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Abstract: Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials
by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of
transporter proteins, which are located in the bacterial cell membrane and periplasm and remove
diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc.,
from bacterial cells. This review systematically and comprehensively summarizes the functions of
multiple efflux pumps families and discusses their potential applications. The biological functions of
efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and
survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related
genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed.
Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.

Keywords: antimicrobials; antibiotic residue detection; biofilm; efflux pumps; multidrug resistance

1. Introduction

Bacteria evolve mechanisms of defense against harmful external substances that
threaten their survival. Transporters are located on the bacterial cell membrane and play
important roles in decreasing the concentration of endogenous and extraneous substances
and promoting the growth of bacteria. It should be noticed that some transporters are also
involved in the biodegradation of environmental toxic compounds [1]. Therefore, bacterial
efflux pumps not only work as a functional transporter but also defend from environmental
stress to maintain bacteria survival. Although some efflux pumps have specific substrates,
some transporters can pump out multiple different kinds of antimicrobials, inducing
multidrug resistance [2]. Sometimes, the extrusion of organic solvents or other substrates
leads to the overexpression of transporters, thus creating co-selection of antimicrobial
resistance features [3]. The overexpression of efflux pumps would also impact bacterial
pathogenicity, involving biofilms and quorum sensing (QS) [4,5]. The efflux pumps export
not only antimicrobials but also virulence determinants, including adhesins, toxins, or
other proteins that are important for colonization in host cells [6].

Many studies have described efflux pumps-mediated resistance mechanisms, and
more and more new efflux transporters and related proteins have been discovered. In
recent years, additional functions of transporters were investigated, which involved bac-
terial virulence and self-protection against environmental pollutants. Nevertheless, the
exact mechanisms and active domains of efflux pump transporters have not been clearly
elucidated. There are many influencing factors on the inner and outer bacterial membrane,
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stimulating pump activity and promoting structure alterations of the transporters in the
fluid membrane environment.

This article briefly summarizes the functions of efflux pumps in common Gram-
positive and Gram-negative bacteria. Applications of efflux pump-related regulator pro-
teins for detecting antimicrobial resistance and antibiotic residues, as well as newly discov-
ered plant-derived efflux pump inhibitors, are discussed.

2. Functions of Efflux Pumps

Efflux transporters are mainly grouped into the following superfamilies: ATP-Binding
Cassette (ABC) superfamily, Multidrug and Toxic Compound Extrusion (MATE) superfam-
ily, Major Facilitator Superfamily (MFS), Resistance Nodulation and Cell Division (RND)
superfamily, and Small Multidrug Resistance (SMR) superfamily. In 2015, a novel trans-
porter family was identified, known as the Proteobacterial Antimicrobial Compound Efflux
(PACE) superfamily [7]. The discovery and identification of bacterial multidrug-resistant
(MDR) efflux pumps is still ongoing [8]. One of the differences among efflux pumps is
their source of energy. The ABC family members function as efflux pumps through the
hydrolysis of ATP for energy supply [9], while other transporters including the MATE, MFS,
RND, and SMR superfamilies utilize the proton-motive force provided by H+ or the electro-
chemical gradient of Na+ to supply energy and then extrude multiple compounds [10]. In
addition, there are also differences in the composition of efflux transporters. The RND-type
multidrug efflux proteins use a tripartite complex as the structural basis of the pump,
including an outer-membrane canal protein (OMP), an inner-membrane transporter, and
a membrane fusion protein (MFP) that connect the above two components to pump out
drugs and other harmful compounds [11,12].

2.1. Efflux Pump-Mediated Antimicrobial Resistance

The resistance mechanisms to antimicrobials are based on changes in drug targets,
structural modifications or degradation of drugs, decreased permeability of outer mem-
brane proteins to prevent the drugs from entering the cells, and enhanced efflux transporters
to reduce intracellular drug concentrations. It was generally believed that efflux pumps and
outer membrane proteins did not have a synergistic effect on reducing intracellular drug
concentrations. However, a recent study found an interaction between active efflux pumps
and the permeability barrier of the outer membrane in Burkholderia thailandensis [13]. In
fact, the overexpression of efflux pumps plays an essential role in the acquisition of antimi-
crobial resistance, even of multidrug resistance. Understanding the molecular structure of
efflux pumps and their crucial drug binding sites is critical for the development of efflux
pump inhibitors. The structures of different efflux pump families have been reviewed in
detail and will be briefly discussed below [14,15]. In the following, the main focus is on
the effects of efflux pumps on biofilm formation, bacterial virulence and invasion, and
oxidative stress responses, in addition to the acquisition of antimicrobial resistance.

