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Bacterial toxins are virulence factors that manipulate host cell functions and take over

the control of vital processes of living organisms to favor microbial infection. Some

toxins directly target innate immune cells, thereby annihilating a major branch of the

host immune response. In this review we will focus on bacterial toxins that act from

the extracellular milieu and hinder the function of macrophages and neutrophils. In

particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria

that manipulate cell signaling or induce cell death by either imposing direct damage to

the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets.

Outcomes regarding pathogen dissemination, host damage and disease progression

will be discussed.
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INTRODUCTION

Macrophages and neutrophils are central mediators of the innate immune system that act at

early stages of bacterial infection and have the ability to clear the pathogen through phagocytosis
and subsequent digestion (Mantovani et al., 2011; Wynn et al., 2013). Besides their overlapping

functional properties, macrophages, and neutrophils also display distinct and specialized features
allowing their concerted and cooperative action against pathogens (Appelberg, 2007; Silva,

2010; Silva and Correia-Neves, 2012). Accordingly to their antimicrobial capacity, toxicity,
and lifespan, macrophages and neutrophils have different localizations. Long-lived macrophages

are distributed in tissues throughout the body where they perform local immune surveillance
activities, including recognition, phagocytosis, and rapid signaling of invading pathogens. The

number of resident macrophages in resting tissues is rather low. Upon infection resident
macrophages secrete chemokines, rapidly recruiting monocytes, and quiescent neutrophils from

blood and bone marrow pools to the infectious foci. Monocytes differentiate to short-lived mature
macrophages and neutrophils are activated to produce powerful antimicrobial molecules and
release proinflammatory cytokines and chemokines amplifying the initial chemotactic role of

resident macrophages and sustaining antimicrobial activities (Mantovani et al., 2011; Wynn et al.,
2013).

The outcome of an infection is dictated by the nature of host-pathogen interactions
and greatly depends on the efficacy of phagocytes. When, through the action of virulence

determinants, the pathogen takes the control of the interaction in detriment of the host,
the infection establishes. By the contrary, if the host immune defenses dominate over the

pathogen, the infection is controlled and the pathogen is eliminated. In this scenario, several
human pathogens evolved an arsenal of sophisticated mechanisms to evade host defenses.

In particular, given the central role of macrophages and neutrophils as primary phagocytes,
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several pathogens deploy strategies to either survive or annihilate

phagocytes antimicrobial functions (Flannagan et al., 2009). To
avoid macrophage antimicrobial properties, some intracellular

pathogens interfere with the classical maturation of the
phagosome, blocking fusion with endosomes, and lysosomes

thereby preventing destruction. Others escape the phagosome
to multiply in the cytosol and modulate host gene expression

to limit production of cytokines that would be deleterious for
pathogen progression. Despite the mechanisms of evasion of

neutrophil-killing are yet poorly defined, it is known that some
pathogens survive and multiply inside neutrophils which may

act as Trojan horses for microbial dissemination (Appelberg,
2007). From the extracellular milieu, some pathogens target

macrophage and neutrophils mainly through the secretion of
toxins that: (1) cause irreversible damage leading to phagocyte

death or (2) heavily perturb intracellular signaling pathways,
blocking phagocytosis or modulating inflammation (e.g., through
the control of expression of chemokines and cytokines; Lemichez

and Barbieri, 2013).
Toxins are potent molecules produced by a large variety of

bacterial pathogens that target host cells and play key roles in
the host–pathogen dialog. They are major virulence factors often

sufficient to determine the outcome of the infection. Indeed,
attesting their importance in pathogenesis, the injection of small

amounts of some purified toxins can recapitulate many key
symptoms of the disease. Bacterial toxins can be divided in several

groups regarding their nature and mode of action (Lemichez and
Barbieri, 2013). In this review we focus on bacterial exotoxins,

which are secreted by the pathogen and act on the host cells from
the extracellular milieu. Although exotoxins may target different

cell types, some specifically target macrophages and neutrophils
thus taking the control of innate immune response, providing

the pathogen a suitable environment for active proliferation.
Interestingly, while the initial steps of phagocytes intoxication

are specific for different exotoxins, the ultimate cellular effects
leading to the loss of host cell function are often the same.
Taking this into account we review here the mechanisms of

phagocyte targeting by archetypal exotoxins such as pertussis
toxin (PT) and adenylate cyclase toxin (ACT) secreted by

