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Abstract Polycyclic aromatic hydrocarbons (PAHs) are 

compounds of intense public concern due to their persis-

tence in the environment and potentially deleterious effects 

on human, environmental and ecological health. The clean 

up of such contaminants using invasive technologies has 

proven to be expensive and more importantly often damag-

ing to the natural resource properties of the soil, sediment 

or aquifer. Bioremediation, which exploits the metabolic 

potential of microbes for the clean-up of recalcitrant xe-

nobiotic compounds, has come up as a promising alterna-

tive. Several approaches such as improvement in PAH 

solubilization and entry into the cell, pathway and enzyme 

engineering and control of enzyme expression etc. are in 

development but far from complete. Successful application 

of the microorganisms for the bioremediation of PAH-con-

taminated sites therefore requires a deeper understanding 

of the physiology, biochemistry and molecular genetics of 

potential catabolic pathways. In this review, we briefl y sum-

marize important strategies adopted for PAH bioremedia-

tion and discuss the potential for their improvement.

Keywords Polycyclic aromatic hydrocarbons · 

Bioremediation · Chemotaxis · Surfactants · 

Bioavailability · Genetic engineering

Introduction

PAHs are a class of toxic pollutants that have accumulated 

in the environment due to both natural and anthropogenic 

activities [1–4]. They are mainly produced from incomplete 

combustion of organic materials, fossil fuels, petroleum 

product spillage and various industrial activities, and partly 

also from natural processes such as forest fi res and volcanic 

eruptions. Human exposure to PAHs can take place through 

multiple routes including air, soil, food, water and occupa-

tional exposure [5–6]. The adverse health and environmental 

effects of PAH compounds are widely known [7–9]. They have 

detrimental effects on the fl ora and fauna of affected habitats, 

resulting in the uptake and accumulation of toxic chemicals in 

food chains (biomagnifi cation) and in some instances, serious 

health problems and/or genetic defects in humans [10, 11, 12]. 

Based on their ecotoxicity, the US Environmental Protection 

Agency (US EPA) has listed 16 PAHs as priority pollut-

ants for remediation [10]. The IARC (International Agency 

for Research on Cancer) has identifi ed 15 PAHs including 

6 of the 16 USEPA-regulated PAHs, as potential carcinogens. 

The ubiquitous occurrence of these carcinogens represents an 

obvious health risk and therefore public concern as to their 

fate and removal from the environment is on the increase.

Important properties and persistence of PAHs

PAHs consist of two or more fused benzene and/or penta-

cyclic rings in linear, angular or cluster arrangements [1, 2, 
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13]. Several hundred PAHs are known today. Some repre-

sentative PAHs are shown in Figure 1. Depending on the 

number of rings present, PAHs have been classifi ed into two 

categories, i.e. Low Molecular Weight (LMW, containing 

three or fewer rings) and High Molecular Weight (HMW, 

containing four or more rings) PAHs. The high hydropho-

bicity and chemical stability of PAHs make them persist in 

the environment. Their hydrophobicity generally increases 

with increasing molecular mass, with aqueous solubility 

declining from the low mg/l range for LMW PAHs to about 

1μg/l for HMW PAHs [13]. Because of their hydrophobic 

properties, low volatility and high affi nity for sediment 

particles, PAHs are readily adsorbed to surfaces in aquatic 

environments [14] or to soil and dust particles, which could 

get evenly distributed through air [11]. Many PAHs contain 

A, B, Bay, K and L-regions, which can be metabolised to 

highly reactive epoxides (Figure 2). Carcinogenicity has 

been demonstrated for some of these epoxides [15]. PAHs 

are rarely encountered alone in the environment and many 

interactions occur within a mixture of PAHs whereby the 

potency of known genotoxic and carcinogenic PAHs can be 

enhanced [16]. For example, 1-nitropyrene, a nitrated PAH, 

is produced during reactions between ketones in products of 

burning automobile fuel and airborne nitrogen oxides that 

take place on the surface of hydrocarbon particles in diesel 

exhaust. In the Ames assay (Salmonella typhimurium), 

1-nitropyrene was found to be highly mutagenic and car-

cinogenic, whereas the parent compound, pyrene, is non-

carcinogenic and only weakly mutagenic [17]. 