2.1.1. ABC Superfamily

In Gram-negative microorganisms, the most extensively studied ABC-type trans-
porters is the tripartite complexes MacAB-TolC efflux pump, which actively extrudes
substrates including macrolides and polypeptide virulence factors powered by the AT-
Pase MacB and participates in the secretion of enterotoxin TII in Escherichia coli [16–18].
Rough-core lipopolysaccharide (LPS) or similar glycolipids is also regarded as a physiolog-
ical substrate of the MacAB-TolC pump [18].The inner membrane protein MacB works as a
homodimer complex that contains an N-terminal nucleotide binding domain that binds
ATP and a C-terminal cytoplasmic tail [18]. The membrane fusion protein MacA binds the
lipopolysaccharide core specifically and is activated by ATPase [18]. The tripartite-complex
structure composed of the outer membrane protein TolC, the inner membrane protein MacB,
and the periplasmic protein MacA provides a structural site for substrate transport [17].
The latest research shows that the lack of the MacAB efflux pump in Serratia marcescens
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increases the susceptibility to aminoglycosides and polymyxins, decreases the swimming
motility and the ability of biofilm formation, even causes the loss of the ability to cope with
superoxide stress [19]. In addition, MacAB also confers resistance to several penicillin-type
antibiotics and As(III) in Agrobacterium tumefaciens 5A [20].

In Gram-positive microorganisms, the ABC transporter consists of a single transmem-
brane protein, such as EfrAB in Enterococcus faecalis, LmrA in Lactococcus lactis [21], Msr in
Streptococcus, and PatA/B in Streptococcus pneumoniae [22,23]. The MDR pump EfrAB is
a heterodimeric transporter that extrudes gentamicin, streptomycin, and chlorampheni-
col [24]. The expression of EfrAB is highly induced by sub-inhibitory concentration(sub-
MIC) of these antibiotics and down-regulated by sub-MIC of EDTA (3 mM) [24]. The
LmrA protein functions as a homodimer, comprising a nucleotide-binding domain and six
alpha-helix transmembrane domains, which primarily recognize and transport macrolides
and lincosamides [25]. The Msr protein harbors two nucleotide-binding domains with
no transmembrane domain, conferring resistance to macrolides in Streptococcus and co-
operating with the Mef transport family [26,27]. Nearly the whole family of hydrophilic
fluoroquinolones, including ciprofloxacin and norfloxacin, is the substrate of PatA/B efflux
pumps [28].

2.1.2. MATE Superfamily

All members of the MATE family present 12 alpha-helical transmembrane regions
powered by electrochemical ion gradients [29]. MATE transporters are classified into NorM,
DinF (DNA damage-inducible protein F), and eukaryotic subfamilies according to amino-
acid sequence similarity [30]. The substrates of MATE family transporters are diverse and
have different chemical structures, but fluoroquinolones are the substrates recognized by
almost all transporters [31].

Among the Gram-negative bacteria, the most studied pump is the NorM efflux pump
in Neisseria gonorrhoeae and Vibrio cholera [32]. The NorM efflux pump exports substrates
including antimicrobial cationic compounds (quaternary ammonium compounds) and
antimicrobials such as ciprofloxacin and solithromycin in N. gonorrhoeae [33]. NorM has the
ability to extrude intracellular reactive oxygen species, therefore reducing the damage of
oxidative stress [34]. Mutations of the DinF transport system confer increased susceptibility
to moxifloxacin, ciprofloxacin, and levofloxacin in pneumococci [35]. The competence-
induced protein A is encoded by cinA, recA, and dinF, which form an operon that is induced
by quinolones through the SOS response [35].

2.1.3. MFS Superfamily

The MFS family is the largest characterized family of transporters, especially in Gram-
positive microorganisms. Most members of this superfamily are MDR transporters and are con-
stituted by 12 or 14 transmembrane segments [29]. The pumps Lde in Listeria monocytogenes [36]
and NorA in Staphylococcus aureus [37] specifically extrude hydrophilic fluoroquinolones
(e.g., ciprofloxacin and norfloxacin), while Mef in S. pneumoniae pumps out macrolides [38].
It has been found that the transcriptional start of mef(E)/mel genes locates in the mef(E)/mel
promoter, and the attenuation of transcription will regulate mef -mediated macrolide resis-
tance [39]. In addition, Msr of ABC family and Mef of MFS family enhanced macrolides
extrusion synergistically, which increased resistance to 14-, 15-member ring macrolides [40].

In addition to extruding drugs, MFS transporter proteins also play important roles
in other biological pathways. For example, MdrT and MdrM contribute to promoting the
host immune response by activating IFN-β production of the type I interferon response
and to maintaining cell wall stability [41]. Tet38, a chromosomally encoded MFS efflux
pump, has an impact on multiple steps of the host cell invasion process of S. aureus,
including adhesion, internalization, and trafficking in epithelial cells, and the subsequent
step of the S. aureus infection in epithelial cells including bacterial viability and trafficking
in phagolysosomes [41]. The AbaQ MFS transporter is also involved in Acinetobacter
baumannii motility and virulence, as the loss of the abaQ gene decreases bacterial motility



Antibiotics 2022, 11, 520 4 of 18

and virulence [41]. Additionally, the inactivation of genes encoding the RND, MATE, SMR,
and ABC efflux pumps also reduces bacterial motility and virulence in comparison with
the parental strain [42].