Bordetella pertussis, anthrax toxin from Bacillus anthracis and
Staphylococcus aureus leukotoxins. We also include here AIP56, a

recently described toxin from Photobacterium damselae piscicida
(Phdp). In addition, the mode of action of mycolactone, a

polyketide molecule produced by Mycobacterium ulcerans, and
other bacterial secreted products not formally termed as toxins,

such as S. aureus superantigens-like proteins (SSLs) and phenol-
soluble modulins (PSMs), are also reviewed here. Clostridial C3

toxins, which target and modulate macrophage functions, are the
focus of another review in this Topic (Barth et al., 2015).

Bordetella pertussis: TWO TOXINS ARE
BETTER THAN ONE

Bordetella pertussis is a Gram-negative pathogen that infects the

human respiratory tract causing whooping cough, an acute and
highly contagious infection (Mattoo and Cherry, 2005; Melvin

et al., 2014). Initially thought to be a toxin-mediated disease

(Pittman, 1984), such as cholera and diphtheria, pertussis disease
is instead the result of the coordinated action of a variety

of bacterial factors that allow bacterial adherence to ciliated
respiratory epithelium, survival to host innate immune defense,

multiplication, and resistance to inflammatory cells (Carbonetti,
2007). Two of the major virulence factors of B. pertussis are the

secreted toxins, PT and ACT, which emerged as key elements for
suppression/modulation of the host immune and inflammatory

responses (Carbonetti, 2010; Higgs et al., 2012; Melvin et al.,
2014). Interestingly, mouse infections with different mutants

suggested that these two toxins have complementary functions
in pathogenesis assaulting the innate immune cells at different

times and from different angles. PT would act at early stages
of infection mainly inhibiting the recruitment of immune cells,

while ACT would later intoxicate macrophages and neutrophils
blocking bacterial engulfment and destruction (Carbonetti et al.,
2005).

First Round: PT Inflicts First Blow to the
Host
Pertussis toxin is a multisubunit AB-toxin exclusively produced
by B. pertussis. Through B-subunits, PT binds to any sialic

acid-containing glycoprotein at the cellular surface (Witvliet
et al., 1989; Saukkonen et al., 1992; Stein et al., 1994), is

internalized by endocytosis and follows a retrograde transport
pathway through the Golgi complex to the endoplasmic

reticulum (Plaut and Carbonetti, 2008; Figure 1), from which
the A-subunit translocate to the cytoplasm of host cells (Locht

et al., 2011). In the host cell cytosol, the A-subunit exhibits
ADP-ribosyltransferase activity, hydrolysing NAD and ADP-

ribosylating heteromeric G-proteins of the Gi family (Katada
et al., 1983). This modification prevents the interaction of Gi

proteins with their cognate G-protein coupled receptors (GPCRs)
causing the disruption of downstream cell signaling transduction
(Mangmool and Kurose, 2011). Besides the activity of the A

domain, B-subunits also display signaling function by activating
intracellular signaling cascades in a Gi-protein independent

manner (Mangmool and Kurose, 2011).
Pertussis toxin has long been considered as a major

B. pertussis virulence factor. Indeed, PT was reported to be
the cause of systemic symptoms of pertussis disease such

as lymphocytosis and leukocytosis (Morse and Morse, 1976)
and was associated with lethal infection by B. pertussis in a

neonatal mouse model (Goodwin and Weiss, 1990). However,
evidences supporting its role in respiratory infection have only

emerged in the last decade. Experiments in the mouse model
revealed that the lack of PT confers a defect in B. pertussis

colonization at the early stages of infection (Carbonetti et al.,
2003, 2005). Interestingly, a PT-deficient strain reaches wild

type levels of colonization whenever co-infections with both
strains are performed or intranasal inoculation of purified PT

precedes infection (Carbonetti et al., 2003). Further studies
have shown that depletion of resident airway macrophages

leads to exacerbated B. pertussis infection in a PT-independent
manner (Carbonetti et al., 2007), indicating that PT targets

Frontiers in Microbiology | www.frontiersin.org 2 February 2016 | Volume 7 | Article 42