The persistence of PAHs in the environment depends 

on a number of factors such as the physical and chemical 

characteristics of both the PAHs and the medium, along 

with the concentration, dispersion and bioavailability of 

the PAHs. In general the higher the molecular weight of 

a PAH molecule, the higher is its toxicity and the longer 

its environmental persistence. The average half-life of the 

tricyclic phenanthrene ranges from 16 to 126 days in soil, 

whereas for the fi ve ringed HMW PAH benzo[a]pyrene, 

Naphthalene   Anthracene    Phenanthrene

Fluorene                                          Fluoranthene                               Pyrene

Benzo(a)pyrene      Benzo(a)anthrcene

Fig. 1  Different types of PAHs.
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the half-life may range from 229 to 1500 days [18]. Biotic 

factors are also important because certain components of 

the soil microfl ora can degrade many PAHs. Thus factors 

including the production of toxic or dead-end metabolites, 

metabolic repression, presence of preferred substrates such 

as aliphatic hydrocarbons and lack of co-metabolite or 

inducer substrates can also prolong the residence time of 

PAHs in the environment. Various physico-chemical factors 

such as soil type and structure, pH, temperature and oxy-

gen, nutrient and water levels also determine the survival 

and activity of the degrading strains in the polluted environ-

ments, thereby determining the persistence of PAHs in such 

environments [19]. 

General aspects of bacterial degradation of PAHs 

During the past thirty years, several different remediation 

technologies have been tested in efforts to remove these 

environmental contaminants. Among them, bioremediation 

is showing particular promise as a safe and cost-effective 

option [20]. In spite of their xenobiotic properties, a variety 

of genera of gram-positive and -negative bacteria, fungi and 

algae have been isolated and characterized for their ability to 

utilize PAHs. A thorough list of such organisms is provided 

by Muller et al [21]. Microorganisms have been found to de-

grade PAHs either via metabolism or cometabolism. Come-

tabolism is especially important for the degradation of mix-

tures of PAHs. Although anaerobic metabolism is also well 

documented, most attention has been paid to the aerobic me-

tabolism of PAHs and the common metabolic pathways for 

this, their rates of degradation and the enzymatic and genetic 

regulation involved are quite well understood [22–24]. 

The fi rst step in aerobic PAH catabolism mainly involves 

the action of dioxygenase/monoxygenase, which incorpo-

rates atoms of molecular oxygen into the aromatic nucleus, 

resulting in the oxidation of the aromatic ring [23–25]. 

Depending on the substituents on the original molecule, 

the two hydroxyl groups may be positioned either ortho 

(as in catechol and protocatechuate) or para to each other 

(as in gentisate and homogentisate). The cis-dihydrodiols 

formed in this reaction are further oxidized, fi rst to the aro-

matic dihydroxy compounds (catechols), and then through 

the ortho- or meta cleavage pathways [26, 27]. Further 

reactions lead to the precursors of tricarboxylic acid cycle 

(TCA) intermediates. Although all the PAHs follow this 

same scheme of degradation, the kinetic effi ciency of the 

pathway and the type of reaction intermediates produced 

depend on the number of the aromatic rings. 

PAHs are also common contaminants of anaerobic en-

vironments such as aquifers [28–33], marine sediments 

[34, 34] and anaerobic zones within substantially aerobic 

contaminated soils [32]. In the absence of molecular 

oxygen, alternative electron acceptors such as nitrate, fer-

rous and sulphate ions can be used to oxidize aromatic 

compounds and recent studies have shown the anaerobic 

degradation of PAHs under both denitrifying and sulphate 

reducing conditions [35–38]. 