2.1.4. RND Superfamily

RND efflux pumps are generally present in Gram-negative bacteria, which expel
an extensive spectrum of antibiotics and toxic compounds They include AcrAB-TolC in
E. coli, AdeABC in A. baumannii [43], CmeABC in Campylobacter jejuni [44], MexAB-OprM
in Pseudomonas aeruginosa [45], MtrCDE in N. gonorrhea [46], OqxAB in Klebsiella pneumoniae
and Salmonella enterica [47,48], SmeABC in Stenotrophomonas maltophilia, and TtgABC in
Pseudomonas putida [49,50]. The Inner transporters such as AcrB, AdeB, CmeB, MexB, TtgB,
SmeB, and MtrD are responsible for specific substrate binding and the transportation of dif-
ferent classes of drugs, playing vital roles in clinically relevant resistance [51]. For instance,
mutations of the acrB gene would cause the failure of ciprofloxacin therapy [52]. The expres-
sion of the above-mentioned efflux pumps is also regulated by transcriptional regulatory
proteins belonging to the TetR family, including AcrR [53], CmeR [54], NalC/NalD [55,56],
TtgR [57], SmeT [58], and MtrR [59], as well as MexR belonging to MarR family [60]. Table 1
shows the efflux pumps regulated by the TetR family and summarizes the residues that
have been proved to be important for the binding of the activating molecule by mutational
analysis. Amino acid residues in efflux pumps may be important sites for substrates bind-
ing, and the substitution of amino acid residues may affect the affinity of the substrates.
For example, Val 141, Phe 626, Tyr 330, and Phe 180 in the substrate-binding domain of the
OqxB transporter protein are crucial for binding and transporting different substrates [61].
Additionally, mutations of important amino acid residues are associated with efflux pump-
mediated multidrug resistance. The latest research shows that changing the glycine residue
311 to the acidic amino acid glutamic acid (G311E) in the MATE family protein DTX6
markedly increases Arabidopsis plants’ resistance to paraquat and diquat [62].

The multidrug resistance efflux pumps AcrAB-TolC, MexAB-OprM, CmeABC, Mtr-
CDE of the RND family are involved in the survival and pathogenicity of bacteria [6].
Several studies have found that AcrAB-tolC efflux pump in S. Typhimurium and E. coli affect
bacterial adhesion and invasion in host cells and colonization and persistence in animals [6].
Bacteria produce pore-forming toxins, degrading enzymes, and virulence factors of the
secretory system to exert their pathogenicity and evade the attack from the host immune
system. The outer membrane protein TolC can transport not only drugs but also hemolysin
and colicin V [63,64].

Table 1. Efflux pumps regulated by the TetR family.

Microorganisms Efflux Pump Regulators Crucial Amino Acid Residues Substrates References

C. jejuni CmeABC CmeR - Multidrug [54]

E. coli AcrB
TetA

AcrR
TetR

Gly-616
His-64, Thr-103, Arg-104, Pro-105

Macrolide
Tetracyclines and

Mg2+ complex
[65,66]

L. monocytogenes FepA FepR - Fluoroquinolones [67]

N. gonorrhoeae MtrCDE MtrR - Hydrophobic
antibiotics [59]

V. cholerae NorM -
Glu-124, Glu190, Asp-155,
Gly-184, Gly-187, Lys-185,

Pro-189, Cys-196, and Tyr-384
Norfloxacin [68]

P. aeruginosa MexAB-OprM MexR - Novobiocin [55,56]

P. putida TtgABC TtgR Ser-77, Glu-78, Asn-110, His-114 Tetracyclines,
Chloramphenicol [57]

S. altophilia SmeDEF SmeT His-67, Ser-96, His-167
Tetracyclines,

Chloramphenicol,
Quinolones

[58]
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Heavy metal ions are poisonous or inhibit the growth and survival of bacteria at
specific concentrations. Due to the widespread application of heavy metal ions in antimicro-
bials such as antiseptic disinfectants, bacteria have to take measures to deal with the stress of
heavy metals. In E. coli, the RND superfamily plays an important role in the resistance to an-
tibiotics and heavy metals. There are seven known RND proteins; AcrB, AcrD, AcrF, MdtB,
MdtC, and YhiV are multidrug efflux pumps of the hydrophobic and amphiphilic efflux
RND (HAE-RND) protein family, while CusA is a member of the heavy-metal efflux RND
(HME-RND) family that exports Cu(I) and Ag(I) [69]. CusA together with CusB membrane
fusion protein and CusC channel protein constitute the complete tripartite CusCBA efflux
complexes [70]. Long et al. predicted the mechanisms of metal ions export [70]. Firstly,
Cu(I) is combined with the chaperone CusF and then is delivered to three-methionine
metal-binding sites (M49, M64, and M66) at the long N-terminal tail of CusB; secondly, the
metal ion is transferred to the three-methionine cluster (M573, M623, and M672) inside the
periplasmic cleft of CusA and then is released into the central funnel of CusA; finally, the
metal ion enters the CusC channel for its final extrusion [70]. Bacteria protect themselves
from toxic components of organic pollutants by efflux pump biodegradation. TtgABC, a
tripartite RND efflux pump, confers toluene tolerance in P. putida [71].