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


do Vale et al. Exotoxins Annihilating Macrophages and Neutrophils

FIGURE 1 | The concerted action of pertussis toxin (PT) and adenylate cyclase toxin (ACT) annihilates recruitment and function of innate immune

cells. Following binding to a sialoglyprotein receptor, PT is endocytosed and retrogradely transported to the endoplasmic reticulum (ER). From the ER, the A subunit

is delivered into the cytosol and travels to the plasma membrane, where it ADP-ribosylates the alpha-subunit of heterotrimeric G proteins, perturbing their regulatory

functions and leading to an increase in the cAMP concentration that contributes to the early suppression of inflammatory cytokine production and inhibits the

recruitment of immune cells to the site of infection. ACT binds with high affinity to CD11b/CD18 receptor [also known as complement receptor 3 (CR3) or

macrophage-1 antigen (Mac-1)] present at the surface of macrophages, neutrophils, and dendritic cells. Upon binding, ACT integrates the membrane of target cell in

two different conformations: a translocation precursor that relocalises at lipid raft domains from where the adenylate cyclase activity translocates directly to the cell

cytoplasm; and a pore precursor that oligomerises and permeabilises the cells causing ion concentration imbalance. Binding of calmodulin stimulates the adenylate

cyclase, leading to an increase in intracellular levels of cAMP. The activity of ACT inhibits complement-mediated phagocytosis, inhibits the production of

pro-inflammatory cytokines and interferes with immune cell recruitment.

airway macrophages disrupting their protective activity at

early steps of infection (Carbonetti et al., 2007). Intranasal
administration of PT resulted in ADP-ribosylation of airway
macrophages Gi-proteins (Carbonetti et al., 2007), suggesting

that its inhibitory function on macrophages in vivo results from
the immunosuppressive activities ascribed to PT in vitro. In

particular, in vitro PT was shown to inhibit macrophage and
neutrophil migration (Meade et al., 1984), phagocytosis (Mork

andHancock, 1993) and cytokine response (He et al., 1988; Hume
and Denkins, 1989).

In vivo, PT plays a dual role in the establishment of the
disease. Whereas it has immunosuppressive functions at early

stages of infection, later it potentiates inflammatory responses,
likely prolonging healing and promoting bacterial dissemination

(Eby et al., 2015). Early in infection, PT targets airway

macrophages and inhibits neutrophil recruitment to the infection
site (Carbonetti et al., 2003, 2005; Kirimanjeswara et al., 2005;
Andreasen and Carbonetti, 2008). Neutrophils were reported

to play a protective role against B. pertussis only in previously
infected mice and in the presence of anti-B. pertussis antibodies

(Kirimanjeswara et al., 2005; Andreasen and Carbonetti, 2009),
which may suggest that PT delays neutrophil recruitment to

the airways avoiding rapid antibody-mediated clearance of the
pathogen. Later, at the peak of infection, high numbers of

neutrophils are recruited to the lungs of mice infected with wild
type strain, but not to those infected with PT-deficient strain

(Carbonetti et al., 2005; Andreasen et al., 2009). This recruitment
of neutrophils to the lungs correlates with an increase of
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proinflammatory cytokines such as IL-17, TNFα and IFNγ that

appears to be dependent on PT activity (Andreasen et al., 2009).
Recently, global transcriptional profiles of mice lungs infected

with wild type or PT-deficient B. pertussis revealed that, at the
peak of infection, the ADP-ribosylation activity of PT correlates

with upregulation of immune and inflammatory response genes
(Connelly et al., 2012). In vitro studies suggested that PT directly

impairs neutrophil migration through ADP-ribosylation the Gi-
proteins associated with surface chemokine receptors (Spangrude

et al., 1985; Scott et al., 1988; Figure 1). However, in vivo
data showed that besides acting directly on chemokine receptors

signaling (Kirimanjeswara et al., 2005), PT also suppresses
early neutrophil recruitment by inhibiting the production

of neutrophil-attracting chemokines by airway macrophages
and lung epithelial cells (Andreasen and Carbonetti, 2008).

Transcription of genes expressing CXCL1, CXCL2, and CXCL5
is inhibited in the lungs of mice intranasally infected with wild
type B. pertussis, as compared to animals infected with strains

deficient for PT production or producing a PT variant devoid
of ADP-ribosylation activity (Andreasen and Carbonetti, 2008).

