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Bacterial phylogeny structures soil resistomes
across habitats
Kevin J. Forsberg1*, Sanket Patel1,2*, Molly K. Gibson1, Christian L. Lauber3, Rob Knight4,5, Noah Fierer3,6 & Gautam Dantas1,2,7

Ancient and diverse antibiotic resistance genes (ARGs) have previ-
ously been identified from soil1–3, including genes identical to those
inhumanpathogens4.Despite the apparentoverlapbetween soil and
clinical resistomes4–6, factors influencing ARG composition in soil
and their movement between genomes and habitats remain largely
unknown3. General metagenome functions often correlate with the
underlying structure of bacterial communities7–12. However, ARGs
are proposed to be highly mobile4,5,13, prompting speculation that
resistomesmay not correlatewith phylogenetic signatures or ecolo-
gical divisions13,14. To investigate these relationships, we performed
functional metagenomic selections for resistance to 18 antibiotics
from18 agricultural and grassland soils. The 2,895ARGswe discov-
eredweremostlynew,andrepresentallmajor resistancemechanisms15.
We demonstrate that distinct soil types harbour distinct resistomes,
and that the addition of nitrogen fertilizer strongly influenced soil
ARGcontent.Resistomecomposition also correlatedwithmicrobial
phylogenetic and taxonomic structure, both across and within soil
types. Consistent with this strong correlation, mobility elements
(genes responsible for horizontal gene transfer between bacteria
such as transposases and integrases) syntenic with ARGs were rare
in soil by comparison with sequenced pathogens, suggesting that
ARGsmaynot transfer between soil bacteria as readily as is observed
between human pathogens. Together, our results indicate that bac-
terial community composition is the primary determinant of soil
ARG content, challenging previous hypotheses that horizontal gene
transfer effectively decouples resistomes from phylogeny13,14.
Functionalmetagenomic selectionspermit deep interrogationof resis-

tomes and can identify full-length, functionally verified ARGswithout
requiring sequence similarity to previously identified genes2–4,16. We
constructedmetagenomic libraries averaging 13.86 8.3 (mean6 s.d.)
gigabases (Gb) by shotgun cloning DNA fragments 1–5 kilobases (kb)
long from 18 soils (Supplementary Table 1) into Escherichia coli, and
screened these libraries for resistance against 18 antibiotics represent-
ing 8 drug classes. Resistance was conferred against 15 of the 18 anti-
biotics tested (ExtendedData Fig. 1, SupplementaryTable 2), andDNA
fragments conferring resistancewere sequenced, assembled, and anno-
tated with PARFuMS4 (see Methods).
We assembled 4,655 contigs over 500base pairs (bp) in length (Fig. 1a,

N50 size5 2.25 kb, or average contig length.1.76 kb) containing 8,882
open reading frames (ORFs) larger than 350 bp (SupplementaryData 1).
Using profileHiddenMarkovModels (HMMs), we annotated 2,895 of
these 8,882 ORFs as ARGs (seeMethods). Underscoring the immense
functional diversity of soil resistomes, the identified soil ARGs were
largely dissimilar from ARGs in public repositories (Fig. 1b). Only 15
soilARGs (0.5%)haveperfect amino acid identity to entries in theNCBI
protein database, with just three having .99% nucleotide identity to
nucleotide sequences inNCBI. In contrast, the average amino acid iden-
tity of allARGs to their closest homologue inNCBI isonly61.16 15.3%.
Although we recently described cultured soil bacteria harbouringARGs

withperfect nucleotide identity to those inhumanpathogens4, this phe-
nomenon appears to be the exception rather than the rule: only one soil
ARG fromour current data set shares perfect nucleotide identity with a
pathogen (NCBI accession number AY664504).
Our samplingdepth (ExtendedData Fig. 1) surpasses previous func-

tional interrogations of soilmetagenomes8–10,16,17, permitting anunpar-
alleled comparisonofARGs across soil types. Emphasizing the diversity
recovered by our functional selections, 29% of assembled contigs over
1,500 bp did not contain an ORF that could be confidently assigned a
known resistance function, representing a large repertoireof potentially
novelARGs. TheORFs assigned to knownARG functions represent all
classicalmechanisms of antibiotic resistance (Fig. 1c): antibiotic efflux,
antibiotic inactivation and target protection/redundancy15.
Resistance to amphenicol and tetracycline antibiotics occurred pre-

dominantly via the action of drug transporters, of which the majority
belonged to themajor facilitator superfamily (Fig. 1c). In contrast, selec-
tions with aminoglycoside and b-lactam antibiotics most frequently
uncoveredARGswith antibiotic-inactivating capabilities, via covalent
modificationof aminoglycosides andenzymatic degradationofb-lactams
(Fig. 1c). Excluding selections with trimethoprim and D-cycloserine
(for which the ARGs selected were predominantly overexpressed tar-
get alleles from diverse bacterial lineages16, Extended Data Fig. 2), b-
lactamaseswere themost frequently encountered soilARGs,mirroring
observations fromhospital settings18.Weobservedmetallo-b-lactamases
most frequently, followedbyAmbler class-A and class-Denzymes (Ex-
tended Data Fig. 3).
Wepredicted the sourcephylumofeach functionally selected resistance

contig greater than 500 bp using a composition-based, semi-supervised,
taxonomicbinning algorithm19. Proteobacteria andActinobacteriawere
the most prevalent predicted phyla, and each contained ARG families
of all major resistancemechanisms15 (Fig. 2a). Major facilitator super-
family transporters and b-lactamases showed the strongest, and most
orthogonal, relationshipswithpredictedbacterial phyla (Fig. 2b,Extended
DataFig. 4, SupplementaryTable 3).b-lactamaseswere enrichedwithin
Verrucomicrobia,Acidobacteria andCyanobacteria contigs,whilemajor
facilitator superfamily transporters were largely absent from Acidobac-
teria and were enriched among Actinobacteria and Proteobacteria con-
tigs (Supplementary Table 3).
Toquantitatively compare soil resistomes at higher resolution, a count

