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TOPICAL REVIEW

Bacterial growth: a statistical physicist’s guide

Rosalind J Allen and Bartłomiej Waclaw

School of Physics and Astronomy, The University of Edinburgh, James Clerk
Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.

E-mail: rosalind.allen@.ed.ac.uk

Abstract. Bacterial growth presents many beautiful phenomena that pose new the-
oretical challenges to statistical physicists, and are also amenable to laboratory experi-
mentation. This review provides some of the essential biological background, discusses
recent applications of statistical physics in this field, and highlights the potential for
future research.
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Statistical physics of bacterial growth 2

1. Introduction

Consider the following scenario: a small number of pathogenic bacteria (perhaps 10-

100) enter the human body and cause an infection. An antibiotic is prescribed to

fight off the infection. Assuming that the bacterial infection is initially sensitive to the

antibiotic, what are the chances of curing the infection, and how likely is it that the

infection eventually becomes resistant to the antibiotic? Given the increasing global

health issue posed by antibiotic resistant infections, this is an important and timely

problem [1, 2, 3, 4, 5]. Clearly, understanding the growth of bacterial infections and

the potential for emergence and spread of antibiotic resistance within them requires

collaboration between scientists from different disciplines. Do statistical physicists have

a role to play here? Furthermore, thinking more broadly, could our understanding

of other processes mediated by bacterial growth, such as global biogeochemical cycles

[6], human gut health [7], and wastewater treatment [8], also profit from a statistical

physics-like approach?

Statistical physicists find i nspiration i n s ystems w here c omplex macroscopic 
behaviour arises from a simple set of underlying microscopic dynamical rules. Living 
systems obviously belong to this class, and statistical physics has a long history of 
applications to biological problems. Examples include determination of mutation rates 
by analysis of mutant number statistics [9, 10], the totally asymmetric exclusion process 
[11], which was originally proposed as a model for protein production from messenger 
RNA in biological cells [12], models for noise in gene regulation [13, 14], lattice models of 
growing populations [15, 16, 17], models for collective flocking and swarming behaviour 
[18, 19, 20] and non-equilibrium phase transitions in populations of self-propelled 
"swimmers" [21, 22, 23, 24, 25].

In this review we argue that the dynamics of growing bacterial populations provides

another class of systems to which the methods of statistical physics can naturally be

applied. To briefly illustrate this, we notice that the above example of the growth of

an antibiotic-resistant infection involves stochastic phenomena on scales ranging from

macroscopic to molecular. Specifically:

Macroscopic level: population expansion in space. In many real-world scenarios,

including infections, bacterial populations spread in space (e.g. through an infected

tissue). This process could be modelled using the Fisher-Kolmogorov equation,

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
+ rn(x, t)(1− n(x, t)/K), (1)

where n(x, t) is the population density of bacteria in space and time, r is the maximal

growth rate, D is a diffusion constant that accounts for bacterial motility and K repre-

sents a maximal population density. Section 4 will discuss applications of this equation,

and other approaches, to bacterial populations growing in heterogeneous environments.

Microscopic level: bacterial replication processes. The growth dynamics of a population
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Statistical physics of bacterial growth 3

containing a mixture of antibiotic-sensitive and antibiotic-resistant bacterial cells, which

replicate stochastically with rates rS and rR, could be described by the following simple

master equation:

dP (S,R)

dt
= rR(R− 1)P (S,R− 1) + rS(S − 1)P (S − 1, R)− (rR + rS)P (S,R), (2)

where S and R are the numbers of sensitive and resistant cells. This type of equation

can be solved using methods developed by statistical physicists to study processes such

as random walks, birth-death processes and coalescence processes, as we shall discuss

in Section 3.

Molecular level: gene expression. Resistance to an antibiotic can be caused by genetic

changes in the bacterial DNA (mutations), or by changes in how the bacterium expresses

its genes. To express a gene, the DNA sequence is first transcribed, or copied, into an

mRNA transcript molecule, which is then translated into protein (see section 2.1). To

model this process we can use a set of Langevin equations:

dx/dt = kx − γxx+ ηx(t), (3)

dX/dt = kXx− γXX + ηX(t), (4)

where x and X are the concentration of the mRNA and protein respectively, kx and kX
are the transcription and translation rates, γx and γX are decay rates, and ηx(t) and

ηX(t) represent Gaussian noise. These equations are similar to those encountered in

other statistical physics problems.

In this review, we discuss how statistical physics models can be applied to problems

in bacterial population dynamics. The purpose of this review is to encourage interest in

these problems, and to provide some of the basic biological background that is needed to

appreciate the field. Physics and biology are of course very different in their language,

philosophy, background and culture, and full immersion into the world of bacteria

comes with considerable challenges. Nevertheless, we hope to show here that bacterial

population growth phenomena can provide considerable inspiration for the development

of new and interesting statistical physics models.

All the models that are discussed in this review are idealized and abstract

descriptions of complex biological processes. It is often necessary to formulate coarse-

grained models for biological systems, because many of the underlying details (e.g.

interactions or rate constants) are simply not known. The most difficult aspect of

the problem may not be how to solve the model, but how to formulate it so that it

is coarse-grained enough to provide useful insight, but takes account of the essential

biology, allowing it to give useful predictions. In many cases, the "right" physical or

mathematical model of a biological system depends on the question that one is trying

to answer.

We begin by introducing the reader to some basic microbiology, and to some

interesting collective phenomena exhibited by bacterial populations. We do not aim
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Statistical physics of bacterial growth 4

at a comprehensive introduction, but rather we try to provide just enough information

to follow the topics discussed later in the review – more detailed background material

is available in excellent textbooks [26, 27, 28]. The remainder of this review is

devoted to a more detailed description of bacterial growth phenomena which present

interesting challenges for statistical physicists, and examples of how statistical physics

has been applied to these problems. This is divided into two parts, which cover growth

phenomena in well-mixed systems and in spatially heterogeneous systems, respectively.

Finally, we present our own perspectives on the potential of this field, and on the

relationship between statistical physics and microbiology. For lack of space, we do not

consider in this review the fascinating and important topic of bacterial evolution, where

statistical physicists have also made major contributions (for example to understanding

the structure of fitness landscapes). Here, we refer the reader to the excellent review by

De Visser and Krug [29].

2. Background

In this section we give a very brief introduction to the basics of bacteria and their

growth. We also introduce the reader to several different types of stochastic collective

behaviours that are exhibited by bacterial populations. Table 1 contains useful numbers

relating to some of the topics that we discuss in the text.

2.1. Basic microbiology for statistical physicists

From a statistical physicist’s point of view, a bacterium can be viewed as a microscopic

particle, or cell, which is bounded by a pair of membranes with a stiff wall in between

them (specifically, this is the case for a large class of bacteria that are known as Gram

negatives; Gram positive bacteria have a thicker wall and lack the outer membrane).

The interior of the bacterial cell contains a “soup” of DNA (encoding the bacterial

genome), RNA, proteins, and other molecules (Fig. 1). The materials that make up

the bacterium are generically referred to as “biomass”. Bacterial cells come in different

shapes: from rods, to spheres, to spirals (Fig. 1), and sizes: from ∼100nm to ∼100µm.

Escherichia coli, the “workhorse" of the microbiology lab, is a spherocylindrical Gram

negative bacterium whose cells are ∼ 0.8 − 1µm in diameter and ∼ 2 − 4µm in length

[32, 26].

Bacterial growth consists of the conversion of chemical nutrients into biomass.

Nutrients enter the bacterium through pores in its membrane and undergo a series of

chemical transformations, converting them into new cellular components; these chemical

transformations are collectively known as metabolism [26, 27]. The increase in biomass is

accompanied by an increase in cell size and by replication of the bacterial DNA, possibly

with some errors (mutations). Eventually, the cell divides into two daughter cells, in

a process called binary fission. The cell size at which division occurs is dependent

on the growth conditions [40, 41, 42] (with cells growing on richer nutrients being
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Statistical physics of bacterial growth 5

Parameter Value

size typical width 1µm, typical length 2-5µm

exponential growth rate maximum: ∼2h−1, sub-optimal conditions:

0.3–1.5 h−1

minimum doubling time ∼ 20 min

elongation rate 0.1− 0.2µm/min (on rich medium)

maximum density ∼ 1–5 ×109 cells per ml (LB medium,

stationary phase)

mutation rate ∼ 2× 10−10 per bp per replication [30]

glucose molecules consumed to make 1 cell ∼ 1.8× 1010 [26, 31]

weight 280 fg per cell [32]

protein molecules per cell 2.35 × 106 (1850 distinct protein molecules)

[32]

mRNA molecules per cell 1380 [32]

genome size 4.5× 106 bp

genome copy number 1 (slow growth) to 8 (fast growth) [33]

abundance of RNA polymerase ∼ 1% of total protein mass [34]

abundance of ribosomes (growth rate depen-

dent)

∼20-40% of total mass [32]; ∼ 7000-70,000

per cell

DNA replication rate 580 - 1,190 bp/s [34]

mRNA elongation rate (transcription) 39-56 nucleotides/s [34]

peptide elongation rate (translation) 13-22 amino acids/s [34]

intracellular concentration of ATP (growth

in glucose-fed chemostat)

9.6mM [35]

intracellular concentration of a typical

metabolite

0.1-100mM [35]

total intracellular metabolite concentration ∼300mM [35]

plasmid size ∼2-500kbp

plasmid copy number ∼1-200 per cell

minimal inhibitory concentration,

- ampicillin (inhibits cell wall synthesis) ∼ 8µg/ml (LB medium)

- rifampicin (RNA synthesis inhibitor) ∼ 3µg/ml (LB medium)

- ciprofloxacin (DNA gyrase inhibitor) ∼ 20ng/ml (LB medium)

Table 1. Useful numbers for modelling bacterial growth and evolution. All data
refers to the bacterium E. coli. If no reference is given, the values come from in-house
experiments for the MG1655 strain of E. coli. We also refer the reader to bionumbers
[36] - an excellent source of biology-related numbers.
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Statistical physics of bacterial growth 6

(a)

(b)
(c)

(d)

(c)

Figure 1. (A) Schematic illustration of the structure of a typical Gram-negative
bacterium, reproduced from Todar’s Online Textbook of Bacteriology. (B) Scanning
electron micrograph of Escherichia coli cells on a silicon surface, reproduced from Ref.
[37]. (C) Scanning electron micrograph of Staphylococcus aureus cells, reproduced from
Ref. [38]. (D) Scanning electron micrograph of Treponema pallidum cells (the causative
agent of syphilis), adhering to a human brain epithelial cell, reproduced from Ref. [39].
In panels B-D, the scale bars represent 2µm.

larger). However, the exact process by which cell division is triggered remains somewhat

mysterious, even after half a century of research [43, 44, 45, 46, 47]. Bacteria are able

to reproduce at impressive rates: E. coli can double its population every 20 minutes,

under optimal conditions. This means that very large population sizes can be achieved

within a few hours in the lab; population densities of ∼ 109 cells per ml of culture

medium are usual in lab experiments.