Interestingly, PT also blocks chemokine gene expression and
early neutrophil recruitment to the airways following intranasal

administration of LPS (Andreasen and Carbonetti, 2008), which
occurs presumably through modulation of TLR-4 signaling, a

Gi-protein independent pathway.
Altogether, these studies show that PT suppresses early

inflammation in the respiratory tract and inhibit microbicidal
function of inflammatory cells, potentially providing advantage

to the pathogen by allowing its rapid growth and establishment
within the host at early phases of infection.

Second Round: ACT Perpetuates the
Pathogen Gain
Adenylate cyclase toxin is a bi-functional toxin produced
by all species of Bordetella that infect mammals. While its
N-terminal domain contains an adenylate cyclase activity that

converts ATP in cAMP, the C-terminus possesses RTX motifs
that bind mammalian cells and form cation-selective pores in

the host plasma membrane. Through its combined adenylate
cyclase and pore-forming activities, ACT manipulates host cell

physiology in two different ways: it interferes with intracellular
signaling by increasing the levels of cAMP, and disturbs ion

homeostasis by disrupting the permeability barrier of the plasma
membrane (Figure 1). ACT specifically binds with high affinity

CD11b/CD18 (also known as CR3 or Mac-1) present at the
surface of macrophages, neutrophils and dendritic cells (DCs;

Guermonprez et al., 2001). Upon binding, ACT integrates the
membrane of target cells in two different conformations: a

translocation precursor that re-localizes at lipid raft domains
from where the adenylate cyclase activity translocates directly

to the cell cytoplasm; and a pore precursor that oligomerises
and permeabilises the cells causing ion concentration imbalance

(Fiser et al., 2007, 2012; Bumba et al., 2010; Figure 1). While the
rapid translocation of adenylate cyclase activity across the host

plasma membrane does not dependent on endocytosis (Gordon
et al., 1988), the clathrin-dependent endocytosis of ACT together

with its receptor CD11b/CD18 was reported (Khelef et al., 2001;
Martin et al., 2011). Classical mechanisms of membrane repair
upon toxin-induced pore formation include the removal of

the pores through endocytosis. Interestingly, ACT-translocated
molecules control the rate of ACT-pore removal delaying their

endocytic uptake, thus exacerbating the permeabilisation of
phagocytes and maximizing the cytotoxic action (Fiser et al.,

2012). Despite its interaction with a specific receptor, ACT was
reported to promiscuously bind and intoxicate many cell types,

including CD11b/CD18-negative cells (Ladant and Ullmann,
1999; Paccani et al., 2008; Eby et al., 2012), although the biological

relevance of these findings remains unclear. Indeed, while ACT
triggers macrophage apoptosis in vitro (Khelef et al., 1993;

Khelef and Guiso, 1995) and in vivo (Gueirard et al., 1998),
the viability of cells from non-haematopietic origin remains

unaffected (Gueirard et al., 1998; Bassinet et al., 2000). In vivo
studies support that ACT primarily targets phagocytes such
as alveolar macrophages and neutrophils, disrupting the early

innate antibacterial host immune response (Harvill et al., 1999;
Figure 1).

cAMP is a key second messenger with pleiotropic effects.
Increased levels of cAMP severely compromise cellular functions

such as the migration of neutrophils, the plasticity of DC
responses, the release of cytokines by macrophages and

the homeostasis of actin cytoskeleton. Thus, through the
uncontrolled production of intracellular cAMP, ACT subverts

phagocytic, and bactericidal function of macrophages and
neutrophils in a variety of ways (Figure 1). In human alveolar

macrophages and neutrophils, as in mouse macrophages,
the ACT-mediated cAMP production blocks phagocytosis,

chemotaxis, and oxidative burst (Confer and Eaton, 1982;
Friedman et al., 1987;Weingart andWeiss, 2000; Kamanova et al.,

2008; Eby et al., 2014). High levels of cAMP cause a transient
inactivation of RhoA inducing massive actin rearrangements

that dramatically decrease macropinocytosis, block complement-
mediated phagocytosis (Kamanova et al., 2008) and possibly
impair the chemotactic properties of primary monocytes.