The stress caused by the abuse of antimicrobials increases the occurrence of functional
mutations in the RND family, possibly enhancing its efflux function. The substrate speci-
ficity of efflux pumps correlates with differences of amino acid residues in the drug-binding
pocket, and bacteria become less sensitive to antimicrobials after the substitution of these
amino acid residues. Numerous examples of mutations in the RND efflux pump which
have been identified from clinical and environmental isolates and laboratory-evolved
strains affect antimicrobial resistance and are fully described in this article [72]. The ac-
quisition of a functional mutation in an efflux pump may be an adaptive response of
bacteria to antimicrobials and undoubtedly increases difficulties in the clinical treatment of
bacterial infections.

2.1.5. SMR Superfamily

The SMR family members consist of short polypeptide (100–150 amino acids) and span
the cytoplasmic membrane as four transmembrane α-helices [73]. Those proteins with short
hydrophilic loops permit to solubilization a broad spectrum of drugs, such as disinfecting
agents including quaternary ammonium compounds, toxic lipophilic compounds including
DNA intercalating dyes, toxic metabolites including nicotine intermediates, and polyamine
compounds like spermidine [73,74]. In Gram-negative bacteria, the AbeS in A. baumannii
transports sterilant ethidium, acriflavine, and benzalkonium, which also significantly
increase resistance to amikacin [75,76]. The clinical strains of K. pneumoniae possesses the
activated pump KpnEF and resists to benzalkonium chloride, chlorhexidine, and some
other antiseptics [77]. The EmrE protein, present in both E. coli and P. aeruginosa, recognizes
and mediates the extrusion of toxic polyaromatic compounds [78,79]. Specifically, the Qac
protein is associated with resistance to some antiseptics and antibiotics [80]. The qacA/B
genes is more frequently observed in S. aureus and E. faecalis, while the qacE gene is widely
spread in Enterobacteriaceae and Pseudomonas spp. [80].

Genes encoding SMR proteins often occur on multidrug resistance plasmids and mo-
bile genetic elements called integrons, which increase the risk of horizontal transmission of
resistance [74]. Overexpression of efflux pumps induced by the exposure to QAC facilitates
the horizontal transfer of mobile genetic elements carrying FQ resistance determinants (qnr,
aac(60)-Ib-cr, oqxAB, qepAB) in Class 1 integrons (QacED1) [81]. Co-transfer of disinfectant-
resistant genes and antibiotics-resistant genes among different species seriously influences
the bactericidal effects of disinfectants and antibiotics.

2.1.6. PACE Superfamily

The PACE transporter family has been identified in the last 5 years, and the Acel
protein in A. baumannii is the first transporter protein found in the PACE family [82]. This
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transporter contributes to extruding biosynthetic biocides (e.g., chlorhexidine, acriflavine,
proflavine, dequalinium, and benzalkonium) [7]. It has been found that genomes encoding
the PACE transporter family are highly conserved among bacterial species, which suggests
that PACE transporter-related genes are acquired perpendicularly and maintain their
characteristic in host species [83].

AceI (Acinetobacter chlorhexidine efflux protein I) is similar to members of the SMR
family in size and in the predicted secondary structure. AceI contains two tandem bacterial
transmembrane pairs. BTP-domain proteins homologous to AceI have also been discovered
in many pathogens such as Burkholderia, Enterobacter, Klebsiella, Pseudomonas, and Salmonella
species [83–85]. The structure of the AceI protein is in equilibrium between a monomer
and a dimer. Increases in chlorhexidine concentration and pH promote the formation of
an acetylated dimer, and the binding of chlorhexidine to the transcriptional protein AceR
increases aceI transcription, thus extruding chlorhexidine [82].

Tables 2 and 3 summarize the major efflux pumps and their specific substrates in
Gram-positive and Gram-negative bacteria, respectively.

Table 2. Efflux pumps present in Gram-negative bacteria.

Efflux Pump Family Efflux Pump Regulator Organisms Substrates (Class) Resistance to
Specific Antibiotics a References

ABC MacAB-TolC PhoPQ
E. coli,

N. gonorrhoeae,
S. maltophilia

Macrolides EM [18,86]

MATE NorM / N. gonorrhoeae Fluoroquinolones,
EB, Rhodamine 6G NF, CP [29,33]

MFS

EmrAB-TolC EmrR

E. coli

Cotrimoxazole / [40]

MdfA, MdtM / Tigecycline,
chloramphenicol DC, CM [86–88]

QepA QepR Fluoroquinolones FQ [89]

TetA TetR Tigecycline TC [66]

RND

AcrAB-TolC AcrR
E. coli,

K. pneumoniae,
S. enterica

β-lactams,
Fluoroquinolones KF, CM, FQ, P [90,91]

