indicators of
how treatment practices shape the community in the
long run, whereas TRNA or mRNA measurements
would be more useful to illustrate the response of
the community to changing parameters in the short
term (for example, diel cycles, rainfall, fertilizer
application).

Although we included gPCR analysis of two
predominant taxa (at approximately the sub-phylum
or ‘genus’ level) based on 16S rRNA gene quantifica-
tion to assess their ubiquity and abundance, data
derived from those groups are hard to interpret in
the context of biogeochemical cycling, given the lack
of correlation between a specific 16S ribotype and
its metabolic or catabolic capabilities. Where a
direct link to a given biogeochemical reaction is
desired, specific tracking of relevant functional
genes is likely to be more productive. Thus, in the
current study, we rely on quantification of func-
tional genes for nitrogen cycling for correlation
with process-level greenhouse gas emissions from
KBS soils.

Contrary, perhaps, to common assumptions, the
numbers of nitrogen fixers (as determined by nifH
gene quantification) were found to be higher in
forested or successional sites than in the agricultural
fields, including those with regular soybean rotations.
Although leguminous plants, which include beans,
clover, alfalfa, lupine and peanuts, are among the
best studied systems for nitrogen-fixing symbioses
(Young and Haukka, 1996; van der Heijden et al.,
2006; Nandasena et al., 2007; Houlton et al., 2008),
other non-leguminous plants including grasses
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Figure 4 Generalized schematic model showing predicted changes in nitrogen flux, N-based greenhouse gas emissions and greenhouse
warming potential in soils as a function of plant community differences and bacterial group abundance. Line thickness represents
relative contribution of a given gene to nitrogen compound turnover rate based on data from this study and from a study by Robertson

et al. (2000), and also summarized in Appendix S2.

(Minamisawa et al., 2004; Coelho et al., 2008),
pine (Izumi et al., 2006), wheat (Iniguez et al.,
2004) and alder (Ridgway et al., 2004) have also
been shown to posses significant populations of
endophytic nitrogen-fixing bacteria. This suggests
that the contribution of non-leguminous nitrogen-
fixing plant symbioses and free-living nitrogen
fixers is not just significant, but likely essential, in
ecosystem development.

Two other nitrogen cycle-related genes encoding
the denitrification enzymes nitrous oxide reductase
(nosZ) and cytochrome cd1 nitrite reductase (nirS)
did not exhibit similar trends in abundance across
the system. Instead, what was observed was an
apparent balance in the relative abundance of the
two genes that can be used to predict greenhouse
gas emissions and global warming potential (refer
to Figures 3 and 4). To maximally relate our
measurements to available metadata, we have used
the same 1991-1999 data set as described by
Robertson et al. (2000) for the KBS treatments.
Whereas we note that gas emission data from 2000
to 2007 for both CH, and N,O showed that emissions
of these gases rose somewhat compared with the
1991-1999 timeframe (Robertson et al., unpublished
data (http://lter.kbs.msu.edu/datatables/28)), the
relationship of these parameters between treatments
has not changed. As noted above and in Supple-
mentary Figure S6, this suggests that the same soil
processes and relationships between treatments
have persisted through to our sampling time, and
that classification of treatments as a sink or source of
greenhouse gas emissions remains the same. As the
KBS is an LTER site with same conditions carefully
maintained for more than two decades, it is well
supported that ecosystem processes should remain
comparable within and between treatments.

In the schematic model that we have developed to
explain this behavior (Figure 4), the rate of green-
house gas emissions is controlled by the interplay
between different guilds within the local bacterial
community. In this initial study, we focused on
nitrogen cycling and show how the prevalence of
bacteria involved in key steps in the cycle are
related to the overall outcome in terms of key
environmental parameters, and also how differences
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in relative abundance of individual functional
groups control, or at least relate to, whether a system
is a net sink or a net source of greenhouse gases.