Recently, ACT-induced cAMP synthesis was shown to trigger
pro-apoptotic signaling in phagocytes through the activity of

tyrosine phosphatase SHP-1, the accumulation of cytosolic
BimEL and the consequent activation of Bax, permeabilisation

of the outer mitochondrial membrane and activation of
programmed cell death (Ahmad et al., 2015; Cerny et al.,

2015). Besides the immediate action of ACT on the ablation
of bactericidal functions of phagocytes, ACT activity was also

reported to block the release of TNFα and the production of
ROS in human monocytes (Njamkepo et al., 2000), to promote

incomplete or aberrant maturation of DCs (Skinner et al., 2004;
Boyd et al., 2005) and to impair T-cell activation by interfering

with immunological synapse signaling (Paccani et al., 2011). ACT
was described to suppress the secretion of pro-inflammatory

cytokines such as IL-12 and TNFα and favor the production of
anti-inflammatory IL-10 molecules (Spensieri et al., 2006; Hickey

et al., 2008).
Despite the fact that studies in mouse models established ACT

as an important virulence factor for B. pertussis infection (Khelef
et al., 1992), the effects described above were obtained from
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in vitro studies, and their significance during in vivo infection

requires further investigation. Importantly, recent studies using
baboon infection model and clinical samples from humans

showed that the concentration of ACT in tissues is much lower
than the amount used for in vitro experiments (Eby et al., 2013),

which may compromise the relevance of some effects reported
in vitro.

Pertussis toxin and ACT have undeniable roles during
B. pertussis infection and certainly play key functions in the

pathophysiology of pertussis disease. Numerous and wide-
ranging effects of the purified toxins on cultured cell lines have

been reported, however, establishing the correlation of such
effects with the human pathology appeared as an incredible

difficult task. In addition, the mouse model only provides limited
possibilities to address this issue. Together with analysis of

clinical samples from humans, the use of baboons as non-human
primate model is expected to shed new light on the mechanisms
of action of PT and ACT and on pertussis disease.

Bacillus anthracis: ARMED TO
ANNIHILATE THE HOST INNATE
IMMUNE DEFENSES

Bacillus anthracis is a Gram-positive, spore-forming rod that
causes anthrax, an acute and fast progressing disease that affects

humans and other animals, and results from a combination
of bacterial infection and toxemia (Moayeri et al., 2015). The

spores, which are the infectious form of the pathogen, are
able to resist harsh environmental conditions and to infect

new hosts when inhaled, ingested, or exposed to skin breaks.
Upon entering a potential host, spores germinate into vegetative

bacilli that replicate and disseminate through the bloodstream,
leading to a systemic infection. Whereas in experimental

inhalational anthrax, spore germination requires engulfment
by macrophages/DCs (Guidi-Rontani et al., 1999; Hanna and
Ireland, 1999), in experimental cutaneous infections it has been

shown that most of the spore germination occurs extracellularly
(Bischof et al., 2007; Corre et al., 2013). Soon after spore

germination, vegetative B. anthracis start producing two potent
exotoxins – anthrax lethal toxin (LT) and edema toxin (ET) –

that along with a poly-D-glutamic acid capsule, are its major
virulence factors (Moayeri et al., 2015). B. anthracis also secretes

anthrolysin O (ALO), a member of the cholesterol-dependent
cytolysin family (Shannon et al., 2003). ALO is cytotoxic for

several mono- and polymorphonuclear cells (Shannon et al.,
2003; Cocklin et al., 2006; Mosser and Rest, 2006) and together

with LT, induces apoptosis of macrophages (Shannon et al.,
2003). However, ALO-deficient and wild-type strains revealed

no differences in virulence in an inhalation infection model
(Heffernan et al., 2007). Consistent with these observations,

ALO-based vaccines, although conferring protection against
lethal intravenous challenge with ALO, do not protect mice

against peritoneal infection by B. anthracis (Cowan et al., 2007).
Altogether, available data indicate that ALO is not essential for

B. anthracis virulence and thus further studies are needed to
determine if ALO contributes to B. anthracis pathogenicity.