AdeABC AadR, AadS A. baumannii

Aminoglycosides,
Erythromycin,

Chloramphenicol,
Fluoroquinolones,

Tetracyclines,
Trimethoprim,

some β-lactams,
Bile salts

AZI [43]

CmeABC CmeR C. jejuni
β-lactams,

Tetracyclines,
Quinolones

TC [44]

MexAB-OprM NalC/NalD P. aeruginosa Quinolones CM, CP, TC, SM [45]

MtrCDE MtrR, MtrR N. gonorrhoeae Fluoroquinolones CP, RF [46]

OqxAB OqxR
E. coli,

K. pneumoniae,
S. enterica

Chloramphenicol,
Fluoroquinolones CM, NT, NF, CP, LEV [47,48]

SmeDEF SmeT S. maltophilia

Aminoglycosides,
Trimethoprim
Tetracyclines,

Chloramphenicol

GM, CZ, IMP, MP,
CAR, TC [49]

TtgABC TtgR P. putida Chloramphenicol CM, TC [50]
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Table 2. Cont.

Efflux Pump Family Efflux Pump Regulator Organisms Substrates (Class) Resistance to
Specific Antibiotics a References

SMR

AbeS / A. baumannii
Ethidium,

Acriflavine,
Benzalkonium

EM, NO [72,73]

EmrE / E. coli,
P. aeruginosa

Quaternary
ammonium
compounds

Quaternary
ammonium
compounds

[75,76]

KpnEF / K. pneumoniae
Benzalkonium

chloride,
Chlorhexidine

CT, EM, RF, TC, SM [74]

a ACR, acriflavine; ADM, adriamycin; AG, aminoglycosides; AZI, azithromycin; CAR, carbenicillin; CLI, clin-
damycin; CM, chloramphenicol; CP, ciprofloxacin; CR, clarithromycin; CT, Colistin; CZ, cefoperazone; DA,
dalfopristin; DAU, daunomycin; DC, doxycycline; DTM, distamycin; EB, ethidium bromide; EM, erythromycin;
FQ, fluoroquinolones; FU, fusidic acid; IMP, imipenem; KF, cephalosporins; GM, gentamicin; LEV, levofloxacin;
ML, macrolides; MP, meropenem; NF, norfloxacin; NO, novobiocin; NT, nitrofurantoin; OF, ofloxacin; P, peni-
cillins; RF, rifampicin; ROX, roxithromycin; SM, streptomycin; TC, tetracycline; TM, trimethoprim. “/” mean no
transcription regulators found.

Table 3. Efflux pumps present in Gram-positive bacteria.

Efflux Pump Family Efflux Pump Regulator Organisms Substrates Resistance to Specific
Antibiotics a Reference

ABC

EfrAB / E. faecalis

acriflavine, ethidium
bromide, safranin O,
DAPI, daunomycin,

doxorubicin, novobiocin,
arbekacin, doxycycline

and norfloxacin

GM, SM, CM [24]

LmrA / L. lactis
Macrolides,

Lincosamides,
Streptogramins

DAU, ADM [21,25]

Msr / Streptococcus Macrolides ML [22,26,27]

PatA/PatB / S. pneumoniaee Fluoroquinolones FQ [23,28]

MATE FepA FepR L. monocytogenes Fluoroquinolones NF, CP [64]

MepA MepR S. aureus Fluoroquinolones,
Tigecycline, Pentamidine DT [92,93]

MFS
Lde / L. monocytogenes Fluoroquinolones ACR, EB [36]

NorA, NorB,
NorC

MgrA, NorG,
ArlRS S. aureus Fluoroquinolones NF, CP [37]

Mef / S. pneumoniae Macrolides EM, AZI, ROX, CR [38–40]

SMR Qac QacR
S. aureus,

Enterococcus spp.,
E. faecalis

Quaternary ammonium
compounds

Quaternary
ammonium
compounds

[77]

a ACR, acriflavine; ADM, adriamycin; AZI, azithromycin; CP, ciprofloxacin; CR, clarithromycin; CM, chloram-
phenicol; DA, dalfopristin; DAU, daunomycin; DT, dirithromycin; EB, ethidium bromide; EM, erythromycin; GM,
gentamicin; FQ, fluoroquinolones; ML, macrolides; NF, norfloxacin; ROX, roxithromycin; SM, streptomycin.