Protein molecules make up a major component of biomass: typically, ∼55% of the

dry mass of a bacterial cell consists of protein [27]. The bacterial DNA sequence contains

several thousand genes (∼ 4000 for E. coli), each of which encodes a specific protein

molecule. Gene expression is the process by which the DNA-encoded instructions for

making a particular protein are first transcribed into a messenger RNA molecule, which
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Statistical physics of bacterial growth 7

is then translated, i.e., used to build a chain of amino acid molecules that folds into

a protein molecule. In response to changes in environmental conditions, or signals, a

bacterial cell can turn on or off the production of particular protein molecules; this is

known as gene regulation. Interestingly, some proteins, known as transcription factors,

turn on or off genes that encode other proteins. This leads to networks of interactions

among genes, the properties of which (such as modularity [48]) have attracted significant

interest among statistical physicists. Gene regulatory networks are especially interesting

because the transcription factors that control them are often present in only a few

molecules per cell, leading to stochasticity in the behaviour of the regulatory network

(e.g. switching between alternative stable states [49, 50]; for theoretical models see, e.g.

[51, 52, 53, 54, 55, 56]).

Many bacterial cells can also engage in self-propelled motion, which is mediated by

various appendages external to the cell. For example, bacteria may swim in liquid media

by rotation of whip-like flagella, or crawl on solid surfaces using needle-like appendages

called pili [57, 58, 59, 27, 28]. Bacterial motility has already attracted much interest

among physicists; topics of particular focus have included the statistics of suspensions in

which bacteria stochastically change direction in response to chemical gradients or local

density [60, 25] and the hydrodynamics of bacterial swimming motion [61]. Bacterial

motion has also inspired a recent surge of work on the collective behaviour of self-

propelled colloidal particles [62, 24, 63, 64].

2.2. Statistical physics of bacterial growth

Bacterial growth is of interest to statistical physicists for several reasons. First, the

process of division into daughter cells is a branching process with somewhat stochastic

timing; the time between successive bacterial divisions is a random variable with a rather

broad distribution [45, 47, 65, 66]. For E. coli, this causes a loss of synchrony between

division events in sister lineages within about 10 generations [67, 68]. Stresses such as

exposure to some antibiotics or to ultraviolet radiation can interfere with the division

process, leading to long, filamentous cells. Even in the absence of stress, bacterial

populations can contain small sub-populations of non-growing cells, or "persisters",

which tend to be resistant to antibiotic treatment [69, 70].

Second, growth of bacteria in close proximity to one another leads to mechanical

interactions, which can be thought of as pushing, or excluded volume effects. This is

relevant when bacteria grow in dense populations such as colonies on semi-solid surfaces

or biofilms on solid surfaces (see Section 4). Mechanical interactions between bacteria

lead to a number of interesting phenomena, including phase separation of cells with

different surface properties [71], segregation of an expanding population into sectors of

genetically identical bacteria [72, 73, 74], quasi-nematic ordering [75] and competition

for space between lineages [76]. Mechanical interactions between bacteria and their

environment can also lead to interesting effects [77], for example a transition from 2d

to 3d growth as a bacterial colony grows on a semi-solid agar gel [78].
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Statistical physics of bacterial growth 8

Third, because bacteria reproduce rapidly, they also undergo rapid genetic

evolution. The process of evolution involves the random generation of cells with

mutations in their DNA, due to mistakes in DNA replication, and their proliferation

within the population, starting from initially very small numbers. Bacterial evolution is

now widely recognised as an important testbed for evolutionary theory, since it allows

lab experiments to be carried out on short timescales (typically days-weeks) [79, 80].

Understanding how bacterial populations evolve is also a pre-requisite for our ability to

mitigate against the emergence of antibiotic-resistant infections [81].

In the remainder of this review, we highlight in more detail a number of interesting

phenomena that are associated with various modes of bacterial growth, and for which

statistical physics models have been developed. We divide this discussion into two parts:

in section 3 we consider growth in a homogeneous, well-mixed environment, while in

section 4 we discuss growth in spatially structured environments.

3. Bacterial growth in a spatially homogeneous environment

3.1. Bacterial growth experiments and population dynamic equations

In the laboratory, bacteria are often grown in liquid suspension under well-mixed

conditions. Here we give a brief overview of the typical experimental techniques involved

and the types of equations used to describe the resulting population dynamics.

3.1.1. Growth in a batch culture Fig. 2A illustrates a typical setup for what is known

as a “batch culture” growth experiment. A small number of bacteria are inoculated

into a well-shaken container filled with liquid nutrient medium (Fig. 2B shows a large-

volume flask; Fig. 2C shows a 96-well microplate which can be used to perform multiple

simultaneous smaller-volume experiments). Over a period of ∼1 day, the density of

bacteria n(t) is measured (usually by determining the turbidity of the suspension ‡)
and the results are plotted as a function of time t. Typical results are shown in Fig.

2D. These “growth curves” have a characteristic shape: an initial period, known as the

lag phase, in which no growth is detected, followed by a period of exponential growth

(known as the exponential phase), followed by a slowing down and eventual cessation

of net growth, known as the stationary phase. It is generally stated that the lag phase

happens because the bacteria need to adjust to the liquid medium (having typically been

stored under different conditions), while stationary phase happens when the population

exhausts its nutrient supply, or builds up waste products. However, the details of what

happens during the lag and stationary phases remains a topic of active research [83, 84].

Simple equations can be used to describe the results of a batch culture growth

experiment. Assuming initially that the nutrients are unlimited, the dynamics of the

‡ For a bacterial suspension, turbidity is usually referred to as “optical density”, or OD. The OD has
been shown to correlate well with the biomass density in the sample [82]. Other techniques to measure
bacterial density include spreading the suspension on an agar gel of nutrient media, incubating and
counting the resulting colonies, or direct counting of cells using a Coulter counter or flow cytometer.
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Statistical physics of bacterial growth 9
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Figure 2. (A) Sketch of a typical batch culture bacterial growth experiment. (B-
C) Containers used to grow bacteria: a large-volume flask (100ml), and a microtiter
plate with 96 individual culture wells of volume ∼ 400µl. (D) Measured growth curves
for E. coli strain MG1655 in simple- (“rich” MOPS: glucose, aminoacids, nucleotides,
salts (blue curve)) and complex-nutrient medium (LB broth, yellow curve). "OD" is
a measure of the turbidity of the suspension; see footnote to main text. The MOPS
medium was created by mixing 100ml M2101, 100ml M2103, 200ml M2104 (Teknova),
10ml 0.132M K2HPO4, 1g glucose, and double-distilled, autoclaved water to a total
volume of 1000ml. The LB medium consists of 25g of LB powder (Fisher): tryptone,
yeast extract and NaCl, dissolved in 1000ml of distilled water and autoclaved. 200µl of
the medium was added to each well of a 96-well plate (panel C), inoculated with 1µl of
PBS-washed overnight culture of E. coli, and incubated at 37C in a BMG FLUOstar
plate reader for 24h. OD was measured every 2mins with shaking for 20s prior to
each measurement. (E) The exponential growth model (Eq. (5), black curve) fits the
experimental MOPS curve from panel D for low bacterial densities. Fitting to the
data in the range t = 1.5 . . . 3.5h gives an exponential growth rate r = 1.94h−1. (F)
Comparison between different models and an experimental growth curve for growth
in rich MOPS: the logistic growth model (Eq. (7)) is shown by the green line and
the Monod growth model (Eq. (10)) is shown by the red line. The best-fit maximum
growth rate is 2.2h−1 (logistic growth) and 2.1h−1 (Monod growth).
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Statistical physics of bacterial growth 10

bacterial population can be modelled as

dN(t)

dt
= rN(t), (5)

where N(t) is the number of bacteria at time t and r is the per-bacterium replication

rate. Eq. (5) predicts that the population grows exponentially

N(t) = ertN(0) = 2t/TN(0), (6)

where T = ln 2/r is the doubling time, defined by N(t + T ) = 2N(t). For E. coli

under optimal conditions (rich nutrient broth, 37◦C), T ≈ 20 min which gives r ≈ 2.1

h−1. Eq. (5) is appropriate for relatively large populations (≫ 103 cells). For smaller

populations, it may be important to consider that replication is not a continuous process

but occurs as discrete events which may be synchronous §. In some cases, it may be

more convenient to use as the dynamical variable the total biomass of the population

rather than the number N of bacteria. The total biomass obeys an identical equation

to Eq. (5), but it is a continuous quantity which is unaffected by discrete cell division

events [85].

Equation (5) provides a good model for the exponential phase of growth of a

bacterial population, as we show in Fig. 2E. However, it does not capture the transition

to the stationary phase, where the population saturates. A simple way to capture this

saturation is to use instead a logistic growth equation [86]

dN

dt
= rN(1−N/K), (7)

where K is the maximal population size (or carrying capacity) and the term (1−N/K)

decreases the effective growth rate when N becomes large, mimicking the effect of

nutrient depletion or toxic waste product buildup. The solution of Eq. (7), N(t) =

N(0)ert/[1 + (N(0)/K)(ert − 1)], does indeed saturate, as we show in Fig. 2F. This

model is in quite good agreement with measured growth curves for experiments in

simple nutrient media (Fig. 2F) ‖.
Saturating population growth can also be modelled in a more biologically consistent

way by including the dynamics of the nutrient explicitly in the equations. The classic

equation for the nutrient-concentration dependent growth of a bacterial population is:

dN

dt
=
(

rmaxs

Ks + s

)

N, (8)

§ In a population starting from a single bacterium, division events in different cells occur quasi-
synchronously for about the first 10 generations [67, 68].
‖ The sharp-eyed reader will note that the solution of the logistic equation (7) is not in perfect
agreement with the MOPS growth curve from Fig. 2F, and cannot replicate the LB growth curve
from Fig. 2D. The shapes of growth curves can in general be more complicated than suggested by
these simple models, especially where there is more than one growth-limiting nutrient [31, 87]. More
complicated models, such as those that use density-dependent growth functions [88, 89, 90, 91], have
been developed to try to achieve better fits.
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Statistical physics of bacterial growth 11

where s is the nutrient concentration, rmax is the maximal per-cell growth rate and Ks

is the nutrient concentration at which the growth rate is half-maximal. In Eq. (8), the

per-cell growth rate is described by a “Monod function” [92]:

g(s) = rmaxs/(Ks + s), (9)

which depends linearly on the nutrient concentration s for low nutrient concentrations,

but becomes independent of the nutrient as s → ∞. This captures the fact that for high

nutrient concentration, growth is limited by the bacterium’s capacity to import and use

the nutrient, rather than by the availability of the nutrient in the environment. Eq. (8)

must be coupled with a dynamical equation for the nutrient concentration:

ds

dt
= −γ

(

rmaxs

Ks + s

)

N, (10)

where γ is a yield coefficient, describing the number of units of nutrient that are

consumed to produce one bacterium (divided by the volume).

Numerical solution of Eqs. (8) and (10) predicts that the bacterial population size

saturates as the nutrient runs out. This solution agrees well with experimental data

(Fig. 2F), although it is typically not significantly better than the solution of the

logistic growth equation (7) ¶.