Anthrax toxins originate from the association of three

different protein components: a host cell receptor binding protein
named protective antigen (PA) and two enzymatic proteins,

edema factor (EF) and lethal factor (LF) (Young and Collier,
2007; Figure 2). EF or LF associated to PA is referred as

ET or LT, respectively. Host cell intoxication begins when
PA binds to either tumor endothelium marker 8 (TEM8, also

known as anthrax toxin receptor 1, ANTXR1) or capillary
morphogenesis protein 2 (CMG2, also known as anthrax toxin

receptor 2, ANTXR2), which are expressed by different cell
types, including macrophages and neutrophils (Bradley et al.,

2001; Scobie et al., 2003). Although both TEM8 and CMG2 can
function as anthrax toxin receptors, studies with TEM8- and

CMG2-null mice have shown that CMG2 is the major anthrax
toxin receptor mediating toxin lethality in vivo and that TEM8

plays only a minor role in anthrax toxin-associated pathogenesis
(Liu et al., 2009). Upon binding to its cell surface receptor,
PA is proteolytically processed at its N-terminus by a furin-like

protease and self-assembles forming an oligomeric prepore able
to bind EF and LF. The EF and/or LF-prepore-receptor complex

undergoes receptor-mediated endocytosis (Abrami et al., 2003)
and the acidic conditions in endosomes induce conversion of

the prepore to a pore, allowing translocation of EF and LF into
the cell cytosol (Collier, 2009) to exert their cytotoxic effects

(Figure 2). In endosomes, the toxin complex can also be sorted
into intraluminal vesicles that undergo back fusion with the

endosomal membrane allowing sequestered EF and LF to reach
the cytosol (Abrami et al., 2004).

The toxicity of LT and ET results from the catalytic activities
of LF and EF. LF is a zinc-dependent metalloprotease that cleaves

mitogen activate protein kinase (MAPK) kinases (MKK) 1-4 and
6-7, preventing the activation of the ERK1/2, p38 and JNK-

pathways (Duesbery et al., 1998; Pellizzari et al., 1999; Vitale et al.,
2000; Tournier et al., 2005) and thus interfering with critical

signaling pathways involved in host defense (Figure 2). EF is a
calmodulin- and Ca2+-dependent adenylate cyclase that causes
a sustained increase of cAMP (Leppla, 1982) by converting ATP

to cAMP. As discussed above in the context of the ACT from
B. pertussis, increased cAMP levels perturb key cellular functions,

leading to severe consequences for the host (Leppla, 1982; Firoved
et al., 2005).

Anthrax toxins: Weapons to Cripple Host
Macrophages and Neutrophils
Anthrax has for long been described as a toxin-mediated disease,
mainly because LT and ET can be lethal for experimental

animals and anti-toxin immunization is effective in protecting
against infection (Kaur et al., 2013). However, it has recently

been proposed that extreme bacteraemia and severe sepsis
rather than the anthrax toxins per se are the cause of anthrax-

induced lethality (Coggeshall et al., 2013). Indeed, the fact that
anthrax toxins act on multiple tissues simultaneously, due to the

ubiquitous expression of the anthrax toxin receptors, complicate
untangling their effects on the host and delayed the identification

of the key tissue targets responsible for its lethal effects. Recently,
using cell-type specific CMG2-null mice and the correspondent
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FIGURE 2 | Anthrax toxins cooperatively disable host innate immune response. Host cell intoxication by anthrax toxins involves interaction of protective

antigen (PA, 83 kDa) with two cellular receptors [tumor endothelium marker 8 (TEM8), also known as anthrax toxin receptor 1 (ANTXR1) and capillary morphogenesis

protein 2 (CMG2) also known as anthrax toxin receptor 2 (ANTXR2)], which are expressed by different cell types, including macrophages and neutrophils. Upon

binding to the cell surface receptor, PA83 is proteolytically processed at its N-terminus by a furin-like protease yielding the C-terminal fragment PA63 that

oligomerises into a heptameric prepore able to bind edema factor (EF) and lethal factor (LF). The EF and/or LF-prepore-receptor complex undergoes

receptor-mediated endocytosis and the acidic conditions in endosomes induce conversion of the prepore to a pore, allowing translocation of EF and LF into the cell

cytosol to exert their cytotoxic effects. LT is a zinc-dependent metalloprotease that inhibits activation of neutrophils and macrophages, expression of inflammatory

cytokines and cell motility by disrupting mitogen activated protein kinase kinases (MAPKKs)-regulated pathways. LT activity also promotes macrophage apoptosis by

interfering with pro-survival MAPKK dependent pathways. ET is a calcium and calmodulin-dependent adenylate cyclase that increases intracellular cAMP

concentration, leading to the suppression of the expression of inflammatory cytokines and cell chemotaxis through protein kinase A (PKA)-dependent pathways. The

concerted action of LT and ET blocks the function of phagocytic cells.