The general mechanisms of aerobic and anaerobic deg-

radation are summarized in Figure 3, by taking naphthalene 

as a representative model for all PAHs [19, 30, 34]. Aerobic 

degradation of naphthalene involves the incorporation of 

molecular oxygen into one of the aromatic rings by naph-

thalene dioxygenase, leading to the formation of cis-1,2-

naphthalene dihydrodiol. The latter undergoes a number 

of further degradative steps and fi nally gets metabolised to 

carbon dioxide through salicylic acid. On the contrary, an-

aerobic degradation of naphthalene involves the formation 

of 2-naphtholic acid by carboxylation of one of the aromatic 

rings, which gets further metabolized to carbon dioxide. 

Several genes encoding PAH catabolic enzymes have 

been characterized. These genes are organized into operons 

which may be localized on chromosomal DNA or large, 

self-transmissible, catabolic plasmids [39–43] (Table 1). 

Analysis of the PAH catabolic genes is of interest in both 

fundamental and applied contexts. Fundamental knowledge 

of the catabolic genes in different species of bacteria can 

give useful information about the evolution of the encoded 

enzymes’ sequence-structure function relationships and the 

evolution and diversity of the catabolic genes via horizon-

tal gene transfer, transposition events, DNA fusion, point 

mutation etc [44]. This would help us to understand the 

molecular mechanisms by which bacteria adapt to the xe-

nobiotics. In applied terms, the genetic information would 

help us to monitor the bacterial populations that degrade 

PAHs in the contaminated sites, and to engineer bacteria for 

developing bioremediation strategies. 

However, most of the information about metabolic 

pathways, enzymes and genes has been restricted to LMW 

PAHs [39–41]. Much less information is available on the 

metabolism of HMW PAHs, albeit research in the past de-

cade on the bacterial degradation of four ring PAHs such as 

fl ouranthene, pyrene, benz[a]anthracene etc has advanced 

signifi cantly. A number of strains such as Stenotrophomon-

as maltophilia strain VUN 10003, Mycobacterium sp., 

Gardona sp., Rhodococcus sp., Pseudomonas aeruginosa, 

Burkholderia cepacia, Flavobacterium sp. and Cycloclas-

ticus sp. etc. have been found to utilize benz[a]anthracene, 

chrysene, fl ouranthene and pyrene [45–47] as a source of 

carbon and energy (Table 1). Most of these bacteria are 

gram-positive, suggesting that these organisms play a more 

important role than gram-negative bacteria in the environ-

mental degradation of HMW PAHs. 
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Genetic and biochemical data on HMW PAH degrada-

tion are relatively scarce, in part because gram-positive bac-

teria, particularly mycobacteria, are less amenable to study 

(due to their slow growth rate, cell clumping and extremely 

resistant cell wall etc) [48]. Nevertheless, just as nah, pah 

and phn genes encoding LMW PAHs dioxygenases have 

been found in gram-negative bacteria, nid and pdo genes 

encoding HMW PAH dioxygenases are also being found in 

gram positive bacteria [49–59]. The biochemical and ge-

netic information on these genes and the encoded enzymes 

should help us to enhance the performance of the PAH de-

grading bacteria as bioremediators.

Limiting factors and strategies

Only very limited success has so far been achieved in the 

bioremediation of PAHs [19, 22, 60, 61]. The reasons are 

not thoroughly understood but could involve failures at any 

of the four component steps in the process, namely a) the 

solubilization of the PAHs, b) their transport into the cell, c) 

the expression of the degradative genes, and d) the enzymatic 

breakdown of the PAHs (see also Figure 4). The following sec-

tion therefore describes the current knowledge of these events 

and the strategies that might be developed to modify them and 

enhance the prospects for successful bioremediation of PAHs. 

Fig. 2  A, B, Bay, K and L regions of PAHs involved in the formation of metabolically active epoxides.
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Solubilization of PAHs

Factors like hydrophobicity, aqueous solubility and polarity 

have a large infl uence on the bioavailability of pollutants. 

Contaminated soils often contain a separate non-aqueous 

phase liquid (NAPL) that may be present as droplets or 

fi lms on soil surfaces. Many pollutants, especially those that 

are hydrophobic, are virtually insoluble in water and remain 

adsorbed in the NAPL. [62] PAHs have been found to per-

sist in the NAPL due to their low water solubility and high 

octanol-water partition coeffi cients [63, 64, 65]. However, 

the intracellular localization of the PAH degrading enzymes 

implies that the PAHs have to be solubilized and must 

enter into the cytoplasm before they can be metabolized. 