3.1.2. Growth in a chemostat The batch culture setup shown in Fig. 2 is not the only

way to perform a well-mixed bacterial growth experiment. An alternative approach is

to use a chemostat: a well-mixed vessel in which fresh nutrient medium is supplied from

a reservoir at a constant flow rate, and the contents of the vessel (bacteria and spent

medium) are removed at the same rate, so as to keep the volume constant (Fig. 3A

and B). In the chemostat, one achieves a steady-state population in which the rate of

bacterial replication is matched by the rate of removal of bacteria.

The dynamics of bacterial growth in a chemostat can be modelled by making minor

modifications to Eqs (8) and (10) to account for the inflow of nutrient and the outflow

of bacteria plus medium. The resulting equations are [98]:

dN

dt
=
(

rmaxs

Ks + s

)

N −Nd, (11)

ds

dt
= −γ

(

rmaxs

Ks + s

)

N + s0d− sd, (12)

where d is the rate of fluid flow into and out of the chemostat and s0 is the concentration

of nutrient in the reservoir. These equations have the following steady-state solution:

N∗ =
rmaxs0 − d(Ks + s0)

γ(rmax − d)
, (13)

¶ In addition, the Monod relation (8) has the rather unsatisfactory feature that it is an ad hoc

function, rather than being derived from any underlying model of the cell’s biochemistry. Because
of this, attempts have been made over many years to develop more complex nutrient-dependent growth
equations, which take into account features such as population-size dependence [93], temperature [94],
multiple nutrients [95], pH [96], and the thermodynamic driving force for the biochemical growth
reaction [97].

Page 11 of 48 AUTHOR SUBMITTED MANUSCRIPT - ROPP-101107.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Statistical physics of bacterial growth 12
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Figure 3. (A) Schematic illustration of a chemostat. (B) Photograph of a simple
chemostat consisting of a glass flask with tubing for media delivery, aeration, and
waste removal, and a magnetic bead for stirring the flask contents. (C) Example
curves N(t), s(t) (black and green, respectively), obtained by numerical simulation of
Eqs. (11) and (12) for γ = 1,Ks = 0.1, s0 = 1, rmax = 2 and d = 1 (solid lines) and
d = 3 (dashed lines). The simulations are initiated with N(0) = 0.5 and s(0) = 1 (in
arbitrary concentration units). dcrit = 1.82 for this set of parameters. For the solid
lines, d < dcrit and a stable bacterial population is maintained in the chemostat (the
solid black line reaches a non-zero steady state); for the dashed lines, d > dcrit and the
population is “washed out” (the dashed black line goes to zero).

s∗ =
dKs

rmax − d
, (14)

for d < dcrit = (rmaxs0)/(Ks+ s0), and N∗ = 0, s∗ = 0 if the flow rate is larger than dcrit.

Therefore, growth in the chemostat is possible only if the flow rate is lower than the

maximum growth rate of the bacteria+. Fig. 3C shows example plots of the bacterial

density and the nutrient as a function of time, predicted by Eqs. (11) and (12) for two

values of d, above and below dcrit.

The chemostat equations (11) and (12) can be extended to predict the dynamics

of multiple competing or cooperating populations (see Section 3.2), populations

preyed on by viruses, evolving populations, etc [99, 100, 101, 102], providing a well-

founded mathematical model for a host of ecological scenarios. Many of these models

have mathematically interesting solutions (showing, for example, oscillatory dynamics

[98, 103]).

+ The same effect of “washing out” of the population with a high dilution rate can also be observed in
a simpler, logistic-like model without explicit nutrients:

dN

dt
= rN(1−N/K)− dN, (15)

which has steady state solution N∗ = K(1− d/r) for d < r, and N∗ = 0 otherwise.
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Statistical physics of bacterial growth 13

3.1.3. Growth of small populations The models which we have discussed so far are

all deterministic; they represent the dynamics of large bacterial populations, for which

fluctuations in the population size are negligible. Recently, however, it has become

possible to study the dynamics of small bacterial populations using microfluidic devices

coupled with microscopy [104, 69, 105]. For example, microfluidic chemostats have

been constructed in which the population size is 102 − 104 bacteria [106, 107]. Here,

fluctuations in population size become important and stochastic models are needed. The

birth-death process provides a natural way to model such a population. If we assume

that bacterial reproduction and death (removal from the system) are Poisson processes

with rates r and d, then we can write the following Master equation for the probability

P (N, t) that N bacteria are present at time t:

dP (N, t)

dt
= − (r + d)NP (N, t) + r(N − 1)P (N − 1, t)

+ d(N + 1)P (N + 1, t). (16)

The statistical properties of such birth-death processes have been well studied [108,

109, 110]. One can think of this process as a biased random walk in the space of N , the

population size, with the strength of the bias being given by r − d. If r < d then the

removal rate exceeds the birth rate and one expects the population to become extinct

within a finite time (i.e. to reach the absorbing state at N = 0). On the other hand, if

r > d, then on average the population increases exponentially, N ∼ exp[(r − d)t], but

in any given realisation of the dynamics there is a non-zero probability

ρN0 = (r/d)N0 (17)

that the population will become extinct. This probability decreases exponentially with

the initial size N0 of the population since each of the initial cells can go extinct with

probability ρ1 = r/d [110]. In the critical case where r = d the population fluctuates

randomly (as an unbiased random walk in N) and will eventually become extinct, but

the average time to extinction is infinite.

Branching and birth-death processes similar to that of Eq. (16) have been applied

to model bacterial evolution. A classical example is the Luria-Delbrück model [9], or,

more precisely, its stochastic version by Lea and Coulson [10]. This model predicts the

distribution of the small number of mutant bacteria in a large growing population of

wild-type (unmutated) bacteria. Comparing the experimentally observed distribution

for this quantity with the model prediction is a standard method for estimating mutation

probability in bacteria (this is known as a “fluctuation test”, see [10]). For recent

developments in this field, see e.g. Ref. [111].

In the next two sections, 3.2 and 3.3, we review several pieces of recent work in which

the models described above are extended to study more complex situations: specifically,

noise-driven oscillations in small bacterial populations, and populations of bacteria that

switch stochastically between different states.
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Statistical physics of bacterial growth 14

3.2. Example 1: Noise-driven oscillations in bacterial populations

The chemostat, described in Section 3.1.2, is designed to achieve a steady state of growth

for a large bacterial population, by supplying fresh medium at the same rate as spent

medium (plus bacteria) is removed. In the natural environment, however, bacteria may

experience conditions that are very different to those of a chemostat. The population

size may be small, as discussed above (e.g. for bacteria inhabiting the spaces between

soil granules, or growing inside a human or animal host cell), nutrient supply may be

unpredictable, and bacteria may be removed from the system not just by dilution but

also by death due to viral predation or host immune response. Bacteria may also be

retained in the system if they adhere to a surface. Extending the chemostat equations

(11) and (12) to include these factors reveals interesting predictions, one of which is

that noise-driven stochastic oscillations may be a common feature of small bacterial

populations in the natural environment [102].

To see this, let us start by analysing the deterministic chemostat equations (11)

and (12), modified to allow for unequal rates of nutrient supply and removal, and for

bacterial death. These are:

dn

dt
= f(n, s) = (g(s)− d)n, (18)

ds

dt
= h(n, s) = −Γg(s)n+ b−Rs, (19)

where n = N/V is the bacterial density (with N being the number of cells and

V the chemostat volume), s is the nutrient concentration, the growth rate g(s) ≡
rmaxs/ (Ks + s), d is the rate of bacterial removal from the system (by death or dilution),

b is the rate of nutrient supply, R is the rate of nutrient removal and Γ ≡ V γ is the

yield coefficient. Equations (18) and (19) have a single (non-trivial) fixed point at

n∗ = (b−RdKs/(rmax − d)) /(Γd) and s∗ = dKs/(rmax−d). This solution is independent

of the volume of the system because the model described by Eqs. (18) and (19) is

deterministic. Linear stability analysis reveals how the system approaches this fixed

point [112]. If the eigenvalues of the Jacobian matrix J

J =

(

∂f/∂n ∂f/∂s

∂h/∂n ∂h/∂s

)

=

(

g(s)− d n(dg/ds)

−Γg(s) −Γn(dg/ds)−R

)

, (20)

evaluated at the fixed point (n∗, s∗), are real and negative, then we expect the system to

relax monotonically to its fixed point. In contrast, if the eigenvalues are complex with

a negative real part then we expect exponentially decaying damped oscillations as the

system approaches the fixed point. The matrix J evaluated at (n∗, s∗) is given by

J∗ = d

(

0 β/χ

−Γ −β − χ

)

, (21)

where we have defined β ≡ (Γn∗/d)(dg/ds)s=s∗ = (Γn∗/d) × [rmaxKs/(Ks + s∗)2], and

χ ≡ R/d. The eigenvalues λ of J∗ are given by 2λ/d = −(β + χ)±
√

(β + χ)2 − 4β. If

χ ≥ 1, i.e. the nutrient removal rate R is greater than the bacterial removal rate d (e.g.
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Statistical physics of bacterial growth 15

because bacteria adhere to a surface), then λ is real and negative for any value of β, and

we expect the system to approach the fixed point monotonically. However, if χ < 1, i.e.

bacteria are removed faster than nutrient (e.g. due to death), then the eigenvalues are

complex with negative real part, for β values in a range such that (β + χ)2 < 4β. This

implies that transient oscillations can happen as the system approaches the fixed point.

The frequency Ω of the oscillations is given by the imaginary part of the eigenvalues

λ: 2Ω/d =
√

4β − (β + χ)2. Fig. 4A shows that numerical simulations of Eqs. (18)

and (19) indeed predict significant oscillations for a set of parameters corresponding

approximately to E. coli growing on glucose (see figure caption for details) [31, 26, 113].

What causes these transient oscillations? Intuitively, they happen because the

system builds up surpluses and deficits of nutrient, relative to the bacterial population

density. When there is a surplus of nutrient, the bacterial population grows rapidly

and overshoots the amount of available nutrient, leading to a sudden deficit of nutrient,

upon which the population decreases rapidly and eventually undershoots the nutrient

concentration, leading to a nutrient surplus. A transient nutrient surplus can only

happen if excess nutrient is allowed to accumulate in the system without being washed

away; thus the requirement for χ < 1. One can also explain the requirement for an

intemediate value of β, such that (β + χ)2 < 4β. The parameter β measures the

responsiveness of the bacterial growth rate to changes in the nutrient concentration.

For very small values of β, the growth rate does not respond to changes in nutrient,

so transient nutrient surpluses will not translate into bacterial population oscillations.

For very large values of β, the population tracks the nutrient concentration closely,

preventing nutrient surpluses or deficits from building up.

This analysis suggests that, in some situations in the natural environment,

bacterial populations whose dynamics is deterministic may undergo transient (damped)

oscillations, eventually reaching a non-oscillating steady state. But what happens for

very small populations? It turns out that for small populations stochastic fluctuations

due to the birth and death/removal of individual bacteria (demographic noise) drive

sustained oscillations in the population density and the nutrient concentration.