matrix of unique gene sequences per functional annotation (that is, ARG
family)was generated by summing across all antibiotic selections per soil
andnormalizing these counts tometagenomic library size (seeMethods).
The number of unique ARGs was significantly higher (P, 0.01, Wil-
coxon rank sum test) inCedarCreek (CC) grassland soils compared to
agricultural soils fromKellogg Biological Station (KBS). Our selections
resolved functional differences betweenCC andKBS soils regardless of
whether Bray–Curtis distances were calculated using only ARG fam-
ilies (Fig. 3a) or all captured gene functions (Extended Data Fig. 5).
Major facilitator superfamily transporters andb-lactamaseswere higher
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at CC compared toKBS, andARG families of these resistancemechan-
isms most significantly differed between these soils (Supplementary
Table 4). Only 2.6% of ARGs were shared across at least two soils at
$99% nucleotide identity (Supplementary Table 5), with significantly
more inter-soil sharing atCCversusKBS (P, 0.05, Fisher’s exact test).
No ARGs were shared between CC and KBS soils ($99% nucleotide
identity), and only two ARG mechanisms were observed in every soil
(b-lactamase, major facilitator superfamily transporter).
We sampled CC soils across a gradient of added nitrogen (N) fertil-

izer. Similar to phylogenetic differences observed in community com-
position across the N gradient20, we found that ARG composition of
soils receiving higher N levels differed from the composition observed
in other CC soils (Fig. 3b). These differences do not arise from a change
in thenumber ofuniqueARGsbetweenhigh-Nandother soils (P5 0.9,

Wilcoxon rank sum test), but rather were due to differences in relative
proportions ofARG families in these soils (SupplementaryTable 6). In
high-N soils, b-lactamases were depleted whereas membrane trans-
porters were enriched (Supplementary Table 6). High N levels favour
particularorganisms (for example, copiotrophs8,10,20), causing shifts inbac-
terial abundances, which in turn probably affect resistome composition.
We calculated differences in community structure of these CC and

KBS soils using 16S ribosomal RNA gene sequences8 (Extended Data
Fig. 6).All bacterial phyla thatwereabundant (.3%relative abundance)
in the samples, as determined by 16S rRNA gene sequencing, were also
well-represented (.4% relative abundance) among phyla inferred from
resistance-conferring contigs (Extended Data Fig. 7). Actinobacteria
(which are characterized byGC-rich genomes and produce antibiotics
in the soil21) weremost enriched in resistance-conferring contigs relative
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Figure 1 | Functional selections of 18 soil libraries yield diverse ARGs.
a, Bar chart depicting contigs.500 bp across all antibiotic selections from
CC (red) and KBS (blue) libraries. b, Amino acid identity between all ORFs
(black, n5 8,882) or ARGs only (red, n5 2,895) and their top hit in the NCBI

protein database. c, Total ARGs by antibiotic class (ARG types in the key );
the y axis shows number of ORFs. MFS, major facilitator superfamily; ABC,
ATP-binding cassette.
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Figure 2 | Resistance is encoded by diverse soil phyla. a, Network of
predicted bacterial phyla for each ARG used in cross-soil comparisons
(n5 880). Edge thickness indicates number of ARGs within an ARG family
(diamonds) froma predicted phylum (rounded squares). Phyla containing.15
ARGs are labelled, and are shaded dark grey at .3% 16S rRNA abundance.
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significance of phylum andARGmechanism co-occurrence (Fisher’s exact test,
line width increases with ranked significance). Node size indicates number
of ARGs (diamonds) or contig count (rounded squares).
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to 16S rRNA gene abundance, whereas levels of Proteobacteria were
similar in both data sets (ExtendedData Fig. 7). Thus, any phylogenetic
bias in functional selections due to heterologous expression in E. coli (a
member of Proteobacteria) is minimal compared to the effect of the
ARG content of source bacteria.
Wenext tested for correlations between soil resistomes and commu-

nity composition.WhenbothCCandKBS soilswere considered, Bray–
Curtis distances calculated from normalized ARG counts significantly
correlatedwith bacterial operational taxonomic units inferred from16S
rRNA sequence data, whether taxonomic (Bray–Curtis) or phylogen-
etic (weighted andunweighted) dissimilaritymetricswere used (Mantel
tests, P, 0.05, Supplementary Table 7). Visualized by Procrustes ana-
lyses, both the ARG content and bacterial composition of CC and KBS
soils clusteredby sampling site, consistently displayinghighly significant
goodness-of-fit measures (Fig. 3c, Extended Data Fig. 8, Supplementary
Table 8). Within sampling sites, the variability in phylogenetic com-
munity composition differed (Supplementary Table 9):more diversity
was observed across CC soils than in KBS soils (Extended Data Fig. 6).
Because of this disparity, we observed a significant within-site correla-
tion between ARG content and community composition in CC soils
(Supplementary Tables 7 and 8; Fig. 3d, ExtendedData Fig. 8), but not
in KBS soils (Extended Data Fig. 9).
The strong correlation between soil ARGcontent and bacterial com-

position suggests that thehorizontal gene transfer (HGT)ofARGs isnot
sufficiently frequent toobscure their associationwith bacterial genomes.
Corroborating this notion, soil ARGs show limited genetic potential for
horizontal exchange. Only 0.42% of ORFs from our functional selec-
tionswere predictedmobility elements (such as transposases, integrases
and recombinases; ExtendedDataFig. 10), andnoneof these geneswere
co-localized with an ARG containing .72% amino acid identity to a
protein inNCBI. The limitedmobility of the soil resistomemay explain
why ARGs are rarely shared between soil and human pathogens4,22. In

contrast to soils, ARGs in pathogens often share near-perfect sequence
identity18, with origins that can be traced to the emergence of a single
genotype disseminated broadly via HGT23,24.
To test the hypothesis that ARGs in the soil have less potential for

HGT than those in human pathogens, we compared ARGs from our
functional selections to ARGs in fully sequenced genomes from 433
common human pathogens and 153 non-pathogenic soil organisms13