Therefore, for biodegradation to occur, bacteria must have 

access to the target compounds, either by dissolution of the 

target compounds in the aqueous phase or by adhesion of 

the bacteria directly to the NAPL-water interface. 

Both chemically and biologically derived surfactants 

(biosurfactants) have the potential to increase the bioavail-

ability of PAHs via mechanisms such as emulsifi cation 

of NAPLs, enhancement of the apparent solubility of the 

PAHs or mobilization of PAHs adsorbed to the soil [66]. 

For example, the addition of the surfactant Tergitol NP-10 

increased the dissolution rate of solid-phase phenanthrene 

and resulted in an overall increase in the growth of a strain 

of Pseudomonas stutzeri [67]. A similar effect was obtained 

by the addition of Tween-80 to two Sphingomonas strains 

in which the rate of fl uoranthene mineralization was almost 

doubled [68,69]. Recently, it has been demonstrated that 

a biosurfactant also increases the apparent solubilities of 

PAHs 5–20-fold and signifi cantly increases their rate of 

biodegradation [70, 71]. Biosurfactants are preferred over 

synthetic surfactants because they are more cost-effective, 

less toxic and easily biodegradable. 

While some research groups have found that the pres-

ence of surfactants enhances biodegradation of various 

pollutants including PAHs [66, 72–78], others have found 

that the presence of surfactants can actually inhibit biodeg-

radation [75, 76, 79–81]. For example, Tween-80 was found 

to inhibit the rate of fl uoranthene mineralization by two 

strains of Mycobacterium [68]. No stimulation was observed 

in other studies using several surfactants [69, 82, 83]. 

This may be due to the entrapment of PAHs within the 

surfactant micelles, so it may be necessary to use different 

surfactant-utilizing and PAH-degrading strains together, or 

preferably to use a single organism which can simultane-

ously produce biosurfactants as well as degrade PAHs. 

Recently, García-Junco et al. [84] indeed isolated a biosur-

factant-producing strain, Pseudomonas aeruginosa 19SJ, 

which also had the capability to degrade phenanthrene. T
a
b

le
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Isolation of such strains or their development through 

modern genetic technologies would be a breakthrough in 

PAH bioremediation. There would of course be signifi cant 

regulatory issues to address before transgenic bacterial bio-

remediants could be released into the open environment. 

However modern technology also allows many non-trans-

genic genetic manipulations to be made, for some species 

at least. 

Transport of PAHs into the cell

Due to their low water solubility and high octanol-water 

partition coeffi cients, organic compounds such as PAHs 

tend to partition into cell wall structures. Such movement 

is generally brought about by passive transport down a 

concentration gradient from the environment into the cell 

[85–87]. Such transport, however, depends on a number 

Fig. 3 Aerobic and anaerobic bacterial degradation pathways of naphthalene (Adapted from ref.19). 
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of factors, crucial amongst which are concentration and

the bioavailability of contaminants from the surrounding 

medium. The higher are the concentration and bioavail-

ability of a PAH, the higher is its transport into the cell.

While some bacteria can utilize this transport to achieve 

rapid degradation of PAHs, with concomitant growth,

the rapid accumulation of some more toxic PAHs may

lead to disruption of the cell membrane or inhibition of

the membrane proteins etc., ultimately causing cell death 

[88].

At low PAH concentrations and low bio-availability the 

passive diffusion process above may not function, poten-

tially decreasing the effi ciency of the degrading microor-

ganism and therefore the bioremediation process. However 

some bacteria seem to have adapted to low bio-availability 

and low concentrations of PAHs. Mechanisms of the 

adaptation can involve the direct contact with solid-phase 

PAHs [89–91] and biosurfactant excretion to facilitate 

desorption (as discussed earlier). A third type of adaptation 

was reported by Wick et al. [65, 91] who observed

that suspended cells of Mycobacterium sp. strain LB501T 

do not produce biosurfactant but still have a strong ability

to degrade low concentrations of aqueous-phase anthra-

cene. The specifi c affi nity of strain LB501T cells for 

aqueous anthracene was found to be higher than the spec-

ifi c affi nities of other cultures reported elsewhere [91–93]. 