The effects of demographic noise in small bacterial populations can be modelled in 
various ways. If the fluctuations due to the noise are expected to be large, then individual 
birth and death events should be modelled explicitly – typically these would be modelled 
as Poisson processes, and simulating using a kinetic Monte Carlo scheme such as the 
Gillespie algorithm [114, 115]. However, if the fluctuations are expected to be small, they 
may be approximated by adding stochastic noise terms to the deterministic equations 
(18-19). This is the approach taken by Khatri et al [102], leading to a set of Langevin 
equations of the form

dx

dt
= a+

(

B
)1/2

η(t). (22)

Here, x ≡ (n, s), a ≡ (f(n, s), g(n, s)) describes the deterministic dynamics, and η(t)

is a vector of independent, Gaussian-distributed random numbers with zero mean and

variance scaling with the inverse of the system volume (thus, the effects of noise are
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Statistical physics of bacterial growth 16

(a)

B

A

Figure 4. Dynamical predictions for the population density of E. coli bacteria growing
on glucose, with parameters rmax = 1hr−1, d = 0.5hr−1, Ks = 1µM and Γ = 1.8×1010

glucose molecules per bacterium . The nutrient inflow rate b is varied, such that we
have β = 0.1, χ = 0 (corresponding to b = 0.1µMh−1 and R=0; such that s∗ = 1µM
and n∗ ≈ 107 bacteria per litre) and β = 0.01, χ = 0 (corresponding to b = 0.01µMh−1

and R=0; such that s∗ = 1µM and n∗ ≈ 106 bacteria per litre). Panel A shows results
for the deterministic model, Eqs. (18-19). Panel B shows results for the stochastic
model, Eq. (22), for a system volume of 1ml; i.e. for approximate absolute bacterial
numbers of 104 (red) and 103 (blue). Note the different time axes in the two panels. In
these simulations, the bacterial densities are much lower than in a typical microbiology
lab experiment, and are 1-2 orders of magnitude lower than the bacterial density in
seawater, but they are similar to the bacterial density that might be found in drinking
water.

more important for small system volume). The matrix B is given by

B =

(

ng(s) + dn −Γng(s)

−Γng(s) Γ2ng(s) + b+Rs

)

. (23)

This takes account of the fact that fluctuations in the bacterial population are coupled

to fluctuations in the nutrient concentration, and vice versa. Equation (22) can be

derived via a Kramers-Moyal expansion [116]; briefly, one expresses the model as a

set of chemical reactions, writes down the corresponding master equation, and Taylor

expands it under the assumption that changes in the number of molecules/bacteria
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Statistical physics of bacterial growth 17

due to firing of a single reaction are small [102, 116]. The use of Gaussian noise to 
model demographic stochasticity is particularly convenient in problems like this one, 
where the nutrient is represented explicitly. This is because the number of molecules of 
nutrient is typically far larger than the number of bacteria – thus the nutrient essentially 
behaves deterministically. Use of a kinetic Monte Carlo scheme would require one 
either to simulate nutrient molecules discretely (which would be highly inefficient), or to 
adjust the kinetic Monte Carlo algorithm to take account of a time-varying, continuous, 
nutrient concentration (similar to [117]).

Fig. 4B shows the results of numerical simulations of Eq. (22), for the same

parameter set as in Fig. 4A (representing E. coli growing on glucose), but for a system

volume of 1ml. These parameters represent a very low bacterial density (similar to that

found in drinking water), so that the absolute numbers of bacteria present are ∼ 104

(blue curve) or ∼ 103 (red curve). It is immediately clear that demographic stochasticity

has an important effect: the transient oscillations of the deterministic model (Fig. 4A)

have been converted into sustained oscillations in the stochastic model. The presence of

these oscillations is also clearly visible in the power spectrum [102]. This effect may be

widespread for very small bacterial populations; for example, it also happens in a model

of a nutrient-cycling bacterial ecosystem with two species which feed on each others’

waste products [102].

These stochastic oscillations are an example of a very general mechanism that 
was discovered by McKane and Newman in the context of predator-prey models 
[118], and later found by other statistical physicists in a wide range of models 
[119, 120, 121, 122, 123, 124, 125, 126]. In this mechanisms, the underlying oscillatory 
modes of a deterministic dynamical system are excited by a source of intrinsic noise (in 
this case demographic noise), leading to sustained oscillatory dynamics in the stochastic 
version of the system, whereas the deterministic system shows only damped oscillations. 
Thus, this example shows how insights from statistical physics can be important in 
understanding the behaviour of bacterial populations.

Despite the possible ubiquity of this mechanism, demographic-noise induced

oscillations have not yet been observed for bacterial populations. One difficulty is

that the effect is strong only if number of bacteria is very small (e.g. Fig. 4 shows

predictions for ∼ 103 − 104 bacteria). The predictions are also for a well-mixed system,

while rules out typical experimental methods where small populations are grown as

microcolonies on agar plates (see section 4). However, well-mixed conditions for small

bacterial populations are starting to be achieved using in microfluidic chemostats [106]

or microfluidic droplets [127]. These techniques should eventually reveal a host of

interesting fluctuation-driven dynamical phenomena.

3.3. Example 2: Switching bacteria in a switching environment

Up to now, we have mostly assumed that all cells within a bacterial population are

identical. However, in many cases, genetically identical bacteria within a population
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Statistical physics of bacterial growth 18

A B

Figure 5. E. coli cells show variability in the expression of a gene encoding a
fluorescent protein. A population of E. coli cells (strain RJA003, created by P1
transduction from strain MRR [13] into MG1655) was grown in a 1 litre chemostat
with dilution rate 0.5h−1 on Evans media [128] supplemented with 50mM glucose. The
bacteria expressed cyan fluorescent protein (CFP) from a constitutive (unregulated)
promoter (the PR promoter from phage λ). After sampling from the chemostat, cells
were kept on ice for ∼ 1h prior to being spread on the surface of a 1% agarose pad and
imaged in an epifluorescence microscope. (A) Fluorescence image in the CFP channel
showing that individual cells show different levels of fluorescence. (B) Histogram of
fluorescence intensities per area, obtained from analysis of many such images (units are
arbitrary). The width of the histogram, relative to the mean, provides a measure of the
population heterogeneity in gene expression. Data shown courtesy of Joost Teixeira
de Mattos, Alex ter Beek, Martijn Bekker and Tanneke den Blaauwen.

can show variation in their levels of gene expression (see, e.g., Fig. 5). In the

most striking cases, individual bacteria switch stochastically between very distinct

states of gene expression, such that the population contains subpopulations with very

different behaviours [129, 130]. The biological function of this stochastic switching is in

general not known (and may differ in different cases) [131]: suggestions have included

evasion of host immune responses [130, 132, 133], avoidance of evolutionary fitness

valleys [134], division of labour among cells in the population [135] or “bet hedging”

to ensure survival of the population in an unpredictable environment [136, 137]. The

challenge of explaining the function of stochastic switching in bacteria has motivated

the development of a host of theoretical models, of varying degrees of complexity

[138, 139, 140, 141, 142, 143, 144, 145, 133]. Here, we review perhaps the simplest

of these, the case of randomly switching cells in a switching, unresponsive environment

[138, 139, 140, 141, 142, 143]. An elegant statistical physics model for this case was

presented by Thattai and van Oudenaarden [140]; here we follow their approach, even

though it is rather idealistic from a biological point of view.

We suppose that individual bacteria in a population can be in either of two states:

a fast-growing state which we label 1 and a slower-growing state, which we label 0.

Bacteria switch stochastically between the two states, with a rate k0 of switching from

the fast- to the slow-growing state (1 → 0) and a rate k1 of switching from the slow-

to the fast-growing state (0 → 1). This scenario can be described by the following

Page 18 of 48AUTHOR SUBMITTED MANUSCRIPT - ROPP-101107.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Statistical physics of bacterial growth 19

equations for the bacterial population dynamics:

dN0

dt
= −k1N0 + k0N1 + γ0N0, (24)

dN1

dt
= +k1N0 − k0N1 + γ1N1. (25)

Here, N0 and N1 denote the numbers of bacteria in each of the two states, and we have

assumed that these are large enough to be treated as continuous variables. The first two

terms in each equation describe switching between states, and the third term describes

growth.

Equations (24) and (25) can be reduced to a single, nonlinear dynamical equation

by defining the fraction f of the bacterial population which is in the faster-growing state

1 as f = N1/N , where N = N0 +N1. This leads to [140]

df

dt
= k1 + f [∆γ − k1 − k0]− f 2∆γ, (26)

where ∆γ = γ1−γ0 is the difference in growth rate between the two states. The variable

f is useful because it provides a measure of the growth rate of the total population, as

we can see by summing Eqs. (24) and (25):

dN

dt
= (γ1 + f∆γ)N. (27)

Since γ1 and ∆γ are constants, measuring f is equivalent to measuring the total

population growth rate. For this reason, f has been referred to as a measure of the

“fitness” of the population [140, 133]. Equation (26) predicts that the variable f increases

in time until it reaches a plateau value which corresponds to the positive root of the

quadratic equation k1+f [∆γ−k1−k0]−f 2∆γ = 0. Thus, although the total population

size increases exponentially in time (Eq. (27)), the fraction of the population that is in

state 1 approaches a steady state.

Now let us suppose that the bacterial population lives in a changing environment:

specifically, the environment can flip, such that bacteria in the the slow-growing state

become fast-growing and vice versa. Thus, the fraction f1 of bacteria that are in the

fast-growing state undergoes a jump: f1 → 1 − f1. The environment can flip either

periodically, or stochastically with a fixed rate [138, 139, 140, 141, 142, 143]. The

environment is assumed to be “unresponsive”, in the sense that its behaviour is not

coupled to the state of the bacterial population.

This simple and highly idealized model leads to some interesting results. In

particular, one can ask what is the optimal bacterial switching strategy, i.e. the

strategy which maximises the total population growth rate. Under what circumstances

should bacteria stochastically switch into a slower-growing state, sacrificing fitness in

the current environment, in order to be prepared for a change in the environmental

state?

For a periodic environment, it is possible to obtain an analytical solution for the

average “fitness” 〈f〉, as a function of the model parameters [140]. For a stochastically

switching environment one has to turn to simulations. In either case, it turns out that for
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Statistical physics of bacterial growth 20

a certain a range of parameters (k0, k1, γ0, γ1) bacterial switching out of the fast-growing

state is favourable; thus bacteria can increase their fitness by entering a slow-growing

state, in readiness for the next environmental change. Fig. 6A shows the results of

numerical simulations of Eq. (26), in an environment that switches at rate 1, either

stochastically (as a Poisson process) or periodically. When the rate k1 of switching

into the faster growth state is very small, the average fraction 〈f(k0)〉 of slowly-growing

cells is peaked at a non-zero value of k0. This implies that it is favourable for cells to

switch into the slower growth state at some non-zero rate, whether the environment

is stochastic or periodic. However for a larger value of k1, switching into the slower

growth state is favourable only in the periodic environment. For even larger values of

k1, switching becomes unfavourable even in the periodic environment [140].