cell-type specific CMG2-expressing mice, Liu and colleagues

have shown that LT-induced mortality requires targeting of
cardiomyocytes and vascular smooth muscle cells, whereas ET-

induced lethality reliesmainly on targeting hepatocytes (Liu et al.,
2013). Using myeloid-specific CMG2-null mice, in which both

macrophages and neutrophils are insensitive to LT and ET due to
their inability to bind and internalize the toxins, the same authors

have also clarified the role of macrophages and other myeloid
cells in anthrax toxins induced lethality and in B. anthracis

infection (Liu et al., 2010). Myeloid-specific CMG2-null mice
are fully sensitive to both LT and ET, indicating that lethality

does not depend on the targeting of macrophages, neutrophils,

and other myeloid cells (Liu et al., 2010). However, they are

completely resistant to infection by B. anthracis, indicating that
the targeting of myeloid cells by anthrax toxins is required for

the establishment of a successful infection (Liu et al., 2010). In
what concerns the relative contributions of ET and LT to the

establishment of B. anthracis infection, trials with Sterne strains
deleted of PA, LF, or EF suggest that LT plays a more prominent

role (Liu et al., 2010).
Available data indicate that LT and ET act in concert to

inhibit macrophage activation as well as the activation and
recruitment of other immune cells, such as neutrophils, early

in infection (Baldari et al., 2006; Tournier et al., 2009; Liu
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et al., 2014). This favors bacterial escape and multiplication,

and contributes to the severe bacteraemia observed in terminal
disease. Macrophage activation requires signaling through

MAPK cascades, including JNK and p38 pathways, which are
central for induction of inflammatory molecules, including

cytokines and chemoattractants, as well as Cox-2 and iNOS. LT
interrupts MAPK cascades by directly cleaving MAPKK, whereas

ET inhibits MAPK-dependent gene expression by interfering
with multiple PKA-related pathways (Baldari et al., 2006). Several

reports show that LT inhibits the secretion of pro-inflammatory
cytokines by macrophages as well as by DCs in vitro and in vivo

(Pellizzari et al., 1999; Erwin et al., 2001; Agrawal et al., 2003;
Alileche et al., 2005; Bergman et al., 2005; Brittingham et al., 2005;

Tournier et al., 2005; Ribot et al., 2006). ET has been shown to
suppress secretion of inflammatory mediators by DCs (Tournier

et al., 2005).Whereas LT inhibits IL-10 secretion by these cells, ET
inhibits IL12p70 production (Tournier et al., 2005). Interestingly,
LT and ET have a cumulative suppressive effect upon TNFα

secretion (Tournier et al., 2005). In addition to suppress pro-
inflammatory cytokine secretion by macrophages, LT is also able

to trigger programmed cell death in these cells in vitro. Indeed,
it has been reported that LT induced apoptosis of RAW264.7

cells (Popov et al., 2002). Furthermore, although treatment of
three different human monocytic cell lines (HL-60, THP-1, and

U937) did not result in cell death, upon differentiation into
macrophage-like phenotypes, the cells become susceptible to a

cell death program that has features of apoptosis but apparently
does not requires the activity of effector caspases (Kassam et al.,

2005). The apoptogenic activity of LT toward macrophages likely
relates to LT-dependent disruption of survival signals triggered by

TLR4 and mediated by p38 MAPK (Park et al., 2002, 2005; Hsu
et al., 2004) that activates the NF-kB-dependent expression of

pro-survival genes. By cleaving the upstreamMAPKKMKK3, LT
blocks p38 MAPK and NF-kB activation, leading to macrophage

apoptosis (Huang et al., 2004; Park et al., 2005).
Lethal toxin has also been shown to induce a rapid and lytic

form of caspase-1-dependent cell death, called pyroptosis, in

macrophages from specific rat andmice strains. The susceptibility
of macrophages to pyroptosis has been linked to polymorphisms

of the Nlrp1b gene in mice (Boyden and Dietrich, 2006)
and of the orthologous Nlrp1 gene in rat (Newman et al.,

2010). The ability of LT to induce macrophage pyroptosis was
initially interpreted as a virulence mechanism of B. anthracis

(Muehlbauer et al., 2007). It was speculated that the destruction
of macrophages by LT compromised their role in restricting