(SupplementaryData 2).Wemodelled functional selections from each
genome collection based on the fragment-size distribution observed in
our soil selections (seeMethods), and calculated theproportionofDNA
fragments from each simulation that contained a predicted mobility
element. Signatures of HGT were significantly more frequent in path-
ogen genomes than in soil genomes or soil selections (Fig. 4a). Impor-
tantly,wedetectednodifference in theHGTpotential ofARGsbetween
the two soil data sets (Fig. 4a), supporting the generality of the conclu-
sions drawn fromour soil functional selections. As the genetic distance
from an ARG increased, the incidence of mobility elements in patho-
gen genomes was always higher than in soil genomes or functionally
selectedmetagenomes (Fig. 4b), indicating that the higher potential for
HGT seen in pathogens is independent of DNA fragment size or the
method by which soil resistance is interrogated. Interestingly, enrich-
ing formultidrug-resistant Proteobacteria in the soil4,25 (which are fre-
quently encountered as opportunistic pathogens in hospital settings26)
increases thedetectionof shared resistancebetween soil and clinic4, sug-
gesting that they may represent a major conduit through which ARGs
move between these environments.
Unlikemosthospital settings, soils containahugediversityofARGs1–3,16,22,

and therefore increasing antibiotic exposure (as has occurred over the
past 70 years27)may favour pre-existing genotypes1 rather than the acqui-
sitionof newARGs4. This key distinction explains our observation that,
despite extensive sampling, very little evidence exists forHGTofARGs
across soil communities. Indeed, our evidencepoints tophylogeny, rather
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than HGT13,14, as the primary determinant of soil resistome content.
Therefore, as bacterial type and diversity change across soils8–10,20, so
too do their associatedARGs, resulting in resistomes thatmay respond
to anthropogenic modulations (for example, nitrogen fertilizer) that
do not possess obvious antibiotic-related properties.

METHODS SUMMARY
MetagenomicDNAwas extracted fromall soils using the PowerMax soil DNA iso-
lation kit (MoBio Laboratories). Small-insert metagenomic libraries were created
by shearing this DNA into 1–5-kb fragments before ligation into the pZE21 expres-
sion vector28 and electroporation into E. coliMegaX cells (Invitrogen). These libraries
were plated onMueller–Hinton agar containing one of 18 antibiotics, grown over-
night at 37 uC, and resistant colonies collected in a liquid cell slurry.Metagenomic
fragments conferring resistancewere amplified via polymerase chain reaction (PCR)
using this slurry as template, and barcoded libraries prepared from these amplicons
for 101-bppaired-end sequencing using the IlluminaHiSeq2000. Paired-end reads
were assembled into resistance-conferring fragments using PARFuMs4 and anno-
tated using profile HMM databases. Cross-soil resistome comparisons were per-
formedusing Bray–Curtis distances calculated from a countmatrix of unique gene
sequences per ARG family, generated by summing across all antibiotic selections

for a given soil andnormalizing these counts tometagenomic library size.Taxonomies
of assembled fragments were assigned using RAIphy19, while the 16S rRNA gene
sequencedata generatedpreviouslywereprocessed as described8.Genomesof human
pathogens and non-pathogenic soil bacteria were collected based on published envir-
onmental metadata13. Functional selections were modelled from each genome col-
lection based on the fragment-size distribution observed in our soil selections.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Supplementary Information is available in the online version of the paper.
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METHODS
Construction of soil metagenomic libraries. For construction of soil metage-
nomic libraries, bulk community DNA was extracted from 10 g of each soil using
the PowerMax Soil DNA Isolation Kit (MoBio Laboratories), following suggested
protocols (http://www.mobio.com/images/custom/file/protocol/12988-10.pdf). Sub-
sequently, DNAwas sheared to a size range of approximately 500–5,000 bp using
theCovaris E210 sonicatorwith themanufacturer’s recommended settings (http://
covarisinc.com/wp-content/uploads/pn_400069.pdf). ShearedDNAwas size-selected
by electrophoresis through a 1% low-meltingpoint agarose gel in 0.5XTris-Borate-
EDTA (TBE) buffer stained with GelGreen dye (Biotium). A gel slice correspond-
ing to 1,000–5,000 bp was excised from the gel and DNA was extracted using a
QIAquickGel ExtractionKit, eluting in 30ml ofwarmnuclease-freeH2O(Qiagen).
We chose this fragment size range because small fragment libraries, although they
sacrifice the ability to capture large gene clusters or very large genes, typically con-
tain many more unique clones and therefore provide significantly more sampling
depth than do large-insert libraries. Given the tremendous genetic diversity in soil,
and the fact that resistance is often (thoughnot always) encoded by single genes,we
favoured fragment sizes that typically encode one to three bacterial genes. Purified
DNA was then end-repaired using the End-It DNA End Repair kit (Epicentre) with
the following protocol.
(1) For each volume of 30ml QIAquick eluate, add the following: 5ml dNTP mix
(2.5mM), 5ml ATP (10mM), 5ml 10X End-Repair Buffer, 1ml End-Repair
Enzyme Mix and 4ml nuclease-free H2O to a final volume of 50ml.
(2) Mix gently and incubate at room temperature for 45min.
(3) Heat-inactivate the reaction at 70 uC for 15min.
End-repaired DNA was then purified using the QIAquick PCR purification kit

(Qiagen) and quantified using the Qubit fluorometer BR assay kit (http://tools.
invitrogen.com/content/sfs/manuals/mp32850.pdf) and ligated into the pZE21
MCS 1 vector28 at the HincII site. The pZE21 vector was linearized at the HincII
siteusing inverse PCRwith theblunt-endPFXDNApolymerase (LifeTechnologies)
per the following reaction conditions:
(1)Mix the following in a 50ml reaction volume: 10ml of 10X PFX reaction buffer,
1.5ml of 10mM dNTP mix (New England Biolabs), 1ml of 50mM MgSO4, 5 ml
of PFX enhancer solution, 1ml of 100 pg ml21 circular pZE21, 0.4ml of PFX DNA
polymerase, 0.75ml forward primer (59 GACGGTATCGATAAGCTTGAT 39),
0.75ml reverse primer (59 GACCTCGAGGGGGGG 39) and 29.6ml of nuclease-
free H2O to a final volume of 50 ml.
(2) Cycle temperature as follows: 95 uC for 5min, then 35 cycles of [95 uC for 45 s,
55 uC for 45 s, 72 uC for 2.5min], then 72 uC for 5min.
Linearized pZE21 was then size-selected (,2,200 bp) on a 1% low-melting-

point agarose gel (0.5X TBE) stained with GelGreen dye (Biotium) and purified
as described above. Pure vector was dephosphorylated using calf intestinal phos-
phatase (NewEngland Biolabs) by adding 1/10th reaction volume of calf intestinal
phosphatase, 1/10th reaction volumeofNewEnglandBiolabs buffer 3, andnuclease-
free H2O to the vector eluate (exact volumes depend on reaction scale) and incub-
ating at 37 uC overnight before heat inactivation for 15min at 70 uC. End-repaired
metagenomic DNA and linearized vector were then ligated together using the Fast
Link LigationKit (Epicentre) at a 5:1mass ratio of insert:vector using the following
protocol (because the insert and vectorwere similarly sized, themass ratio approx-
imates a molar ratio):
(1)Mix the following: 1.5ml 10X Fast-Link buffer, 0.75ml ATP (10mM), 1ml Fast-
Link DNA ligase (2Uml21), 5:1 mass ratio of metagenomic DNA to vector, and
nuclease-free H2O to a final reaction volume of 15ml.
(2) Incubate at room temperature overnight.
(3) Heat inactivate for 15min at 70 uC.
After heat inactivation, ligation reactions were dialysed for 30min using a 0.025