It also turns out that, in regions of parameter space where bacterial switching is

favoured, the optimal switching rate matches the switching rate of the environment

[140]. This prediction has in fact been tested experimentally by Acar et al. [146],

although using cells of the yeast Saccharomyces cerevisiae rather than bacteria. In these

experiments, yeast cells were engineered to switch stochastically between two states, in

which expression of an enzyme for metabolising the nutrient uracil was either on or

off. Importantly, the rate of switching could be controlled by addition of a chemical

inducer. The yeast cells were grown in a turbidostat (a setup similar to a chemostat,

but where nutrient is supplied when the culture reaches a predefined cell density rather

than continuously), in which the environment either contained uracil (such that ON

cells were fitter than OFF cells) or a toxic analogue of uracil (such that OFF cells were

fitter than ON cells). Fig. 6B illustrates this setup: the environment was maintained

in state E1 for time T1 before being switched to state E2 for time T2. Yeast cells

switched between the two phenotypic states at (controllable) rates rON and rOFF and

proliferated at rates (here labelled γ) that depended on both the phenotypic state and

the environment. Fig. 6C and D show results of experiments for a "fast" environment,

in which T1 and T2 are relatively short (Fig. 6C) and a "slow" environment, in which

T1 and T2 are long (Fig. 6D). In the fast environment, rapidly switching cells, with

high rates rON and rOFF (red data points) have, on average, a faster growth rate than

slow-switching cells, with lower rates rON and rOFF (blue data points). The situation is

reversed, however, for the slow environment.

This example shows that even the relatively simple case in which the switching

behaviour of the cells and of the environment is uncoupled can produce non-trivial

results, which go some way to explaining the possible advantages of stochastic switching.

Real infections or environmental scenarios are of course more complex, and other models

have been developed that reflect different aspects of this complexity. For example,

statistical physicists have considered the case of an environmental switch which is

triggered when the state of the population reaches a threshold (mimicking an immune

response) [133]. With some approximations, this case can be treated analytically and

reveals a new possible role for stochastic switching, in which the population composition

is modulated so as to avoid triggering the environmental response. In other work, looking
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Statistical physics of bacterial growth 21

Figure 6. (A) Predicted average value of f as a function of the rate k0 of switching
into the less favourable state 0. These results were obtained by numerical solution of
Eq. (26), for an environment that switches stochastically as a Poisson process (with
average rate 1), or periodically (once per time unit). When the environment switches,
we set f → 1 − f in the simulation, keeping all other parameters fixed. When the
rate k1 of switching into the faster growth state is very small, the function 〈f(k0)〉 is
peaked at a non-zero value of k0, implying that it is favourable for cells to switch into
the slower growth state at some non-zero rate, whether the environment is stochastic
or periodic. However for the larger value of k1 simulated here, switching into the
slower growth state is favourable only in the periodic environment. For even larger
values of k1, switching becomes unfavourable even in the periodic environment [140].
(B-D) Experiments with a stochastically switching strain of yeast cells, performed by
Acar et al. [146] (images reproduced from Ref. [146]). (B) Schematic illustration
of the experimental setup. Yeast cells can be in either of two states, labelled ON
and OFF. Cells randomly switch between the states at rates rON and rOFF which
can be tuned by the experimenter. The environment is maintained in state E1 for
time T1 before being switched to state E2, which is maintained for time T2. The
proliferation rates γ of the two cell types depend on the environment; the ON cell
type proliferates faster in E1 while the OFF cell type proliferates faster in E2. (C-D)
Growth rates measured as a function of time during such an experiment, for cells that
switch fast (red; rON ∼ 0.047h−1, rOFF ∼ 0.035h−1) or slow (blue; rON ∼ 0.004h−1,
rOFF ∼ 0.007h−1). Panel C shows results for an experiment with T1 = 20h, T2 = 37h;
here the fast-switching cells have on average a higher growth rate. Panel D shows
results for T1 = 96h, T2 = 96h; here the slow-switching cells have a higher growth rate
on average.
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Statistical physics of bacterial growth 22

Figure 7. (A) A colony of E. coli growing on the surface of an agarose gel in a Petri
dish. The colony is about 7mm wide and less than 1mm thick. (B-D) Successive close-
ups of a fragment of the colony’s rough border. In (D), individual bacteria may be
seen.

at the topic from a different perspective, statistical physics models have been used to

investigate the relative benefits of “blind” stochastic switching compared to “responsive”

switching, in which cells detect the state of the environment and respond accordingly

[144]. A scenario in which stochastic phenotype switching is advantageous even in a

fixed environment has also been considered, in Ref. [134].

4. Spatially structured bacterial populations

In nature, bacterial populations rarely exist as well-stirred, homogeneous, liquid

cultures. Instead, imperfect mixing, combined with spatial heterogeneity of the

environment (e.g. gradients of food, oxygen, temperature), leads to the emergence

of populations which are spatially structured, both genetically and phenotypically

[147, 148]. These structured populations often take the form of dense conglomerates

in which bacterial cells interact mechanically with each other. An example is a bacterial

biofilm, which is a dense mat of cells attached to a surface [149, 150]. This might be a

solid surface such as a rock or soil particle, or a semi-solid matrix such as food, animal

or plant tissue. Biofilms are a source of concern in both medicine and industry because

they can cause chronic infections when they form on medical implants, and biofouling
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Statistical physics of bacterial growth 23

A B C

Figure 8. (A-C) Colonies formed by genetic variants of Pseudomonas aeruginosa

strain PA01 on the surface of a nutrient agar pad. Images courtesy of Yasuhiko Irie,
University of Dayton. (A) A colony formed by the standard (non-mutated) version of
this strain. (B): A “mucoid” colony formed by a strain that overproduces extracellular
polymeric substances. (C) A “rugose” colony formed by a “rugose small colony variant”
(RSCV) strain. RSCV strains often show increased levels of the intracellular signalling
molecule cyclic di-GMP.

when they form on industrial devices [151, 152].

In the microbiological lab, dense, spatially structured bacterial populations are

often encountered in the form of "colonies". These colonies arise when individual

bacterial cells are dispersed across the surface of a layer of nutrient-containing semi-

solid agar gel and allowed to proliferate in an incubator for a day or so (Fig. 7A)∗. The

colonies are visible by eye as small spots of size ∼ 0.5− 5mm on the agar surface; each

one contains ∼ 108 or more bacteria, all of which are progeny of a single founder cell

(Fig. 7B-D). While Fig. 7 shows colonies formed by E. coli, Fig. 8 shows those formed

by several genetic variants of the bacterium Pseudomonas aeruginosa (PAO1 strain).

These variants show strong differences in colony appearance due to differences in their

production of extracellular polymers which affect cell-cell and cell-surface interactions.

More generally, the shape and size of a bacterial colony depend on factors such as the

nutrient concentration and the agar gel stiffness as well as the bacterial strain that is

used [153, 154].

From a physicist’s point of view, the growth of biofilms and bacterial colonies

are beautiful examples of self-assembly processes, in which the structural properties of

the population are closely coupled with local gradients of nutrient (or, potentially, of

signalling molecules or toxic substances such as antibiotics) [81, 155, 156, 157]. As with

many other statistical physics models, the inclusion of space in models for bacterial

population growth leads to many interesting new phenomena.

Biofilm and colony self-assembly are particularly interesting from a statistical

physics perspective because of their connection with the well-established field of interface

growth models [158]. Interface growth models fall into a small number of universality

classes, with well-defined scaling exponents for the interface roughness as a function of

time and system size [159]. Frustratingly, though, there are few experimental systems

∗ Agarose is a polymer of agarobiose monomers, whereas agar is a natural product produced by algae
that contains a mixture of agarose and agaropectin. Agar is cheaper and is used in plating experiments;
agarose is more expensive but is often preferred for microscopy.
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Statistical physics of bacterial growth 24
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Figure 9. Top: Schematic illustration of a model in which a spatially structured
bacterial population is represented as a chain of well-mixed sub-populations connected
by migration. In this model, bacterial growth in each compartment is assumed to
follow the logistic model (Eq. (7)), and the migration rate per bacterium between
neighbouring compartments is assumed to be a constant, m. Bottom: The model
predicts the emergence of travelling waves of bacteria. The plot shows the results of
numerical simulations of Eq. (28), for M = 24, r = 1,m = 0.1 and any K > 0, in
which bacteria are initially present only in compartment i = 1. The curves correspond
to times t = 0, 7.5, 15, 22.5, 30 (from left to right).

[160, 161, 162, 163] for which these theoretically-predicted scaling exponents can be 
measured. The edge of an expanding bacterial colony or the surface of a growing biofilm 
could provide an excellent system to measure such exponents and may stimulate research 
into models that involve non-local interactions between remote regions of the interface. 
Such long-range interactions can happen in bacterial populations due to the interplay 
between growth and nutrient/waste diffusion, and the dynamics behind the front caused 
by physical interactions between growing cells [78, 164].

4.1. Modelling spatially structured bacterial populations

Many different approaches can be used to model spatially structured bacterial

populations, depending on the system being studied and the desired level of physical

and biological realism.

4.1.1. Connected habitats and Fisher-KPP waves Perhaps the simplest approach is

to construct a model that consists of connected well-mixed compartments, between

which bacteria can migrate (mimicking motility, diffusion or flow). The dynamics of

the bacterial population in each compartment can be described using the same type of

equations as in section 3.1, with the additional of coupling terms to describe migration
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Statistical physics of bacterial growth 25

of bacteria between compartments. This kind of approach is appropriate for situations

where the local environment of the bacterial population is liquid-like, and the lengthscale

over which the environment varies is large. It is often used, for example, in large-scale

models of ocean plankton dynamics [165], and in macro-scale models for the treatment

of infections with antibiotics [166].

As a specific example, let us consider a population of bacteria growing in a chain

of M connected compartments (Fig. 9, top). We assume that the bacterial growth

dynamics with each compartment can be described by the logistic model (Eq. (7)), and

that the migration rate per bacterium between neighbouring compartments is constant.

This leads to the following set of differential equations:

dNi/dt = rNi(1−Ni/K) +m(Ni+1 +Ni−1 − 2Ni), for 1 < i < M (28)

dN1/dt = rN1(1−N1/K) +m(N2 −N1),

dNM/dt = rNM(1−NM/K) +m(NM−1 −NM),

where Ni denotes the number of bacteria in compartment i = 1, . . . ,M , r is the

replication rate, K is the carrying capacity and m is the migration rate. Let us suppose

that bacteria are initially present only in compartment i = 1. In this case, the population

spreads in a wave-like manner to the other compartments, as we show by numerical

simulation in Fig. 9 (bottom). In the limit of many compartments, assuming a small

distance ∆x between compartments, and setting m/(∆x)2 → D, we can rewrite Eq.

(28) as a partial differential equation:

∂n

∂t
= D

∂2n

∂x2
+ rn

(

1− n

K ′

)

, (29)

where x denotes spatial position, n(x, t) is the local density of bacteria and K ′ = K/V

(with units of bacterial density; here V is the volume of one compartment). This

is an example of a Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [86]; its

solutions are travelling waves similar to those observed for the discrete case (Fig. 9).

Stochastic versions of the FKKP equation have also been studied [167, 168], and these

may provide a good description of bacterial population dynamics in some circumstances

[169]. Related approaches have also been used to model more complex situations,

including the spatial expansion of several interacting bacterial populations [170] and

the evolution of resistant bacteria in a drug gradient [171, 172].