Wick et al. [91] proposed the presence of a high-affi nity 

uptake system in strain LB501T to account for these 

observations. 

Limited research has been carried out on the cellular 

binding and transport of PAHs in aqueous phase by 

bacteria. Bugg et al. [91] demonstrated the presence of 

an active effl ux mechanism in Pseudomonas fl uorescens 

LP6a for the transportation of phenanthrene, fl uoranthene, 

and anthracene. In contrast, Whitman et al. [95] proposed 

the involvement of a specifi c, energy-dependent transport 

system for incorporation of naphthalene in P. fl uorescens 

Uper-1. Miyayta et al. [87] also suggested that both passive 

diffusion and a saturable transport system(s) may contrib-

ute to the utilization of phenanthrene by Mycobacterium 

sp. strain RJGII-135 in the aqueous phase. Recent studies 

have proposed the presence of facilitated or active transport 

systems for uptake of different hydrophobic compounds 

such as toluene [96] and m-xylene [97], alkanes such as 

n-hexadecane [98-100] and dibenzothiophene [101]. More-

over, some long-chain fatty acids such as oleic acid are 

also known to be bound to bacterial cells and transported 

actively [102, 103]. While the area still needs much more 

attention, these studies suggest that various active or fa-

cilitated transport systems could be exploited in future to 

develop more effi cient bioremediators. 

Expression of the degradative genes

Once the PAHs have entered into the cell, the next step is 

the transcription of the degradative genes to produce the 

required enzymes. Generally the degradative genes have 

been found to be inducible, being expressed under certain 

conditions only (Figure 4). The inducer molecule is often 

the pathway substrate and/or a pathway intermediate but 

some structural analogues of the natural effectors (gratu-

itous inducers) can also induce the pathway even if they are 

not themselves substrates for the corresponding catabolic 

enzymes. The regulator may act as a transcriptional acti-

vator in the presence of the inducer or as a transcriptional 

repressor in the absence of the inducer. 

However, the transcription of the degradative genes 

is not just dependent on the performance of their specifi c 

regulatory and inducer signals but also relies on overim-

posed mechanisms that connect the activity of individual 

promoters to the metabolic and energetic status of the cell 

[105]. This superimposed regulation is mediated by global 

regulatory factors, such as the integration host factor (IHF), 

cAMP receptor protein (CRP), alternative sigma factors (σ), 

the PtsN (IIANtr) protein and the alarmone (p)ppGpp, that 

interact with different targets (cis-acting elements, regula-

tory proteins) in the transcriptional machinery. Intermedi-

ates or products of the TCA cycle may control the transcrip-

tional fl ow by acting directly as anti-inducers of the specifi c 

regulator protein or by determining the energy status of the 

cell that governs the overimposed regulation [104]. 

Different regulatory mechanisms have been identifi ed in 

different PAH degrading bacteria (Table 1). Both the upper 

and lower operons of the well characterized naphthalene 

catabolic plasmid NAH7 are regulated by a trans-acting 

positive control regulator encoded by the nahR gene (which 

is localized between the two operons). The NahR protein 

is needed for high levels of expression of the nah genes 

and their induction by salicylate [106–108]. However in 

Burkholderia sp. strain RP007, the phnR and phnS regula-

tory genes encoding a two component regulatory system 

regulate the degradation of naphthalene and phenanthrene 

degradation [109]. Both types of regulatory proteins in 

this system belong to the LysR family. The precise binding 

and the activation mechanisms of the various regulatory 

proteins in PAH catabolic operons are subjects of further 

investigation. 