mm cellulose membrane (Millipore catalogue number VSWP09025) and the full
reaction volumeused for transformationby electroporation into50mlE. coliMegaX
(Invitrogen). Electroporationwas conductedusing themanufacturer’s recommen-
dations (http://tools.invitrogen.com/content/sfs/manuals/megax_man.pdf), and
cells were recovered in 1ml RecoveryMedium (Invitrogen) at 37 uC. Libraries were
titred by plating out 0.1ml and 0.01ml of recovered cells onto Luria–Bertani (LB)
agar (5 g yeast extract, 5 g NaCl, 10 g of tryptone, 12 g agar in 1 litre of water) plates
containing 50mgml21 kanamycin. For each library, insert size distribution was
estimated by gel electrophoresis of PCRproducts obtained by amplifying the insert
from 12 randomly picked clones using primers flanking theHincII site of themul-
tiple cloning site of the pZE21MCS1vector (which contains a selectablemarker for
kanamycin resistance). The average insert size across all libraries was determined
to be 2,000 bp, and library size estimateswere calculated bymultiplying the average
PCR-based insert size by the number of titred colony forming units (CFUs) after
transformation recovery. The rest of the recovered cells were inoculated into 10ml
of LBcontaining50mgml21kanamycinandgrownovernight. Theovernight culture
was frozen down with 15% glycerol and stored at280 uC for subsequent screening.

Functional selections for antibiotic resistance. For each soil metagenomic lib-
rary, selections for resistance to each of 18 antibiotics (at concentrations indicated
in Supplementary Table 2) was performed using Mueller–Hinton (MH) agar (2 g
beef infusion solids, 1.5 g starch, 17 g agar, 17.5 g casein hydrolysate, pH7.4, in a final
volumeof 1 litre). For eachmetagenomic library, the number of cells plated on each
antibiotic selection represented 103 the number of unique CFUs in the library, as
determined by titres during library creation. Depending on the titre of live cells
following library amplificationand storage, the appropriate volumeof freezer stocks
were either diluted to 100ml using LBbroth or centrifuged and reconstituted in this
volume for plating. After plating (using sterile glass beads), antibiotic selectionswere
incubated at 37 uC for 18h to allow the growth of clones containing an antibiotic-
resistant DNA insert. After overnight growth, all colonies from a single antibiotic
plate (soil by antibiotic selection)were collected by adding 750ml of 15%LB-glycerol
to the plate and scraping with an L-shaped cell scraper (Fisher Scientific catalogue
number 03-392-151) to gently remove colonies from the agar. The liquid ‘plate scrape
culture’ was then collected and this process was repeated a second time to ensure
that all colonies were removed from the plate. The bacterial cells were then stored
at280 uCbefore PCR amplification of antibiotic-resistantmetagenomic fragments
and Illumina library creation.

Amplification of antibiotic resistant metagenomic DNA fragments. Freezer
stocks of antibiotic-resistant transformantswere thawedand300ml of cells pelleted
by centrifugation at 13,000 revolutions per minute (r.p.m.) for two minutes and
gently washed with 1ml of nuclease-free H2O. Cells were subsequently pelleted a
second time and re-suspended in 30ml nuclease-free H2O. Re-suspensions were
then frozen at220 uC for one hour and thawed to promote cell lysis. The thawed
re-suspensionwas thenpelleted by centrifugation at 13,000 r.p.m. for twominutes and
the resulting supernatant used as template for amplification of resistance-conferring
DNAfragments byPCRwithTaqDNApolymerase (NewEnglandBiolabs).A sample
PCR reaction consisted of 2.5ml of template, 2.5ml of ThermoPol reaction buffer
(New England Biolabs), 0.5ml of 10mM deoxynucleotide triphosphates (dNTPs,
NewEnglandBiolabs), 0.5ml ofTaqpolymerase (5Uml21), 3ml of a customprimer
mix, and 16ml of nuclease-freeH2O to bring the final reaction volume to 25ml. The
custom primer mix consisted of three forward and three reverse primers, each
targeting the sequence immediately flanking the HincII site in the pZE21 MCS1
vector, and staggered by one base pair. The staggered primer mix ensured diverse
nucleotide composition during early Illumina sequencing cycles and contained the
following primer volumes (from a 10mM stock) in a single PCR reaction: (primer
F1, 59-CCGAATTCATTAAAGAGGAGAAAG, 0.5ml); (primer F2, 59-CGAATT
CATTAAAGAGGAGAAAGG, 0.5ml); (primer F3, 59-GAATTCATTAAAGAG
GAGAAAGGTAC, 0.5ml); (primerR1, 59-GATATCAAGCTTATCGATACCGTC,
0.21ml); (primer R2, 59-CGATATCAAGCTTATCGATACCG, 0.43ml); (primer
R3, 59-TCGATATCAAGCTTATCGATACC, 0.86ml). PCR reactions were then
amplified using the following thermocycler conditions: 94 uC for 10min, 25 cycles
of 94 uC for 5min1 55 uC for 45 s1 72 uC for 5.5min and 72 uC for 10min. The
amplifiedmetagenomic inserts were then cleaned using theQiagenQIAquickPCR
purification kit and quantified using the Qubit fluorometer HS assay kit (http://
tools.invitrogen.com/content/sfs/manuals/mp32851.pdf).