2.2. Efflux Pumps Affect Biofilm Formation and Quorum Sensing (QS)

Biofilms, a microbial community attached to a surface, contribute to bacterial resistance
and tolerance. Interestingly, the function of biofilms is directly or indirectly influenced
by efflux pumps [94,95]. For instance, sub-inhibitory concentration of tigecycline directly
restrain biofilm formation by downregulating the adeG efflux gene in A. baumannii [96]. QS
is formed among cells, promotes the mutual communication of cells, and participates in
bacterial activities through signal transduction. QS cooperation with biofilms improves
the viability of bacteria by sensing changes in environmental signals. For example, the
MexAB-OprM efflux pump extrudes acylated homoserine lactones with the contribution
of QS, and overexpression of the Mex pump in P. aeruginosa results in the release of QS
signals [6]. It has been found that QS among bacteria will be impeded if efflux pumps
activity is hindered by inhibitors [97]. Similarly, the proper concentration of efflux pump
inhibitors prevents biofilm formation, as observed for inhibitors of the NorA efflux pump
in S. aureus [98].
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The proteomic profiles of two A. baumannii strains grown in planktonic station-
ary phase or in mature solid–liquid biofilm were compared using proteomics, and the
MacAB-TolC efflux pump was found to play an essential role in biofilm formation [99]. The
efflux pump, which helps pathogen adapt to bad conditions occurring in mature biofilms,
is involved in envelope stress responses that maintain membrane rigidity and confer resis-
tance to high osmotic stress [99]. The MFS transporter proteins Pmt and AbaF are involved
in A. baumannii biofilm formation. Pmt extrudes extracellular DNA and plays an essential
role in forming the biofilm structure, while AbaF releases biofilm materials [41].

The RND-type MDR efflux system is well studied. It has been found that a number of
RND transporters contribute to alterations of the membrane involved in bacterial functions,
especially biofilm formation [100]. This was shown for A. baumannii efflux pump AdeB
and its regulatory protein AdeRS. Deletion of adeAB genes or inhibition of the expression
of these genes leads to the reduction or prevention of biofilm formation and of the QS
system [101,102]. There is a positive correlation between biofilm formation and the mRNA
levels of the efflux pump genes adeB, adeG, and adeI, which is altered by sub-MICs of colistin
or polymyxin B [103]. The pump MexGHI of P. aeruginosa transport phenazine, which is
required for biofilm morphogenesis [104]. The QS system has been shown to regulate the
expression of RND efflux pumps. Conversely, the RND transporters can also influence
QS via translocation of quorum signals [105]. It was shown that virulence and quorum
sensing molecules of P. aeruginosa would be lost and reduced when the efflux gene mexI
is mutated [106]. The ABC-type efflux system also plays a role in resistance to antifungal
agents in fungi, particularly in Candida species. Similar to the RND pumps, it is involved in
the secretion of quorum-sensing molecules and affects biofilms’ behavior [107].

3. Regulation of Efflux Pumps and Application of Efflux Pump-Related Genes/Proteins
3.1. Regulation Mechanisms of Efflux Pumps

In addition to exposure to antimicrobials or disinfectants, efflux pump expression is
also regulated by a variety of regulatory systems and proteins. Currently, single regulatory
proteins for the MDR efflux pump are mainly classified into four categories, i.e., AraC,
MarR, MerR, and TetR [108–110]. These regulatory proteins contain DNA-binding do-
mains and ligand-binding domains. For instance, the TetR family is a substrate-dependent
transcriptional repressor and controls the expression of the efflux-related tet genes, which
confer resistance to tetracyclines [111]. FepA is a novel type of MATE efflux pump, whose
overexpression results in resistance to fluoroquinolones. It is regulated by FepR, a TetR-type
repressor, which increases the MICs of norfloxacin and ciprofloxacin in L. monocytogenes [67].
The expression of the AceI protein, a transporter protein of the PACE family, is regulated by
the LysR-type transcriptional regulator AceR [82]. There are extensively studies reporting
that the transcriptional regulatory protein MepR, a MarR-type repressor, inactivates the
MepA protein, whose substrates include biocides, fluoroquinolones, and tigecycline [92,93].
These regulators primarily respond to several types of signals including superoxide and
peroxide (e.g., H2O2) [112], antimicrobials (e.g., antibiotics), toxic reagents (e.g., methylgly-
oxal), and biocides (e.g., triclosan) [113,114].

Another type of efflux pumps regulation is based on the two-component regulatory
system, consisting of a cognate response regulator and a sensor histidine protein kinase,
such as SoxRS, AdeRS, BaeRS, SmeRS, MacRS, ArlRS, EvgSA, BaeSR, CpxAR [115–121].
Each sensor detects a specific intracellular signal (e.g., antibiotics) and then induces histidine
auto-phosphorylation, thus transferring the phosphate group to the proper aspartic acid
and activating the response regulator [122]. For instance, it is known that AcrAB in
E. coli is controlled by a series of different regulatory systems, including MarA, Rob, SoxS,
AcrR, EnvR, MprA, PhoP, RpoE [123]. These regulatory systems are activated by external
environmental signals, such as pH, the concentrations of antimicrobials, divalent metal
ions, organic solvents, the growth phase, and oxidative stress [123].
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3.2. Determination of Antimicrobial Resistance Based on Efflux Pump Gene Expression