As noted earlier, only very limited success has so far 

been achieved in the application of bioremediation tech-

nologies to PAH contaminated sites [110–112] and this is 

partly due to the lack of induction of the catabolic enzymes 

[113, 114]. External addition of the inducers is gener-

ally neither a cost-effective nor an ecofriendly alternative.
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Interactions between LMW and HMW PAHs and their me-

tabolites have been reported to play an important role in the 

induction of the catabolic enzymes and such interactions 

can be either synergistic or antagonistic [115, 116]. In the 

former case, the metabolites produced in the degradation 

of LMW PAHs in one strain may enhance the induction of 

catabolic enzymes of other LMW or HMW PAHs in other 

strain(s) (cross-induction and co-metabolism) [95]. In the 

latter case LMW/HMW PAHs or their metabolites may in-

hibit degradation due to substrate competition or microbial 

toxicity [116]. 

Several strategies could be employed to improve the 

induction of PAH catabolic operons under fi eld conditions. 

One strategy could be the identifi cation of a cheap and 

non-toxic inducer, as demonstrated by Gilbert and Crowley 

[117] for PCB degrading Arthrobacter sp. B1B. Another 

strategy could be the expression of the PAH degrading 

genes under the control of a constitutive promoter. For 

this the novel approach of promoter implantation by ho-

mologous recombination developed by Ohtsubo et al. [118] 

for biphenyls and PCBs could be exploited (Fig. 5). This 

would, however, require screening of candidate promoters 

and selection of the one with the best performance. Cata-

bolic promoters generally show remarkably little specifi city 

(regulatory noise) with respect to the signals to which they 

respond. This allows them to evolve and to be recruited to 
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Fig. 4 A general model depicting the major strategies adapted by bacteria for PAHs degradation.
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control novel pathways. This property could also be ex-

ploited further for developing bioremediation systems with 

broad substrate ranges. 

Enzymatic breakdown of PAHs

Once the enzymes are expressed the next step is their 

catalysis of PAH degradation. As stated earlier, ring-hydrox-

ylating dioxygenases (RHDs) catalyze the initial and most 

crucial oxidation step of PAHs, generating cis-dihydrodiols. 

So far, only a few RHDs have been purifi ed and extensively 

characterized, including phthalate dioxygenase [119, 120], 

naphthalene dioxygenases [121, 122] and biphenyl dioxy-

genase [123]. None of these enzymes is able to oxidize sub-

strates with more than three fused rings but Jouanneau et al. 

[124] recently isolated a new naphthalene dioxygense from 

Sphingomonas CHY-1 which has the ability to attack PAHs 

composed of up to fi ve rings. The use of such strains having 

broad substrate specifi cities is one strategy to improve the 

degradation of PAHs. Genetic engineering of well charac-

terised enzymes is another strategy for the creation of the 

enzymes with the desired properties. 

During the past years, several oxidoreductases such as 

laccases and cytochrome P450 monooxygenases (CYPs) 

isolated from different bacterial and fungal sources have 

been extensively exploited for the enzymatic degradation 

of PAHs [125]. Laccases catalyze the oxidation of a wide 

variety of phenolic compounds including PAHs. Being 

fungal in origin, laccase is diffi cult to express in non-fungal 

systems and knowledge of structure–function relations 

underlying the key functional properties of laccase is 

limited [126]. Hence, directed evolution holds exciting 

potential for improving the performance of the enzyme. 

In a study undertaken by Bulter et al. [127] the laccase 

gene from Myceliophthora thermophia, was transformed 

into Saccharomyces cerevisiae and subjected to directed 

evolution. After 10 rounds of directed evolution, a laccase 

with a 170 fold increase in total activity and high thermal 

stability was obtained. The evolved enzyme was able to 

work at the elevated temperatures needed to increase the 

solubility of highly recalcitrant PAHs [126]. As another 

approach to the solubility issue, Alcalde et al. [128] 

recently used fi ve rounds of sequential error-prone PCR, 

in vivo shuffl ing and saturation mutagenesis to evolve an 

already thermophilic laccase into one which showed several 

fold improvement in turnover rates at high concentrations 

of organic solvents (acetonitrile and ethanol). Given the 

fi ndings of the previous section, another worthwhile 

property to engineer into a laccase would be activity in the 

absence of inducers/mediators.