Illumina sample preparation and sequencing. For amplifiedmetagenomic inserts
from each antibiotic selection, 0.5mg of PCR product was diluted to a total volume
of 100ml in Qiagen EB buffer and then sheared to 150–200 bp fragments using
the BioRuptorXL (http://www.sibcb.ac.cn/cfmb/download/BioruptorManual.pdf).
Sonication consisted of nine 10-min cycles of 30 s ON (high power setting), 30 s
OFF. Between each 10-min cycle, ice was added to the water bath to prevent over-
heating. Following sonication, shearedDNAwas purified and concentrated using the
QIAGENMinElute PCR Purification Kit and eluted in 20ml pre-warmed nuclease-
freeH2O.This eluatewas thenused as input for Illumina library preparation. In the
first stepof library preparation, shearedDNAwasend-repairedbymixing the 20ml
of eluate with 2.5ml T4 DNA ligase buffer with 10mM ATP (10X, New England
Biolabs), 1ml dNTPs (10mM,NewEnglandBiolabs), 0.5ml T4 polymerase (3Uml21,
New England Biolabs), 0.5ml T4 PNK (10Uml21, New England Biolabs), and 0.5ml
Taq Polymerase (5Uml21, New England Biolabs) for a total reaction volume of
25ml. The reaction was incubated at 25 uC for 30min followed by 20min at 75 uC.

Next, to each end-repaired sample, 5ml of 1mMpre-annealed, barcoded sequen-
cing adapters were added (adapters were thawed on ice). Barcoded adapters con-
sistedof aunique7-bpoligonucleotide sequence specific to eachantibiotic selection,
facilitating the de-multiplexing of mixed-sample sequencing runs. Forward and
reverse sequencing adapters were stored in TES buffer (10mMTris, 1mMEDTA,
50mMNaCl, pH 8.0) and annealed by heating the 1 mMmixture to 95 uC followed
by a slow cool (0.1 uC per second) to a final holding temperature of 4 uC. After the
addition of barcoded adapters, samples were incubated at 16 uC for 40min and
then for 10min at 65 uC. Before size-selection, 10ml each of adapted-ligated sam-
pleswere combined into pools of 12 and concentrated by elution through aQiagen
MinElute PCR Purification Kit, eluting in 14 ml of Qiagen elution buffer.
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The pooled, adaptor-ligated, sheared DNA was then size-selected on a 2% aga-
rose gel in 0.5X TBE, stained with GelGreen dye (Biotium). DNA fragments were
combined with 2.5ml 6X Fermentas Orange loading dye before loading on to the
gel. Adaptor-ligated DNA was extracted from gel slices corresponding to DNA of
300–400 bp using a QIAGENMinElute Gel Extraction kit. The purified DNAwas
enriched by PCR using 12.5ml 2X Phusion HF Master Mix and 1ml of 10mM
Illumina PCR Primer Mix in a 25ml reaction using 2ml of purified DNA as
template. DNA was amplified at 98 uC for 30 s followed by 18 cycles of 98 uC for
10 s, 65 uC for 30 s, 72 uC for 30 swith a final extension of 5minat 72 uC.Afterwards,
theDNAconcentrationwasmeasured using theQubit fluorometer (HS assay) and
10nM of each sample were pooled for sequencing. Subsequently, samples were
submitted for Illumina Hi-Seq paired-end 101-bp sequencing using the HiSeq
2000 platformatGTAC (GenomeTechnologyAccessCenter,WashingtonUniver-
sity inStLouis,USA). In total, four sequence runswereperformedat concentrations
ranging from 7 to 9 pM per lane.

Assembly andannotationof functionalmetagenomic selections. Illuminapaired-
end sequence reads were binned by barcode (exact match required), such that
independent selections were assembled and annotated in parallel. Assembly of
the resistance-conferring DNA fragments from each selection was achieved using
PARFuMS (Parallel Annotation and Re-assembly of Functional Metagenomic
Selections); a tool developed specifically for the high-throughput assembly and
annotation of functionalmetagenomic selections4. Assembly with PARFuMS con-
sists of: (1) three iterations of variable job sizewith the short-read assemblerVelvet29,
(2) two iterations of assembly with Phrap30, and (3) custom scripts to clean sequence
reads, remove chimaeric assemblies, and link contigs by coverage and common
annotation, as described4. In addition to outperforming traditional, Sanger-based
methods for characterizing functional selections, PARFuMS has also been suc-
cessfully applied to the interrogation of both soil4 and faecal31 resistomes. Of the
324 selections performed, 222 yielded antibiotic-resistant E. coli transformants
(Extended Data Fig. 1), of which 219 were successfully sequenced and assembled
into contigs larger than 500 bp. To annotate these assembled contigs, we opted to
upgrade the previous implementation of PARFuMS, replacing annotation by BlastX
homology to COG32 with a profile HMM-based approach. ORFs were predicted
using the gene-finding algorithmMetaGeneMark33 and annotationwasperformed
by searching the amino acid sequence against multiple profile HMM databases
with HMMER334, including TIGRFAMS35, PFams36, and a collection of custom-
built, resistance-gene-specific profileHMMs(http://dantaslab.wustl.edu/resfams).
MetaGeneMark was run using default gene-finding parameters while hmmscan
(HMMER3) was runwith the option ‘‘–cut_ga’’, requiring that genesmeet profile-
specific gathering thresholds (rather than a global, more permissive, default log odds
cutoff) before receiving annotation.AnORF fromaresistance-conferringDNAfrag-
mentwas labelledanARG if itmet oneof the following criteria: (1) it surpassed strict,
profile-specific gathering thresholds from the custom-built set of profile HMMs,
(2) itmatched obvious antibiotic resistance functions from theTIGRFAMSorPFams
databases (for example,metallob-lactamase, chloramphenicol phosphotransferase,
major facilitator superfamily transporter), or (3) theORFwas sub-cloned from its
original context and confirmed to confer antibiotic resistance when expressed in
E. coli. In total, 2,895of the8,882assembledORFs(32.6%)couldbeconfidentlyassigned
anARG label through oneof these routes, representing2,730unique sequences. To
generate more encompassing counts of general resistance functions (for example,
b-lactamases), gene countswere summed across all annotations that clearly belonged
to the parent function (for example, classAb-lactamases,metallob-lactamases, TEM
b-lactamases), informedby establishedARGontology37. Annotationswere catego-
rized asmobility elements based on stringmatches to one of the following keywords:
transposase, transposon, conjugative, integrase, integron, recombinase, conjugal,
mobilization, recombination, plasmid.

Percentage identity comparisons of recoveredORFS against NCBI.Percentage
identity comparisons using either all ORFs or all ARGswere conducted via a BlastX
query against theNCBI proteinNon-Redundant (NR) database (retrieved 20August
2013). For eachORF, theNCBI entry that generated thebest local alignmentwasused
to create global alignments with estwise (http://dendrome.ucdavis.edu/resources/
tooldocs/wise2/doc_wise2.html). The following options were used in global align-
ment: ‘‘-init global’’ and ‘‘-alg 333’’. From this alignment, global percentage iden-
tities were calculated as the number of matched amino acids divided by the full
length of the shorter of the two sequences compared.