4.1.2. Continuum models for dense populations The situation is different when bacteria

grow in a densely packed assembly such as a colony or a biofilm, in which individual

cells do not migrate freely. Here, physical interactions between bacteria are likely to

be important, and there are also likely to be steep local gradients of nutrient or other

chemicals, making it necessary to model chemical concentration fields explicitly. In such

cases, one can still use a continuum approach, in which both chemical concentrations and

the bacterial population density are represented as continuous fields (as in the FKPP

equation), but the equations must be formulated differently [174, 164].

Page 25 of 48 AUTHOR SUBMITTED MANUSCRIPT - ROPP-101107.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Statistical physics of bacterial growth 26

B

40 microns

A

Figure 10. (A) Confocal laser scanning microscope image of a biofilm formed by P.

aeruginosa PAO1 grown for 24 hours in a flow cell. Image reproduced from Ref. [173].
(B) Illustration of a simple model of a growing biofilm with a flat boundary. The
position of the boundary is given by z = h(t) and the nutrient profile is s(z).

As an example, let us consider the growth of a biofilm on a solid surface, as shown in

Fig. 10A. If we suppose that the bacterial cells are densely packed then it is reasonable

to assume the bacterial density n is constant within the biofilm. If we also assume the

biofilm is flat (even though this is clearly not a good assumption for the biofilm of Fig.

10A!), then the problem becomes 1-dimensional and the bacterial density as a function

of the vertical coordinate is a step function of height h(t) (Fig. 10B). As the biofilm

grows, h(t) increases to accommodate the increase in biomass. The dynamics of h(t)

can be written as

∂h(t)

∂t
=
∫ h(t)

0
ng(s(z, t))dz (30)

where g(s) is the growth rate, which depends on the local nutrient concentration s, for

example via a Monod function (Eq. (9)). The dynamics of the nutrient concentration

s(z, t) is governed by diffusion into the biofilm and consumption by the bacteria:

∂s(z, t)

∂t
= D

∂2s(z, t)

∂z2
− Γng(s(z, t))Θ(h(t)− z). (31)

Here, D represents the diffusion constant of the nutrient (assumed to be the same

inside and outside the biofilm, for simplicity), Γ is a yield coefficient (nutrient consumed

per unit of biomass created) and Θ is the Heaviside step function. Depending on the

boundary conditions for the nutrient field s(z, t), the choice of growth function g(s) and

the parameters D and Γ, this model can predict linear growth: h(t) ∝ t, growth that

slows down in time: h(t) ∼
√
t, or exponential growth: ln[h(t)] ∼ t [155, 175, 164].

In the above example, we have assumed a flat biofilm, which allows us to reduce

the problem to one dimension. In reality, however, most biofilms have rough surfaces

when grown in the typical laboratory flow cell setup (e.g. Fig.10A) [176]; some even

have “mushroom”-like protrusions [177]. More realistic continuum models take surface

roughness into account by representing the biofilm in two or three dimensions, and
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Statistical physics of bacterial growth 27

A B C

Figure 11. (A) The Eden model on a two-dimensional lattice. Cells that are
completely surrounded and cannot replicate are shown in yellow. The bright green cell
illustrates the replication rules: it can replicate to a neighbouring empty lattice site
(including the diagonal ones in this variant of the model) but not to an occupied one.
(B) A snapshot of a simulation of the two-dimensional Eden model in which a cluster
of cells (N = 65536) has grown from a single initial cell. (C) Simulation snapshot for
a two-dimensional Eden model in a domain of width L = 250 that is semi-infinite in
the vertical dimension, with periodic boundaries in the horizontal dimension.

also account for spatially varying bacterial density and local pressure within the biofilm 
[155, 175, 178]. Such models can show interesting phenomena including a “fingering 
instability” [155, 175, 179], as we discuss in more detail in section 4.2. “Active nematics” 
models that take into account orientation of non-spherical cells inside the biofilm can 
also explain features of bacterial colonies such as the existence of nematic-like defects 
and micro-domains of locally-aligned cells [180, 181] .

4.1.3. Individual-based models, on and off-lattice In some situations, it is not

appropriate to treat a spatially structured bacterial population as a continuous field;

one requires instead detailed spatial resolution at the level of individual cells. This is

the case, for example, if one is interested in small populations, heterogeneous populations

(e.g. stochastically switching cells, as in section 3.3), or population-level processes that

are triggered by single-cell events (as we shall see in section 4.3). Models in which the

position and state of each bacterial cell is tracked in time are known as individual-based

models or agent-based models.

The simplest form of an individual-based model of a bacterial population is a lattice-

based one, in which bacteria occupy sites on a lattice and reproduce into neighbouring

lattice sites according to certain rules. A classic example is the Eden model [15] (Fig.

11A). In the Eden model, lattice sites are either empty or occupied, and an occupied

site, or “cell”, can reproduce if empty sites are available in the neighbourhood (different

variants of the Eden model make different assumptions about how the replication rate

depends on the number of empty neighbours [182, 183, 184]). Starting from a single

occupied lattice site, the Eden model produces a cluster of occupied sites (Fig. 11B)

whose interfacial properties fall into the Kardar-Parisi-Zhang (KPZ) universality class

[185]. A particularly important descriptor of an interface is its roughness, defined as

the standard deviation of its height fluctuations. If we consider for simplicity a system
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Statistical physics of bacterial growth 28

with the geometry shown in Fig. 11C (an infinitely long slab of width L sites), then the

interface roughness W is given by

W =

√

∑

i(hi − 〈h〉)2
L

, (32)

where hi is the vertical height of the cluster of cells at horizontal position i. The

roughness scales as W ∼ tβ for short times and W ∼ Lα for long times, with the two

critical exponents being α = 1/2 and β = 1/3 for the two-dimensional Eden model. The

same critical exponents are obtained in an off-lattice version of the Eden model [74].

How well does the Eden model capture the behaviour of real bacterial populations?

To our knowledge, interfacial growth exponents have not been measured for flow-cell

biofilms like that of Fig. 10A. For bacteria growing as colonies on agar gel surfaces,

however, surface roughness W has been measured under conditions where the bacteria

are non-motile [186, 187]. The results are somewhat mixed: some experiments have

produced exponents α and β that are different from those of the KPZ universality

class (with various suggested explanations [186, 187, 158]), while other experiments

have produced exponents consistent with KPZ [188]. It seems that the jury is still

out on whether at least some bacterial colonies fall into the KPZ universality class.

For colonies of motile bacteria, or under conditions of low nutrient concentration,

more complicated, fractal-like colony structures can arise [153, 189, 190, 191] and the

interfacial growth exponents α and β are very different to that of the KPZ universality

class (and correspondingly the Eden model).

The most serious limitation of the Eden model and similar lattice models is that

growth is restricted to cells that are at the boundary of the cluster, and hence the

centre of the cluster is static. This is not a good representation of most bacterial

colonies. While bacteria in the centre of a colony do become starved due to insufficient

nutrient penetration as the colony becomes large, growth typically occurs in the outer

parts of the colony in a layer of considerable thickness (tens of cellular diameters), and

within this growing layer elongation and proliferation of bacteria behind the colony

edge lead to pushing forces on bacteria that are closer to the edge. A similar picture

holds for bacterial biofilms. One can devise lattice models that are somewhat more

realistic, by allowing cells in the centre to replicate and push away surrounding cells

[17]. However, off-lattice individual-based models offer a much greater level of realism.

Such models can account for physical interactions between neighbouring bacterial cells

and between bacteria and their environment, as well as the dynamics of nutrients, intra-

cellular chemical signals, toxins, etc.

In off-lattice individual-based models, individual bacteria (usually modelled as disks

in 2D, or spheres in 3D, although rod-shaped cells can also be modelled) move in

continuous space and interact via physical mechanisms (e.g. elastic repulsion, friction

etc). These simulations are somewhat analogous to molecular dynamics or Brownian

dynamics simulations in condensed matter physics. For example, the dynamics of two-

dimensional rod-shaped bacteria whose motion is opposed by viscous-like friction can
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Statistical physics of bacterial growth 29

be described by the following equations [164, 192]

dri/dt = F i/(ζli), (33)

dφi/dt = 12τi/(ζl
3
i ), (34)

where li is the length of bacterium i, ri is the position of its centre of mass, φi is 
its angular orientation, Fi and τi are the total force and torque acting on it, and ζ is the 
friction (damping) coefficient. The dependence on li comes out from the assumption that 
every infinitesimally thin section of the rod experiences a friction force proportional to 
the local velocity. The model must also account for bacterial growth (here, increase in li 
with time) and division. The rate of growth typically depends on a local nutrient 
concentration field which is represented on a grid and is updated at each timestep 
according to a reaction-diffusion equation accounting for diffusive transport and bacterial 
consumption:

∂s

∂t
= D∇2s− γ

∑

i

g(s(ri)). (35)

A variety of models of this type have been developed and used to simulate bacterial

colonies and biofilms [193, 194, 164, 78, 77, 71, 195]; they differ in their choices of

which physical interactions to include (and how to include them), as well as in how they

account for biological details such as bacterial shape and metabolism.

In the next three sections, 4.2, 4.3 and 4.4, we discuss three examples of interesting

phenomena produced by bacterial growth in spatially structured environments: fingering

instabilities at the edges of colonies and biofilms, the transition from 2-dimensional

to 3-dimensional colony growth and the emergence of genetically segregated sectors

during expansion of a colony. In choosing these examples, we focus on phenomena that

are unconnected with bacterial motility, since motility-induced collective phenomena in

bacterial populations, and in general, have been extensively described elsewhere (see,

e.g. [196, 197, 198, 23, 25, 18, 19, 20]).

4.2. Example: Fingering instabilities at the interfaces of bacterial colonies and biofilms

As we have already mentioned, the expanding edge of a growing bacterial colony, and

the surface of a growing biofilm, are examples of growing interfaces. Depending on the

growth conditions, the interface can be smooth, rough or feature long finger-like shapes

(for colonies) or “mushrooms” (for biofilms) [153, 154, 158, 177, 186, 191, 187, 189]; see

Fig. 12A-C.

Various theoretical approaches have been used to model the shape of these

interfaces, ranging from continuum equations [175, 178] to individual-based models

[74, 164, 192]. Rather than describing these in detail here, we will instead use a simple

toy model to illustrate some basic factors that can affect the shape of the growing edge
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A B C

𝑥
ℎ(𝑥, 𝑡)  ℎ(𝑡)growth

D E F

0 1 2 3 4
0
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4

5

6

7

x
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Figure 12. (A-C) Examples of E. coli colonies (on 2mm-thick, 2% agarose infused
with LB) with different roughness of the colony boundary: smooth (A), rough (B),
and branched (C). These different shapes have been obtained by using different strains
(MG1655 for B, MG1655∆fimA∆fliF for A), or incubating colonies of MG1655 for
different amounts of time at 37C (B = short time, C = long time). (D) Boundary of
a simulated colony (simulation details as in Ref. [192]). The nutrient concentration is
shown as different shades of red (brightest colour = highest concentration). Replicating
cells are shown in bright green, whereas stationary cells with no access to nutrients
are shown in dark green. (E) Schematic illustration of the model from Eq. (36). (F)
Interface profiles h(x, t) obtained by numerically solving Eq. (36) for L = 4, ζ =

0.02, b = 1, f(h) = 1/(1 + e−h), and t = 0, . . . , 10. The initial condition is a
superposition of two sine functions with periods 4 and 1. The oscillation with period
1 is damped (1 < Λ = 2π

√

ζf(0)/f ′(0) ≈ 1.256), whereas the one with period 4 grows
in time.

of a bacterial population. Although the model that we will present here is unrealistic

in many ways, it has the advantage of allowing a simple mathematical analysis.