CYPs are one of the largest known enzyme superfamilies 

and are expressed in most living organisms. PAHs can be 
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oxidized by CYP enzymes to form catechols, which are then 

degraded by other enzymes, including catechol dioxygen-

ases, to harmless products which can be incorporated into 

the TCA cycle. Wild-type CYP101 (P450
cam

) from Pseu-

domonas putida has been shown to have an inherently low 

activity (<0.01 min
−1

) towards various PAH substrates such 

as phenanthrene, fl uoranthene, pyrene and benzo[a]pyrene. 

Therefore, certain CYP enzymes with known crystal struc-

tures have been subjected to rational design mutagenesis to 

enhance their catalytic performance [126]. For example, 

selective mutations were introduced into the active site resi-

dues F87 and Y96 of the CYP101 enzyme [129]. The abso-

lute oxidation rates (approximately 1 min
−1

) of the mutants 

Y96A, Y96F, F87A/Y96A and F87L/Y96F were increased 

by two to three orders of magnitude relative to the wild-type 

enzyme for all PAHs substrates studied. 

In a similar study, Carmichael and Wong [130] intro-

duced two mutations into CYP102, R47L and Y51F, and 

found that the oxidation activity of the enzyme for phenan-

threne and fl uoranthene was increased by 40- and 10-fold, 

respectively. The double mutant was then used as a basis for 

further engineering of the active site. When the A264G mu-

tation was introduced into the double mutant, NADPH turn-

over, PAH oxidation and the coupling effi ciency of the en-

zyme were greatly improved. And another mutation, F87A, 

resulted in a larger space in the substrate binding pocket of 

the enzyme, leading to better accommodation of larger fl u-

oranthene and pyrene molecules in the vicinity of the heme 

site, and hence a more effi cient PAH oxidation. The most 

active mutants generated in this study showed more than 

a 200-fold increase in PAH oxidation activity compared to 

the wild-type enzyme. In another CYP102 study, Li et al. 

[131] created a triplet mutant, A74G/F87V/L188Q, with 

improved activity on naphthalene, fl uoranthene, acenaph-

thalene, acenaphthylene and 9-methylanthracene. The F87V 

mutation alone improved activity toward the PAHs by two 

to three orders of magnitude. The L188Q mutation signifi -

cantly increased activities towards all three-ring PAHs by 

as much as 30-fold. The A74G mutation increased NADPH 

consumption rates, and consequently activities towards all 

PAHs. In total, the activities of the triplet mutant towards 

all the PAHs studied were two to four orders of magnitude 

higher than those of the wild-type enzyme. 

One of the main challenges facing the use of isolated 

CYP enzymes in bioremediation is the need to regenerate 

the expensive cofactor, NAD(P)H, which is consumed in 

the oxidation reaction. One approach to expand the practi-

cal utility of CYPs is to eliminate the cofactor requirement. 

Directed evolution has indeed been used to create CYP101 

mutants that hydroxylated naphthalene in the absence of the 

cofactor NAD(P)H via the ‘peroxide shunt’ pathway [132]. 

This process yielded several mutants with 20-fold improve-

ments in naphthalene hydroxylation activity relative to the 

wild-type enzyme. Previously, it has been diffi cult to im-

prove the thermostability of the P450 enzymes by protein 

engineering, because it is a multicomponent enzyme that 

depends on thermolabile cofactors. However, use of the 

peroxide shunt pathway negates the need for a cofactor 

and a reductase domain and should also allow the thermo-

stability of the P450 enzyme to be improved via directed 

evolution [133]. 

Additional measures for improving PAH degradation

Survival of the degrading strain

One of the problems in extrapolating laboratory bio-

remediation experiments to the fi eld has been the poor 

survival of the degrading strains in the fi eld environment 

[113–114]. The inoculated strains are affected by the 

predation of protists and competition with indigenous mi-

croorganisms for nutrients or electron acceptors. Therefore, 

selection of an appropriate strain is vital for successful in 

situ bioremediation. There is abundant empirical evidence 

that a strain derived from a population that is temporally 

and spatially prevalent in a specifi c type of habitat is more 

likely to persist as an inoculum when reintroduced than 

one that is transient or even alien to such a habitat [134]. 