Comparison of ARG content between soils. To compare the ARG composition
of various soils, a count matrix was generated where each row represented a given
soilmetagenomic library and each columnwas represented by a specific annotation
(that is, a profile HMM). Before populating each cell of thematrix, genes duplicated
as a result of redundant assembly were collapsed into a single sequence with CD-
HIT38. For each selection, all genes perfectly identical over the length of the shorter
sequencewere collapsed into a single sequence usingCD-HITwith theparameters:
-c 1.0 -aS 1.0 -g 1 -d 0 (the longest gene in the 100% identical cluster was retained

for downstream analyses). Subsequently, fasta files of all genes sequences from all
antibiotic selections for a given soil were concatenated andperfectly identical genes
were again collapsed to a single sequence, usingCD-HITwith the same parameters.
Thus, the same gene captured on multiple selections from a given soil would be
counted only once for that soil. These unique counts (‘‘raw counts’’) only con-
sidered genes over 350 bp andwere used in the creation of all figures summarizing
the total resistance functions recovered (for example, Fig. 1c). Selections contain-
ing trimethoprim and D-cycloserine predominantly recovered dihydrofolate
reductases, D-alanine–D-alanine ligases, and thymidylate synthases (these anno-
tations accounted for 92.5% of ARGs from these selections). Because these genes
represent target alleles of their respective antibiotics, and are present in nearly all
bacterial genomes, their overexpression can provide resistance but the functions
themselves do not represent an evolutionary response to overcome toxicity. Thus,
we omitted these selections fromcross-soil resistome comparisons (ExtendedData
Fig. 2).

As the size ofmetagenomic libraries varied stochastically by soil sample (Extended
DataFig. 1), rawARGcountswerenormalized tometagenomic library size toaccount
for inconsistent sampling depth, facilitating comparison between soils.Metagenomic
libraries from soils S18 and S21 were both under 2Gb in size, over fourfold smaller
thannext smallest library (S06), resulting in distinctly fewer selections yielding anti-
biotic resistance (Extended Data Fig. 1). Thus, these libraries were omitted from
cross-soil comparisons and ARG counts were normalized to reflect the sampling
depth achieved for the smallest remaining library, from soil S06 (library size was
6.9Gb, roughly 3.5million 2 kbDNA fragments). Both raw and normalized count
matrices were created for the following gene sets: (1) all recoveredORFs (including
ARGs and co-selected passenger genes), (2) only unique ARGs, (3) ARGs from
only CC soils, and (4) ARGs from only KBS soils. When counts were normalized
across onlyKBS soils, the smallest library fromKBS (S14; 10.9Gb)wasused tonor-
malize raw counts. Normalized count matrices were then used to calculate Bray–
Curtis distances between soil samples (using the veganpackage inR),which in turn
were used in cross-soil analyses (for example, principal coordinate analyses, Pro-
crustes analyses, Mantel tests, and so on).

ThepercentageofARGssharedacrossany twosoilswasdeterminedusingsequences
collected from selections without trimethoprim or D-cycloserine. Unique gene
sequences from each soil were then clustered using CD-HIT with the following
parameters: -c 0.99 (99% sequence identity) -aS 1.0 (over the full length of the
shorter fragment) -g 1 (find the optimal cluster). Any sequences from more than
one soil in a given 99% identity sequence bin were counted towards the fraction of
shared sequences.

16S rRNA analysis. Sequencing of the 16S rRNA gene was performed on a Roche
454GSFLXDNAsequencer using titaniumchemistry and asdescribedpreviously8.
Briefly, the 16S primers 515F and 906Rwere used for their ability to generate accu-
rate phylogenetic informationwith few taxonomic biases8. Primers also included a
454 sequencing adaptor and the reverse primer contained a 12-bp error-correcting
barcode, generating approximately 300-bp sequencing reads. All downstream
processingwasperformedwith theQIIME(v1.4) software suite39 andwas reproduced
from previous work8. After sequencing, 16S reads were split by sample, quality-
filtered using theQIIMEscript split_libraries.pywith the options: -w 50 -g -r -l 150
-L 350, and then de-noised using denoise_wrapper.pywith default parameters. All
sequence analyses were performed using the QIIME analysis pipeline39, following
the usage information found at http://qiime.org/tutorials/tutorial.html. Briefly,
operational taxonomic units were picked at 97% sequence identity and taxonomic
identity assigned by classification using the RibosomeDatabase Project. For com-
parisons across soils, samples were rarefied to 1,974 reads and both phylogenetic
(unweighted Unifrac and weighted Unifrac distances40,41) and taxonomic (Bray–
Curtis distance) were calculated. For one sample (soil S08), no 16S rRNA gene
sequence data was available. Generally, all three measures of community similar-
itywere used to examine relationships between theARGcontent andphylogenetic
composition of soil microbial communities, and supported the same conclusion:
resistomes and bacterial community composition are correlated.