Microorganisms harbor MDR efflux pumps resulting in inherent or acquired resistance
to antimicrobial agents. The resistance-related genes encode the constituent proteins or
regulatory proteins of efflux pumps, which function as the first line of defense against
drugs, maintaining the survival of the bacteria [124]. Many efflux pump genes can be
used for the rapid detection of antimicrobial resistance, which can be efficiently verified by
PCR identification and MIC determination. The RND family of efflux pumps recognizes a
large number of substrates, extruding the majority of drugs and increasing antimicrobial
resistance. Examples are the Acr pump in E. coli, the Ade pump in A. baumannii, and the
Mex pump in P. aeruginosa [76,125]. According to whether the efflux gene is expressed or
not, we can determine antibiotic resistance and guide clinical therapy [126]. For instance, in
the carbapenem-resistant A. baumannii isolate, the expression of the efflux genes adeB, adeG,
and adeJ was increased by different folds [127]. Similarly, a stimulated expression of adeB
and adeJ was also found in bacteria resistant to tetracyclines [128]. However, there is a slight
relationship between substrates concentration and velocity of maximal transportation.
For example, although cefaloridine can be strongly excreted by AcrB, it still possesses
antibacterial activity in the presence of AcrB, which explains that the effective antibacterial
dose of cefaloridine is much lower than the concentration required for the efflux [129].

In addition, some single-substrate efflux pumps are associated with high level of resis-
tance and MICs. These single-substrate efflux proteins include the macrolide-specific efflux
pumps MacAB in E. coli and Mef in S. pneumoniae [38], the hydrophilic fluoroquinolones
efflux pump OqxAB in E. coli and S. enterica [130], the tetracycline-mediated efflux pump
TetA/TetO in E. coli [131], etc.

3.3. Detection of Antibiotic Residues Based on Efflux Pump Proteins

Presently, efflux pump-related proteins are still under research for antibiotic residue
detection, and only two regulatory proteins are used for the screening of antibiotics residues,
including TetR and TtgR (belongs to TetR family). Receptor proteins involved in gene tran-
scriptional regulation have been proven to be a powerful tool for detecting low antibiotic
concentrations [132]. Hyerim et al. established a bioreporter method based on TetR and
tetR promoter to detect doxycycline, using a green fluorescence protein gene as reporter
gene, and 5nM doxycycline would induce high expression levels of green fluorescence pro-
tein [133]. Weber et al. developed an in vitro indirect enzyme-linked immunosorbent assay
using TetR-tetO to accurately and rapidly detect tetracycline antibiotics, with the detection
limits of doxycycline and tetracycline of 0.1 and 1.9 ng/mL, respectively [134]. Moreover,
Espinosa-Urgel et al. established a novel microbial biosensor based on TtgR to detect drug
concentrations around 22 µM with high fluorescence intensity [135]. It was demonstrated
that green fluorescence protein-fused TtgR, a TtgABC efflux pump transcription regulator
in P. putida, is most sensitive to ceftazidime, ciprofloxacin, and tetracyclines [135].

4. Efflux Pump Inhibitors (EPIs) in Antimicrobial Therapy

Efflux pumps act as a new target for antimicrobial combination therapy, enabling syn-
thetic or plant-derived EPIs to assist antibiotics therapy against bacterial infections [136,137].
Multi-drug resistance is largely mediated by efflux pumps; hence, the development of
efflux pump inhibitors is necessary to curb antimicrobial resistance. There are various ways
to block or bypass the action of the efflux pumps, including decreasing the binding affinity
of antibiotics to the transporter by modifying the drug’s chemical structure, increasing
the permeability of the outer membrane to increase the intracellular drug concentrations,
inhibiting or knocking out efflux pump-related genes, impairing the ATP energy supply,
or designing substances that can compete with antimicrobials for the action site of efflux
pumps to competitively inhibit the efflux activity [138].

A number of inhibitors have been discovered by computational analysis or artifi-
cial extraction from plants. Through high-throughput virtual screening of natural com-
pound collections against NorM—a MATE transporter from N. gonorrhea—authors found
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that Terminalia chebula, a compound from an Indian medicinal plant, destroyed the
binding of Na+ and ligands and turned the NorM transporter into a closed state [139].
Phenylalanyl–arginine β-naphthylamide, an inhibitor of AcrB in E. coli, has been shown
to inhibit the extrusion of drugs via binding to the hydrophobic pocket of AcrB [140]. It
can be combined with carolacton, a secondary metabolite in myxobacteria, for potential
use in antimicrobial chemotherapy against AcrAB-TolC [141]. Tannic acid also acts as
an inhibitor of S. aureus multidrug efflux pump, Tet, Msr, and others [142]. It has been
found to significantly reduce the MIC of drugs such as tetracycline and erythromycin [142].
However, EPIs combined with antibiotics to assist MDR therapy in the clinic is an obviously
potential challenge, depending on the intrinsic permeability properties of the bacterial
outer membranes. Yang et al. demonstrated that the coupled use of tobramycin and EPI
promoted the binding of EPI with tetracycline and acted on MDR P. aeruginosa [143]. They
also explored the effect of tobramycin–EPI conjugates in relation to with fluroquinolone,
rifampicin, and fosfomycin, showing that they effectively reduced the MIC80 of these drugs
and exerted a strong joint effect [144]. Adamson et al. showed that the combination of EPI
(trimethoprim and sertraline) and levofloxacin against the overexpression of MexAB-OprM
pumps in P. aeruginosa produced advanced benefit compared with the monotherapy with
levofloxacin [145]. Prasch et al. conducted similar research and demonstrated that when the
above efflux pump inhibitors are co-administered with antibiotics, the antibiotic therapeutic
dose can be reduced [146].