Whilst the strain may need genetic modifi cation in the 

laboratory to enhance its PAH degradative performance, it 

should still be competitive when re-introduced to its native 

habitat. This consideration also applies to the concept of 

rhizoremediation, where the degrading strain is also chosen 

for its ability to colonise the rhizosphere of the environment 

in question (see below). 

Bacterial Chemotaxis 

Chemotaxis is defi ned as the migration of microorgan-

isms under the infl uence of a chemical gradient. Some 

pollutant-degrading bacteria such as Pseudomonas putida 

G7, a naphthalene degrader, have been demonstrated to 

show chemotactic behaviour [134, 136]. Another naph-

thalene- and salicylate-degrading strain, RKJ1, also shows 

the chemotactic property [137] and the genes for both 

its catabolic and chemotactic properties are present on 

its plasmid, pRKJ1. It is presumed that the chemotactic 

properties make the toxic molecule more bioavailable 

to the degrading bacteria. Cells displaying chemotaxis

can sense chemicals such as those adsorbed to soil particles 

in a particular niche and swim towards them; hence, the 
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mass-transfer limitations that impede the bioremediation 

process can be overcome. Although there is some informa-

tion about the role of catabolic genes and the associated 

receptor, the precise molecular mechanisms underlying the 

chemotactic response are yet to be elucidated. Complete 

understanding of these mechanisms would help to engineer 

chemotactic PAHs degraders and exploit them for the deg-

radation of more recalcitrant PAHs. 

Plant Microbe associations 

Plants forming part of the natural vegetation or used dur-

ing phytoremediation have been reported to assist bioaug-

mented bacterial strains in degrading pollutants, especially 

those inhabiting the rhizosphere. The main reason for the 

improved degradation in the rhizoshere is presumably due 

to the increase in the number and the metabolic activity of 

the microbes. Both plant and the microbes are mutually 

benefi ted by this association. Plant exudates help to stimu-

late the survival and action of the bacteria, which results in 

a more effi cient degradation of pollutants. The root system 

of plants can help to spread bacteria through soil and help 

to penetrate otherwise impermeable soil layers [138]. Simi-

larly, the microbes benefi t plants by producing phytohor-

mones, solubilization of minerals, and through the synthe-

sis of vitamins, siderophores and other growth stimulating 

compounds [139]. Such plant-microbes interactions have 

been exploited for bioremediation of heavy metals [140], 

toluene [141], polychlorinated biphenyl [142], naphthalene 

[143], and 2,4-dinitrotoluene [144]. Species of the genera 

Pseudomonas, Comamonas and Burkholderia are the most 

commonly used players [141, 145–147]. Successful appli-

cation of plant–microbe systems for rhizoremediation relies 

on in situ establishment of a high level of competence of 

the introduced bacteria. The inoculation of pollutant-de-

grading bacteria on plant seed can be an important additive 

to improve the effi ciency of phytoremediation or bioaug-

mentation. Recently, Child et al. [148] used fi ve PAH 

degrading mycobacterial strains to explore their relation-

ship with the plant roots and found that the mycobacterial 

cells were both associated with the root surfaces and distrib-

uted through the root. Such traits have great potential in the 

development of better bioremediation strategies.

Conclusions

Signifi cant advances have been made regarding the bio-

remediation of PAHs during the last decade. Several new 

microbes with bioremediation potential have been isolated 

and many new degradation pathways have been elucidated. 

Nevertheless, this knowledge is far from complete. The effi -

ciency of PAH degradation can be signifi cantly improved 

by addressing key issues such as tolerance to different 

PAHs, constitutive expression of the catabolic genes and 

the substrate specifi city, kinetics and stability of the encoded 

enzymes. Moreover, bioavailability issues can be tackled 

by choosing chemotactic and biosurfactant producing PAH 

degrading strains which are also capable of symbiotic as-

sociations with the plant. However, in order to develop such 

bioremediation strategies in the near future, a deeper under-

standing of the physiology, biochemistry, molecular genetics 

and microbial ecology of PAH degrading strains is required. 
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