Assigning taxonomy to assembled sequences. To predict the taxonomic origin
of functionally selected DNA fragments, we used RAIphy, a composition-based
classifier that achieves accurate taxonomic prediction without a strict reliance on
phylogenetically close sequences in public databases, as compared to similarity-based
methods19. Specifically,RAIphycompares the relative abundanceof all unique7-mers
within a query sequence to profiles of 7-mer abundance from RefSeq genomes,
generating a score for each profile using the log-odd ratios between observed and
expected frequency of each 7-mer. Prediction accuracy is then improved through
an iterative refinement of genomemodels based on the 7-mer profiles of clusters of
fragmentsof unknownorigin in thequery set. RAIphy reportedly performswell for
classifying DNA fragments assembled frommetagenomic sources19, especially for
lower-resolution taxonomic predictions. Thus, we reasoned it may be well-suited
for phylum-level predictions of the originating taxa for our assembled contigs.
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To convince ourselves of RAIphy’s accuracy, we asked it to predict the source
phylum of metagenomic DNA fragments originating from pools of genome-
sequenced commensals of the human gut, selected via functional metagenomics
for antibiotic resistance andassembledwithPARFuMS (in exactly the samemanner
as soil resistomeswere interrogated). Because full genomes existed for these organ-
isms, we could determine with high confidence the true origin for functionally
selected fragments: RAIphy’s predictions of the source bacterial phylum correctly
classified the assembled fragment with 95% accuracy (n5 2747), indicating that
the software is well suited for the phylum-level classification of assembled meta-
genomic sequences. To predict the source phylum of resistance-conferring soil
DNA fragments, we used all assembled fragments longer than 500 bp (n5 4,655),
seeded predictions using the RAIphy’s 2012 RefSeq database, and binned DNA
fragmentswith the ‘iterative refinement’ option. For all downstream analyses, only
the phylum-level predictions from RAIphy were used because we had higher
confidence in these predictions, and also conclusions from these datamay bemore
broadly applicable to different soils and other environments.
AssessingHGTpotential forARGs in soil and pathogens.To test the hypothesis
that ARGs in the soil have less potential for HGT than those in human pathogens,
we compared ARGs from our functional selections to ARGs in fully sequenced
bacterial genomes from 433 common human pathogens and 153 non-pathogenic
soil organisms. Genomes were stratified by pathogenicity and habitat according to
the metadata presented in a recent paper examining general trends in horizontal
gene transfer among bacteria across ecology13. A list of NCBI taxonomy IDs for
human pathogens was obtained for all organisms from this publication with an
‘Environment’ label of ‘‘Human’’ anda ‘Pathogenicity’ label of ‘‘Pathogen’’. Taxonomy
IDs for non-pathogenic soil bacteriawere collected for all organismswith an ‘Envi-
ronment’ labelled ‘‘non-human’’ that also contained the term ‘‘soil’’; bacteria deemed
pathogenswere also omitted fromthesoil set. For each set ofNCBI taxonomyIDs, all
NCBI RefSeq genomes and plasmids were then downloaded. In total, 983 sequences
from433 human pathogens (downloaded 18 January 2014) and 296 sequences from
153 non-pathogenic soil bacteria (downloaded 3 February 2014) were obtained, and
are enumerated in Supplementary Data 2.
Wenext re-annotated each bacterial genomeusing the samemethods use to anno-

tate assembly data from our functional selections. Briefly, ORFs were predicted
using the gene-finding algorithmMetaGeneMark33 and annotation performed by
searching the amino acid sequence against multiple profile HMM databases with
HMMER334, includingTIGRFAMS35, PFams36, and a collection of custom-built, resis-
tancegene-specificprofileHMMs(http://dantaslab.wustl.edu/resfams).MetaGeneMark
was run using default gene-finding parameters while hmmscan (HMMER3) was
run with the option ‘‘–cut_ga’’, requiring that genes meet profile-specific gather-
ing thresholds (rather thana global,more permissive, default log odds cutoff) before
receiving annotation. Because our functional selections captured only those DNA
fragments that confer antibiotic resistance,wemodelled our functionalmetageno-
mic data set using genome collections by seedingmock ‘metagenomic’ DNA frag-
ments at each predictedARG across our genomes. For ourMonte Carlo simulations
of each genome set, wemimicked functionalmetagenomicDNAfragments bymov-
ing upstream and downstream from each seed ARG by a chosen genetic distance.
These distanceswere selected froman empirical distributionof distances observed
in our functional selections. For each ARG from our functional selections, the
distance between theARGboundary and the end of the assembledDNA fragment
was recorded. These distance pairs were catalogued for all ARGs, and randomly
selected to create a DNA fragment centred on each ARG in all bacterial genomes.
In this fashion, wemodelled a functional selection from each genome set based on
the fragment-size distributionobserved in our soil selections. Then, for each simu-
latedDNA fragment, the number ofmobileDNA elements over 350 bp contained
within its boundaries were counted and ultimately displayed as a proportion of
total DNA fragments queried. This sampling procedure was repeated 1,000 times
for each genome set, each timewith randomly selected upstream/downstreamdis-
tancepairs, and theproportionofmobility elements compared to that observed from
our soil functional selections was presented (Fig. 4a). If a single fragment contained
multiple ARGs, the additional ARGs were not used to seed future fragments in that
simulation. Since ARGs were drawn randomly from simulation to simulation, each
member of a co-localized ARG group was equally likely to seed a DNA fragment.
In Fig. 4b, the same data are plotted as a function of the distance from eachARG

across pathogen genomes, non-pathogenic soil genomes, and assembled data from

soil functional selections. Because the size ofDNAfragments in our functional selec-
tions is constrained by the shearing conditions employed, their data could only be
evaluated to a genetic distance of approximately 1.5 kb from each ARG. Nonethe-
less, the incidence of co-occurringARGs andmobility elements is higher in patho-
gens than in soil genomes or functionally selected soil metagenomes, at all genetic
distances tested that were greater than 580 bp. Annotations were categorized as
mobility elements based on stringmatches to one of the following keywords: tran-
sposase, transposon, conjugative, integrase, integron, recombinase, conjugal,mobili-
zation, recombination, plasmid.

Statistical analyses. QIIME was used to perform both principal coordinate ana-
lyses (PCoA, usingprincipal_coordinates.py) andProcrustes transformations (using
the script transform_coordinate_matrices.py, with two PCoA plots as input; one
built from 16S rRNA gene sequence data and the other from resistome data; see
ref. 11 for detailed description). The significance of any Procrustes transformation
was determined by comparing the measure of fit, M2, between matched-sample
PCoAplots to a distribution ofM2 values empirically determined from10,000 label
permutations. In each of the 10,000 permutations, theM2 value (the sumof squared
distances between matched sample pairs) was recalculated and the original M2

value compared to the simulated distribution in order to compute a P value. Because
theM2 value is dependent on the sample size and data structure, it is generally not
comparable across Procrustes transformations. Rather, P valueswere used to com-
pare different Procrustes plots. Regardless of whether transformations were per-
formedusing phylogenetic (unweightedorweightedUnifrac distances) or taxonomic
(Bray–Curtisdistances)measuresofbacterial community composition, or considered
only two or all dimensions of the relevant PCoA plots, we observed significant
agreement between ARG content and bacterial composition when considering
either all soils or just CC soils (P, 0.05, Supplementary Table 8).