The data presented herein showed the presence of
all targeted genes, and also illustrated how soil
management practices have altered the relative
abundance of two predominant ribotypes and
several functional genes involved in different stages
of the nitrogen cycle. These were linked, or at least
correlated to, measured differences in greenhouse
gas emissions and global warming potential result-
ing from various land-use practices. Although the
general roles of nitrogen fixers and denitrifiers in
the nitrogen cycle have been known for decades, the
application of a quantitative approach based on
functional gene abundance to provide predictive
power regarding the fate of nitrogenous compounds
in soils is novel.

Two major observations arise from these findings.
The first is that monitoring bacterial community
response variables, which can exhibit greater
sensitivity to environmental change than other
commonly used measures (Feris et al.,, 2009), re-
presents a robust way to monitor geochemical
dynamics. Second, the possibility, perhaps prob-
ability, that bacteria can respond rapidly to environ-
mental change without major changes in community
composition through altered patterns of gene ex-
pression suggests the importance of considering the
contributions and responses of microbial popula-
tions in global biogeochemical cycles to such
phenomena as climate change. The latter point
further suggests that there is a role for both DNA-
and RNA-based approaches in modern molecular
microbial ecology depending on whether the in-
vestigator is looking at long-term drivers that shape
community composition or at short-term response to
perturbation and change, respectively.

The variability observed with our approach, as
indicated by plot-to-plot replicate variability within
a treatment, likely reflects an inherent property
of small- or mid-scale heterogeneities in the soil
environment that affect bacterial populations
locally. Thorough sampling of study sites can
compensate for such variability. This is readily
achieved when using molecular methods by collect-


http://lter.kbs.msu.edu/datatables/28

ing multiple, small soil samples that can be pooled
(composited), creating a representative sample for a
site or treatment and thus its greenhouse gas
production potential.

We note that our analyses focused on a single
nitrite reductase gene, nirS. The copper-containing
nitrite reductase (encoded by the nirK gene) was not
analyzed in this study and might contribute to some
of the variation not accounted for in our data.
However, it has been shown that three-quarters of
cultured denitrifying bacteria contain nirS rather
than nirK (Zumft, 1997) and it has been found to
predominate in most environments (Bothe et al.,
2000). It is also important to note that these
experiments targeted copy numbers of genes of
interest, which represent the standing community
and its potential for activity rather than an actual
measure of real-time gene expression levels or the
corresponding enzymatic activity. Ongoing methods
development to directly measure actual gene ex-
pression levels will likely enhance the resolution
and accuracy of studying microbial contributions or
response to key environmental functions and activ-
ities. Although our data link key gene abundance
data with measured greenhouse gas potential,
changes in gene expression levels could transiently
change a given soil or treatment from a greenhouse
gas source to a sink. Thus, making more direct
molecular measurements of flux in microbial
community gene expression patterns (for example,
through environmental transcriptomics) is indeed
highly desirable for future work.

This study provides the first quantitative assess-
ment of the effect of land management practice on
multiple microbial community constituents at both
the functional and phylogenetic level. We showed
that microbial assemblages do not readily return to a
native or baseline community state following agri-
cultural disturbance, consistent with previous find-
ings that soil nutrient levels require decades or more
to recover after agriculture (Robertson et al., 1988,
1993; Drinkwater et al., 1998; Knops and Tilman,
2000). We also present the first quantitative study
illustrating interactions between different bacterial
activities and their role in controlling nitrogen flux
as a response to ecosystem changes.

In conclusion, we note that this initial analysis
linking bacterial gene abundance data to process-
level greenhouse gas emission rates represents an
early step in integrating key bacterial activities to
larger-scale biogeochemical cycles. Additional re-
search in this area will extend such capabilities and
allow us to assess microbial contributions and
responses to ecosystem, and even to global-scale
ecological phenomena such as climate change. This
is particularly important as it is widely acknowl-
edged that microorganisms govern or at least
contribute to global biogeochemical cycles, yet
their roles and activities are generally not even
considered in current large-scale models for climate
change and other global phenomena.
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