Let us imagine a two-dimensional population of bacteria which expands in the z 
direction and is confined b etween two walls i n t he x -direction ( Fig. 1 2E). This could 
represent a 2D bacterial colony or a 2D section of a biofilm; here we will r efer to i t as 
a biofilm. T he i nterface o f t he g rowing b iofilm ha s pr ofile z = h(x, t) at tim e t. We 
assume that bacteria grow only in a narrow zone of width b, close to the interface because 
nutrient does not penetrate far into the biofilm. This assumption is based on simulations 
like that shown in Fig. 12D, in which both bacteria and nutrients are modelled explicitly; 
here the bacteria shown in bright green, which are close to the nutrient, are able to 
replicate, while the bacteria shown in dark green, which are far from the nutrient, 
are not able to replicate. Although we do not model the nutrient concentration field
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Statistical physics of bacterial growth 31

explicitly here, we will assume that parts of the interface that protrude in the z direction

experience a higher nutrient concentration because they are closer to a nutrient source

(this would be the case in a typical biofilm flow setup [176]). Thus, the local growth

rate depends on the height of the interface: g(x, t) = f(h(x, t)− h̄(t)), where h̄(t) is the

average height at time t (Fig. 12E). We also suppose that the interface has a “stiffness”,

or a tendency to be flat. This is an ad hoc assumption, but it mimics, to some extent,

adhesion between the bacteria. The dynamics of the interface can then be described

approximately as

∂h

∂t
= bf(h(x, t)− h̄(t))

(

ζ
∂2h

∂x2
+ 1

)

. (36)

In Eq. (36), the term ζ∂2h/∂x2 accounts for the surface stiffness by favouring growth

in concave regions of the interface (troughs) and disfavouring growth in convex regions

(peaks).

To see how this model can produce interesting behaviour, let us make a small

perturbation around an initially flat interfacial profile:

h(x, t) = h̄(t) + ǫ(t)eikx. (37)

Inserting this into Eq. (36) and expanding to first order in the magnitude of the

perturbation, ǫ ≪ 1, we obtain the following equation for ǫ(t):

dǫ(t)

dt
= bǫ(t)

[

f ′(0)− ζk2f(0)
]

, (38)

where f ′(0) is the derivative of the growth function f(h− h̄), evaluated for h = h̄. Thus,

ǫ is predicted to grow in time for perturbations whose wavenumber k obeys

k2 < f ′(0)/(ζf(0)). (39)

This condition is equivalent to stating that interfacial “bumps” of dimension Λ = 2π/k

will tend to grow if Λ > 2π
√

ζf(0)/f ′(0). This means that the interface will be unstable

to the growth of finger-like protrusions, provided the width of the system L is large

enough to allow such protrusions to develop, i.e. for systems of size L > 2π
√

ζf(0)/f ′(0)

(Fig. 12F). Thus, a transition from a smooth to a fingered front is predicted to occur

for a growing bacterial population if (i) the spatial extent L of the population is big

enough, (ii) the stiffness ζ of the interface is small enough and (iii) the growth function

f depends strongly enough on the height - e.g. due to rapid nutrient consumption or

slow nutrient diffusion [164].

This toy model is of course highly simplistic – among other deficiencies, it does

not account for the dynamics of the nutrient, or for changes in the thickness of the

growing layer as the colony expands. Nevertheless it illustrates how instabilities can

arise from the coupling between the shape of the growing colony/biofilm interface and

the local availability of nutrient. Similar phenomena, driven by the same interface-

nutrient coupling, also arise in more realistic models [155, 175, 178, 173, 157].
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4.3. Example: 2D to 3D transition in bacterial colony growth

Another interesting feature of bacterial colony or biofilm growth is the transition from

2D to 3D growth. Starting from a single cell seeded on an agarose gel surface, a

colony initially spreads as a 2D layer of cells on the surface, but it later develops into

a 3D structure. If the agarose gel surface is covered by a glass coverslip (with the

bacteria sandwiched between the agarose and the coverslip), then the colony becomes

3-dimensional by growing into the agarose layer. However, if there is no bounding

coverslip, the colony instead expands into the space on top of the agarose layer. Biofilm

growth on a solid surface also often starts with the proliferation of flat microcolonies,

which later expand vertically. This 2D to 3D transition has parallels in the growth of

some cancer tumours [199] and in embryonic development [200].

Experimental work on E. coli colonies growing on agarose suggests that mechanical

forces are likely to play an important role in the 2D to 3D transition [77, 78, 201].

In a setup where bacteria are sandwiched between the agar and a glass coverslip,

microscopic tracking of the growth of colonies from single cells reveals a well-defined

“buckling transition” at which bacteria start to invade the agarose, leading eventually to

3D growth (Fig. 13A-C) [78]. In this transition, the first cells to invade the agarose are

usually located close to the centre of the 2D colony. Moreover, the average size of the 2D

colony at the moment when this transition happens depends non-monotonically on the

concentration (and hence the stiffness) of the agarose gel: it happens later (i.e. at larger

colony area) for intermediate agarose stiffness. Using individual-based simulations,

Grant et al. [78] could match these experimental results, under the assumption that

the friction coefficient between the bacteria and the agarose has a particular non-linear

dependence on the agarose stiffness.

While Grant et al.’s simulations were quite complex, the basic physics that may

control the invasion transition can be illustrated with a much simpler model (Fig. 13D).

Let us imagine a 1D chain of bacteria, extending from x = −L/2 to x = L/2. The

bacteria elongate at rate g and so the chain length L(t) = L0 exp(gt) increases with

time. As the bacteria grow, they exert outward pushing forces on each other and

experience inward forces due to friction with the surrounding medium (here assumed to

be agarose). This produces a local stress σ(x, t) within the chain. Because the frictional

forces are transmitted along the chain of bacteria, we expect σ(x, t) to be largest at

the centre of the chain, x = 0, and to increase in time as the chain elongates. This

stress may cause the chain to buckle (Fig. 13D); we denote the stress-dependent rate

at which a bacterium buckles as w(σ). We suppose that w is small for small stress σ,

but increases strongly for large σ. One form of w(σ) consistent with this expectation is

w(σ) = w0 exp [bσ], where b is some constant; for illustrative purposes we will assume

this form here (although it is not motivated by any mechanistic understanding of the

buckling process).

Focusing on a particular position x along the chain, the probability that the

chain has not buckled at this position by time t is exp
[

− ∫ t0 w(σ(x, t′))dt′
]

, and
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Figure 13. (A-C) 2D to 3D transition in bacterial colonies. The arrows indicate
locations where the colony has invaded the agarose and a second layer of cells has
begun to form. (A) An image taken just before the transition. (B) An image of the
same colony taken just after the transition. (C) An image taken when the second layer
of cells is already well-developed. (D) A simple model of the “buckling” transition, for
a 1D chain of bacteria (see main text). (E) Length of the bacterial chain at the onset
of the buckling transition, as a function of the friction coefficient κ. The parameters
are g = 2h−1, L0 = 1µm, b = 107Pa−1, w0 = 10−7h−1, p = 105Pa.

the probability that the chain has not buckled at any position by time t is

exp
[

− ∫ t0
∫ L(t′)/2
−L(t′)/2 w(σ(x, t

′))dxdt′
]

. Therefore, the probability P (t) that a buckling event

has happened by time t is

P (t) = 1− exp

[

−
∫ t

0

∫ L(t′)/2

−L(t′)/2
w(σ(x, t′))dxdt′

]

. (40)

Now let us assume a particular form for the stress function: σ(x, t) = k[L(t)/2− x] for

x > 0 and σ(x, t) = k[L(t)/2 + x] for x < 0. This simply describes a linear decrease in

stress from the centre to the edge of the chain, with the constant k being related to the

friction coefficient. This form of σ might be expected if the frictional force generated by

bacterial motion is equal for all bacteria, and the contributions of each bacterium sum

up along the chain.

Changing variables to y = L/2− x, using the symmetry of σ(x, t) about x = 0 and

substituting in the chosen form of w, we obtain

P (t) = 1− exp

[

−2
∫ t

0

∫ L(t′)/2

0
w(ky)dydt′

]

(41)
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= 1− exp
[

−2w0

bk

∫ t

0
(exp [bkL(t′)/2]− 1) dt′

]

.

We now use the fact that L = L0 exp (gt) to replace time t by the chain length L. The

probability Q(L) that the chain has not buckled by the time it reaches length L is

Q(L) = 1− exp

[

−2w0

bkg

∫ L

0

(

exp (bkl/2)− 1

l

)

dl

]

(42)

= 1− exp

[

−2w0

bkg

[

−γ + Shi

[

bkL

2

]

+ Chi

[

bkL

2

]

− log

[

bkL

2

]]]

,

where γ is the Euler-Mascheroni constant and Shi and Chi are the sinh and cosh integral

functions. The dependence of the probability Q(L) on the length of the bacterial chain

L arises only from terms in the combination bkL. This leads to our first important

observation: the critical size at which the buckling transition happens is expected to

scale approximately as 1/(bk): i.e. it decreases with increasing friction/adhesion k and

increasing growth rate b. The most likely length L of the chain at which the transition

happens can be determined from

2w0

bkg

[

−γ + Shi

[

bkL

2

]

+ Chi

[

bkL

2

]

− log

[

bkL

2

]]

≈ 1. (43)

To relate the predictions of this simple model to experimental results such as those

of Grant et al., the coefficient k in the model must be related to the friction coefficient

κ between bacteria and the agarose / glass surfaces, and the stress p that pushes a

bacterium against the glass surface, due to elastic compression of the agarose (Fig.

13D). Dimensional analysis suggest that k = κp/L0. Fig. 13E shows the resulting

predictions of this simple model for the chain length at the onset of buckling, as a

function of κ, for g = 2h−1, L0 = 1µm, and with the parameters b = 107Pa−1 and

w0 = 10−7h−1 chosen so that the result is comparable with the experimentally observed

buckling diameter (≈ 50µm) of a 2D colony for κ = 0.7 and p = 105Pa [78]. The model

predicts that the size of the colony upon buckling decreases with the friction coefficient

κ which characterises the strength of cell-agarose interactions. One can also use similar

arguments to show that the average position at which the chain buckles is very close to

its centre, in agreement with the experimental results [78].