Alpha-diversity plots (Extended Data Fig. 1) were generated by sampling (with-
out replacement) an increasing subset of ARGs from each soil sample, and tabu-
lating the observed number of unique annotations or Shannon diversity index at
each rarefaction depth. Reported values (Extended Data Fig. 1) are the result of
averaging ten independent samplings at each rarefaction depth, andwere generated
using theQIIME scriptsmultiple_rarefactions.py and alpha_diversity.py.The sum-
mary figure was generated in R (v2.15.2). Mantel tests were performed using the
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Extended Data Figure 1 | Functional selections of 18 soil metagenomes for
resistance against 18 antibiotics. a, Phenotypic results of selections. A dark
grey cell means that a resistance phenotype was observed whereas white cells
indicate the absence of any drug-tolerant transformants. Grassland soils from
CC are labelled in red and agricultural soils from KBS are labelled in blue.

b, c, Alpha diversity representations. On the left is depicted the number of
distinct ARG annotations observed as increasing numbers of ARGs are
sampled from each soil. On the right, Shannon diversity scores (an ecological
metric that quantifies within-sample diversity) are shown at each rarefaction
step.
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Extended Data Figure 2 | Three prominent ARG classes are present in
nearly all bacterial genomes and can provide antibiotic resistance when
overexpressed. a, Generalized as red circles are dihydrofolate reductases,
D-alanine—D-alanine (D-ala D-ala) ligases, which are the molecular targets of
the drugs trimethoprim (TR) andD-cycloserine (CY) respectively (black stars),
and thymidylate synthases, which can provide trimethoprim resistance by
circumventing the need for an active dihydrofolate reductase. When
overexpressed in functional selections, these genes can provide antibiotic
resistance. We found substantial diversity in these genes (average pairwise
amino acid identity 39.36 12.2%), suggesting that variants were captured from

many bacterial lineages. b, Relative to other ARG mechanisms, large numbers
of dihydrofolate reductases, thymidylate synthases, and D-ala D-ala ligases
were found in all soils, with these ARGs representing 92.5% of resistance genes
identified from selections containing trimethoprim or D-cycloserine
antibiotics. Therefore, these selections encompass large genetic diversity, but
constrained functional diversity, with a broad range of genes encoding limited
functional traits. c, When considered in isolation, these functions were not
different between the KBS and CC soils (P. 0.05, ANOSIM), indicating that
trimethoprim and D-cycloserine resistance function is similarly distributed
across the surveyed soil types.
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Extended Data Figure 3 | Total counts of b-lactamases recovered from antibiotic selections. All soils (black), CC soils (red), and KBS soils (blue).
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Extended Data Figure 4 | Total counts of ARGs categorized by their
predicted phylogenetic origin. The number of ARGs is indicated on the
y axis and the ARG types are colour-coded in the key.
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Extended Data Figure 5 | PCoA analysis plots of Bray–Curtis distances
between soil resistomes. The PCoA was calculated using all ORFs captured
from functional selectionswithout trimethoprim andD-cycloserine, and shows
significant separation between CC (red) and KBS (blue) resistomes (P, 1025,
ANOSIM).
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Extended Data Figure 6 | PCoA across CC (red, grassland) and KBS
(blue, agricultural) soils. a–c, PCoA generated from all 16S data available
from ref. 8, using Bray–Curtis (a), weighted Unifrac (b) and unweighted
Unifrac (c) dissimilarity metrics. Samples cluster by soil location and N level,
as previously demonstrated. d–f, The same PCoA plots generated using only

samples with sufficient 16S and resistome data (that is, those used in Procrustes
and Mantel analyses). Excluding the two high-N KBS soils with insufficient
resistome data eliminates the clustering pattern observed for KBS soils in
a–c. The asterisk denotes the high-N KBS soil common to both sets of analyses.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 7 | Phylum level relative abundance of combined CC
and KBS data sets for major soil bacteria. a, 16s rRNA data are depicted in
black. Phylogenetic inferences based on the sequence composition of the
assembled, resistance-conferring DNA fragments are depicted in red. The
relative abundances of Actinobacteria and Acidobacteria represent the largest
discrepancies between data sets. b, Actinobacteria are most dramatically
enriched in resistance-conferring DNA fragments, in accord with their role in

producing antibiotics, but despite their high GC-content and predicted
transcriptional incompatibilities with E. coli. Levels of Proteobacteria, the
phylum to which E. coli belongs, are largely unchanged following functional
selection, suggesting that any potential bias introduced to the selections by
heterologous expression in E. coli is minimal compared to the effect of
ARG-content of the source organisms.
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Extended Data Figure 8 | Procrustes analysis demonstrates that when soils
cluster by bacterial composition, resistomes aggregate with phylogenetic
groupings. a–c, Procrustes analysis of the ARG content (Bray–Curtis) of CC
(red) and KBS (blue) soils compared to community composition calculated
by Bray–Curtis (a), weighted Unifrac (b) and unweighted Unifrac
(c) dissimilarity metrics. d–f, The same Procrustes transformations for CC
soils only. For a given soil, black lines connect to functional resistomedatawhile

the green lines connect to points generated from 16S gene sequence data.
The M2 fit reported is from a Procrustes transformation over the first two
principal coordinates while the P-value is calculated from a distribution of
empirically determinedM2 values over 10,000MonteCarlo label permutations.
ForM2/P values calculated using all principal coordinates, refer to
Supplementary Table 8.
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Extended Data Figure 9 | Procrustes analysis demonstrates that when soils
do not form distinct phylogenetic clusters, we are unable to detect
significant correlation betweenARGcontent and phylogenetic architecture.
See Extended Data Fig. 6 for the phylogenetic relationships between these soils.
a–c, Procrustes analysis of theARGcontent (Bray–Curtis) of KBS (agricultural,
blue) soils compared to 16S rRNA gene sequence using unweighted Unifrac
(a), weighted Unifrac (b) and Bray–Curtis (c) similarity metrics. d–f, The same
Procrustes transformations for the CC soils (grassland, red) without high-N

amendment, showing that soil groupings must be distinguishable by bacterial
composition to detect correlations with resistome content, regardless of soil
type. For a given soil, black lines connect to functional resistome data while the
green lines connect to points generated from 16S rRNA gene sequence data.
The M2 fit reported is from a Procrustes transformation over the first two
principal coordinates while the P value is calculated from a distribution of
empirically determinedM2 values over 10,000MonteCarlo label permutations.
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Extended Data Figure 10 | Histogram of nucleotide per cent identity from
pairwise alignments of all predicted mobility elements, suggesting that
assembly does not inappropriately condensemobile DNA elements into too

few sequences. The blue trace depicts a normal distribution with the same
mean and standard deviation empirically observed across all pairwise
comparisons (n5 666).
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