In addition to the EPIs mentioned above, plant-derived EPIs have also been researched
(Table 4). Based on various extraction mechanisms, more than 20 different potential
plant-derived EPIs have been reported [147,148]. In addition to good anti-inflammatory
and antibacterial effects, compounds extracted from vegetal including berberine, Arte-
sunate, and Curcumin inhibit the efflux pump activity of the Gram-negative bacilli E. coli
and P. aeruginosa [149–151]. Vegetables (e.g., Momordica balsamina), seeds (e.g., milk this-
tle seeds), spices (e.g., pepper and cumin), essential oils derived from aromatic plants
(e.g., trans-cinnamaldehyde and eugenol), etc., are excellent sources of EPIs [147,152–156].
Flavonoids, particularly flavonolignans, were found to have great application prospects in
the fight against multidrug resistance by inhibiting bacterial ABC transporters and other
efflux pumps [157].

Table 4. Plant-derived EPIs.

Bioactive Compounds Bacterial Species Pharmacological Activity References

Berberine P. aeruginosa Inhibited the multidrug efflux
system MexXY-OprM [149]

Artesunate E. coli Inhibited the multidrug efflux
pump system AcrAB-TolC [151]

Curcumin P. aeruginosa Inhibited the expression of
efflux pump [150]

plant-derived flavonoids such as
skullcapflavone II and nobiletin Mycobacterial Species

Inhibited the activity of the
efflux pump and decreased the

rifampicin-resistance level
[153]

Extracts of milk thistle seeds and reserpine Salmonella Typhi Inhibited an efflux
transporter STY4874 [154]

Hypericum olympicum L. cf.
uniflorum-derived natural product S. aureus Inhibited NorA multidrug

efflux pump activity [147]



Antibiotics 2022, 11, 520 11 of 18

Table 4. Cont.

Bioactive Compounds Bacterial Species Pharmacological Activity References

diterpene isolated from Chamaecyparis
lawsoniana: ferruginol

Methicillin-resistant S. aureus (MRSA)

Inhibited the TetK pump

[155]

quinine isolated from Cinchona tree’s bark

Inhibited the activity of the
efflux pump

piperine isolated from the Piperaceae family

harmaline isolated from Perganum harmala

4′,5′-O-dicaffeoylquinic acid isolated from
wormwood (Artemisia absinthium)

triterpenoids from Momordica balsamina

carnosic acid from Rosmarinus officinalis

coumarins from Mesua ferrea

clerodane diterpene from
Polyalthia longifolia

Downregulation of MFS and
MATE family efflux genes such

as norA, norB, norC,
mdeA, and mepA

cumin spice (Cuminum cyminum)
inhibited LmrS drug transport

(a proton-driven multidrug
efflux pump in MRSA)

trans-cinnamaldehyde and eugenol A. baumannii
downregulated the expression

of efflux pump-related
gene adeABC

5. Conclusions and Perspectives

This work reviewed functional studies of various efflux pump families whose sub-
strates include heavy metals, disinfectants, preservatives, toxins, and virulence factors, in
addition to conventional antibiotics. Apart from mediating multidrug resistance, efflux
pumps also confer resistance to heavy metals and disinfectants, and even cross-resistance
to them. This suggests that efflux pumps have much more complex actions than we ini-
tially thought. Efflux pumps play important roles in biological processes such as biofilm
formation, quorum sensing, bacterial adhesion to host cells, and invasiveness. This further
highlights the importance of developing efflux pump inhibitors. Many discovered efflux
pump inhibitors are in clinical trials, though some have even been excluded due to their
excessive toxicity. Therefore, there is an urgent need to find safe, green, and harmless efflux
pump inhibitors. Plant-derived extracts are interesting candidates. Overall, the functional
diversity of efflux pumps remains to be discovered, and the development and utilization of
efflux pump inhibitors still require further exploration.

According to preceding research, proteins of the TetR family can be used for the
detection of antibiotic residues involved in drug resistance. In addition to high-affinity
transcriptional regulatory proteins reported above, there are other potential proteins that
recognize a single substrate and have a specific drug binding domain. As shown in Table 3,
regulatory and constitutive proteins have specific drug binding sites that can be used for
the detection of antibiotics residues involved in the binding. Therefore, efflux pump-related
proteins can also be used to detect antibiotic residues, especially transcriptional regulators,
though only TetR family proteins are currently applied in practice. It is imperatively
demanded that researchers discover more appropriate proteins with high binding specificity
for antibiotics. Moreover, this article mentions the connections between the formation of
biofilms and the expression of efflux pumps genes, which offers new perspectives to
widen fundamental research. This article illustrated the functions of efflux genes and
relevant transporters, a topic that requires constant exploration to provide guidance for
clinical applications.
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