This model, while it is undoubtedly simplistic, provides some insight into the effects

of friction on the 2D to 3D transition. More generally, understanding the 2D to 3D

transition in bacterial colonies presents a host of interesting challenges. These include

analysing simple statistical physics models like the one described here, developing

individual-based simulations that explicitly include interactions with the surrounding

elastic medium, and carrying out experimental measurements of the frictional and

adhesion forces between bacteria and agarose and glass surfaces. It is also important

to note that the buckling transition that we have discussed here is only the first stage

the development of a 3D bacterial colony. Once buckling has happened, the subsequent

development from a two-layered structure to a larger 3D colony also presents beautiful

and interesting phenomena which remain to be explained [201].
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Figure 14. (A) An expanding population of fluorescently-labelled E. coli cells, growing
on the surface of a nutrient agar pad. The population was initiated from a drop
containing a 50:50 mixture of cells labelled in two different colours (here shown red
and green). The population is mixed (appears yellow) in the region of the initial
drop, but has segregated into clonal sectors at its expanding edge. Image courtesy of
Diarmuid Lloyd. (B) Results of a simulation in which sector boundaries are modelled
as annihilating random walks, as described by Eq. (44) with D = 0.02, R0 = 1, R = 3.
The simulation starts with 50 random walkers.

4.4. Example: Formation of clonal sectors in growing bacterial colonies

A very interesting feature of the growth of bacterial colonies and biofilms is the spatial

distribution of lineages within the population – or in other words, the locations of the

descendants of a particular “founder cell”. Fig. 14A shows the outcome of a simple

experiment in which a bacterial colony is initiated not from a single cell, but from a

droplet containing a mixture of two strains of E. coli which are identical except that they

produce different-coloured fluorescent proteins (here shown red and green). The area

covered by the initial droplet appears yellow, indicating a mixture of red and green cells.

In the surrounding regions, however, where the population has expanded out from the

initial droplet, a striking pattern of red and green sectors is visible. This implies genetic

segregation: the descendants of different cells within the founder population occupy

different regions of space [72]. The same phenomenon occurs for other microorganisms

[73, 202], and for colony growth in different geometries [73, 203].

The emergence of sectors is closely connected with the fact that (after an initial

period of exponential growth) only bacteria that are close to the expanding edge of the

colony are able to replicate; deeper in the colony nutrient becomes depleted and waste

products may accumulate. Demographic fluctuations at the growing colony front can

cause a bacterial lineage to become “trapped” behind the front, in which case it cannot

proliferate further. Thus, a stochastic process is at play, in which some lineages come to

dominate the growing front (i.e. form sectors) while others are buried behind the front.

To better understand this process, we follow Ref. [73] and imagine that the growing
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layer is infinitely thin and circular symmetric, such that the proliferating bacteria are

located on the perimeter of a circle of radius R = vt expanding with constant velocity v.

Let us suppose that the initial radius of the circle (i.e. the radius of the drop of bacteria

that is deposited on the agar) is R0. We divide the perimeter into sectors, and we track

the positions of the sector boundaries on the perimeter of the circle ♯. As time goes on,

the bacteria within each sector proliferate, or become lost behind the growing front, in

a stochastic process. While the size of a sector will increase on average as the colony

expands, at any given moment in time it may fluctuate either upwards or downwards.

A sector may even contract so much that it vanishes altogether, representing loss of the

lineages of the bacteria within that sector. This stochastic dynamics can be modelled

by the following Langevin equation for the arc length w occupied by a sector:

dw

dR
=

w

R
+
√
4Dη(R). (44)

with the initial condition w(R0) = w0. Note that because the colony radius R increases 
linearly with t, tracking the dynamics as a function of R is equivalent to tracking it as 
a function of time t. In Eq. (44), the first term on the right hand side accounts for the 
radial expansion of the colony, which “stretches” the sector. The second term accounts 
for stochasticity in the replication events and local movements of bacteria at the front; 
here D is an effective diffusion constant and η(R) represents uncorrelated Gaussian noise 
with zero mean and unit variance. The lack of scaling of η(R) with R is due to inter-

sector competition assumed to occur only at sector boundaries of constant width. We 
stress that Eq. (44) defines an idealized mathematical model of a circular-symmetric, 
infinitesimally-thin edged colony; sector dynamics in real colonies may deviate from it 
due to edge roughness (see Secs. 4.1.3, 4.2, and Ref. [169]). In the absence of the noise 
term, Eq. (44) predicts that w increases deterministically as w(R) = w0R/R0. For D > 

0, however, the arc length w follows a biased random walk with a time-dependent 
diffusion constant. This is illustrated in Fig. (14)B in which we plot trajectories of 
sector boundaries, simulated using Eq. (44).

To proceed further, we introduce the angular size of the sector, φ = w/R. In this

coordinate, Eq. (44) becomes

dφ

dR
=

√
4D

R
η(R). (45)

Thus, we see that the magnitude of the angular fluctuations decreases as the colony

radius increases. Eq. (45) can be translated into a Fokker-Planck equation [204]:

∂P (φ,R|φ0, R0)

∂R
=

2D

R2

∂2P (φ,R|φ0, R0)

∂φ2
, (46)

where P (φ,R|φ0, R0) is the probability that a sector has angular size φ when the colony

radius is R, given that its size was φ0 at R0. If a sector shrinks to angular size φ = 0 then

we assume it cannot recover (since the lineage becomes lost behind the growing layer):

♯ In this calculation we do not specify the number of bacteria in each sector as this turns out not to
be important.

Page 36 of 48AUTHOR SUBMITTED MANUSCRIPT - ROPP-101107.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Statistical physics of bacterial growth 37

this implies the boundary condition P (0, R|φ0, R0) = 0. We also set P (∞, R|φ0, R0) = 0

because sectors cannot become arbitrarily large††. With these boundary conditions the

solution of Eq. (46) is

P (φ,R|φ0, R0) =
1√
2πσ2

e−
(φ+φ0)

2

2σ2

(

e
2φφ0
σ2 − 1

)

, (47)

where σ2(R) = 4D(R−1
0 −R−1). This result can be obtained using the method of images

and taking a Fourier transform of Eq. (46) [205]. For small initial sector size φ0 ≪ 2π

we can expand Eq. (47) to first order in φ0,

P (φ,R|φ0, R0) ∼=
√

2/π
φφ0

σ3
exp

(

− φ2

2σ2

)

. (48)

From an experimental point of view, one can easily measure the sizes of sectors in

relatively large colonies (e.g. R ∼ a few mm), but it is much harder to measure sectors

in very small colonies. Therefore we would like to use Eq. (48) to predict the distribution

of sizes of surviving sectors, in the large colony limit R → ∞. We first normalize Eq.

(48) to obtain the distribution Psurv(φ,R|φ0, R0) of sector sizes, conditioned on sector

survival:

Psurv(φ,R|φ0, R0) ∼=
φ

σ2
exp

(

− φ2

2σ2

)

. (49)

The mean angular sector size in the limit R → ∞ is thus

〈φ(R → ∞)〉 =
∫

∞

0
φPsurv(φ,R → ∞|φ0, R0)dφ =

√

πσ2(R → ∞)

2

=

√

2πD

R0

, (50)

where we have used σ2(R → ∞) = 4D/R0. The average number of sectors is thus

Nsectors(R → ∞) =
2π

〈φ(R → ∞)〉 =

√

2πR0

D
. (51)

Interestingly, this theory predicts that the number of sectors in the large colony limit

is finite, showing that coexistence between different lineages is possible. Note that

Nsectors(R → ∞) is independent of the initial number of sectors, as long as this initial

number is large (small φ0), but it depends on the initial radius R0 of the colony.

Individual-based simulations of colony growth and experiments with bacteria growing

on agar plates confirm this prediction [74, 193, 188, 192] and show that it remains

qualitatively true if the growing layer has finite thickness. Simulations and extensions of

the theory can also be used to predict what happens when the colony contains mixtures

of bacteria with different growth rates [73, 188], when the bacteria are able to undergo

horizontal gene transfer between neighbouring cells [206, 207], or when the growing

population encounters obstacles [208].

††Actually, φ cannot be larger than 2π but we expect most sectors to be much smaller than this if
the initial number of sectors is large. Assuming an absorbing boundary at φ → ∞ simplifies the
calculations.
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This theoretical analysis provides an example of the use of statistical physics to

understand a complex biological phenomenon. However it does not explain what features

of the growth process control the diffusion constant D, which plays a critical role in

determining the number of sectors. Indeed, the number of sectors has been observed to

differ between different organisms: fewer sectors are observed for the yeast S. cerevisiae

than for E. coli, and also, intriguingly, fewer sectors are observed for a spherical mutant

of E. coli than for the usual rod-shaped E. coli cells [72, 73]. Individual-based simulations

have an important role to play in explaining these observations; these simulations have

already pointed to mechanical interactions between cells and the surface on which they

grow as major players in determining D [192] .

Genetic segregation within an expanding bacterial population, as described in

this example, has important evolutionary implications, since it significantly affects

the “surfing probability”, or the probability that a mutant arising at the front of an

expanding population forms a macroscopic sector [188]. This is relevant, for example,

to the evolution of antibiotic resistance in bacterial biofilms. A similar problem arises

in the evolution of drug resistance in cancer tumours [17].

5. Conclusions and outlook

The primary purpose of this review has been to illustrate the rich array of beautiful and

interesting phenomena displayed by growing bacterial populations. These phenomena

are intrinsically non-equilibrium and many of them lend themselves naturally to analysis

using the tools of statistical physics.

Research at the interface between microbiology and statistical physics can have 
great benefits f or b oth fi elds. St atistical ph ysics mo dels ca n cu t th rough biological 
detail and provide insight into basic biological mechanisms, when they are properly 
constructed with knowledge of the underlying biology. The application of statistical 
physics to biological problems can also generate new non-equilibrium models that drive 
further development in statistical physics. Fruitful interplay between statistical physics 
and biology is nothing new: examples include the totally asymmetric exclusion process 
[11], which was introduced as a model for cellular protein production [12] and has 
since become a paradigm for non-equilibrium transport processes. What we aim to 
highlight here is the attractiveness of bacterial populations, specifically, as subjects for 
statistical physics models. We believe that this is a timely topic, from the point of 
view of both physics and biology. From a physics point of view, new non-equilibrium 
physics is emerging from the study of active systems, which have up to now been mainly 
focused on motile particles (“swimmers”) [196, 197, 209, 210, 211]. Yet bacteria are also 
active in many other ways: they grow, divide, secrete signals and macromolecules, and 
interact chemically and mechanically in a complex way. The statistical physics of these 
behaviours, especially growth in dense assemblies of bacteria, has just started to be 
explored.

From a biological point of view, the growing threat of antimicrobial resistance,
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increasing awareness of the role of biofilms in infection, and the growing understanding

of the importance of microbes in gut health have raised the profile of microbiology in

recent years. There has also been a resurgence in interest among microbiologists in

both fundamental growth phenomena and in the use of mathematical models to explain

them. Thus, statistical physics models of bacterial growth have the potential to make

a significant impact.

We would also like to highlight here the importance of experiments. Many (although

not all) of the bacterial growth phenomena discussed in this review arise in rather

simple microbiological experiments. Our own experience is that even a brief immersion

into experimental work with bacteria can greatly improve one’s ability to develop

relevant, realistic and interesting statistical physics models. Moreover this is often a

fun experience! We therefore advocate spending some time in the lab to even the most

hardened theoretician, if it is at all possible.
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