B. anthracis infection and that the cytokine burst associated
to LT-induced macrophage lysis contributed to LT-dependent

pathological effects by aggravating the vascular damage occurring
in anthrax (Muehlbauer et al., 2007). More recently, it has

been shown that LT is able to directly cleave mouse Nlrp1b
and rat Nlrp1 close to their N-terminus (Hellmich et al.,

2012; Levinsohn et al., 2012; Chavarria-Smith and Vance, 2013)
resulting in the activation of Nlrp1 inflammasomes in rat and

in mice with LT-sensitive macrophages. Ultimately, this leads
to caspase-1 activation and pyroptosis accompanied by the

release of the inflammatory cytokines IL-1β and IL-18, which
induces a strong innate immune response that is protective

against B. anthracis infection (Moayeri et al., 2010; Terra

et al., 2010). Therefore, the current view is that LT-mediated
activation of Nlrp1 that leads to inflammasome activation and

macrophage pyroptosis is not a virulence mechanism used
by B. anthracis to promote infection, but rather a protective

host-response against anthrax (Chavarria-Smith and Vance,
2015).

Neutrophils play a major role in controlling B. anthracis
infection and anthrax-toxin mediated neutralization of

neutrophil functions is essential for successful infection
(Liu et al., 2010). In vitro studies suggest that by reducing

F-actin formation, LT and ET cooperate to inhibit neutrophil
chemotaxis, chemokinesis, and ability to polarize (During et al.,

2005, 2007; Szarowicz et al., 2009). It was also reported that
neutrophils intoxicated with ET have reduced phagocytic activity

(O’Brien et al., 1985). Additionally, LT has been shown to
suppress cytokine production by neutrophils in vitro (Barson
et al., 2008) and LT and ET were found to block neutrophil

priming by LPS or muramyl dipeptide, thereby dampening
the oxidative burst normally elicited by bacterial products and

required for full antimicrobial activity (Wright and Mandell,
1986). In the case of ET, it has been shown that the inhibition

of superoxide production results from an impairment of the
activation of the neutrophil NADPH oxidase, an effect that likely

results from the activity of ET as an adenylate cyclase (Crawford
et al., 2006). Although it has been proposed that these effects are

due to the ET-induced rise in cAMP leading to phosphorylation
(activation) of PKA (Szarowicz et al., 2009), the downstream

targets remain to be identified.
It is now unquestionable that anthrax toxins are crucial in

anthrax pathogenesis, but their precise roles during human
anthrax infections remain to be further clarified. Following the

discovery of the anthrax toxins more than half a century ago,
a myriad of studies were developed aiming at defining their

role in anthrax disease and lethality. However, most of the
infection studies were performed in animal models that may not
completely reflect the events occurring during human infections.

Concerning the data documenting the immunomodulatory
effects of the anthrax toxins, most were obtained in vitro, often in

experimental set-ups that involve the use of purified toxins and
do not allow examining intoxication in the context of infection.

Therefore, the available data need to be validated in the context
of relevant animal models of infections before being extrapolated

to the human disease scenario.

Photobacterium damselae piscicida:
KILLING TWO BIRDS WITH ONE STONE

Photobacterium damselae piscicida is a Gram-negative
extracellular bacterium that causes a systemic and deadly

infection with a rapid course and very high mortalities in both
wild and cultured marine fish (Romalde, 2002; Barnes et al.,

2005). Phdp infections are characterized by the occurrence
of generalized bacteraemia and extensive cytopathology with

abundant tissue necrosis (do Vale et al., 2007). Infected fish
often present whitish tubercle-like lesions of about 0.5 to
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3.5 mm in diameter in several internal organs (Tung et al., 1985;

Hawke et al., 1987; Noya et al., 1995; Magariños et al., 1996; do
Vale et al., 2007), leading to the coining of the disease as fish

pseudotuberculosis (Kubota et al., 1970). The lesions consist
of accumulations of bacteria and apoptotic and necrotic cell

debris (Kubota et al., 1970; Hawke et al., 1987; do Vale et al.,
2007).

Photobacterium damselae piscicida-associated pathology is
triggered by AIP56 (apoptosis inducing protein of 56 kDa), a

plasmid-encoded toxin secreted by virulent Phdp strains (do
Vale et al., 2005). The toxin is systemically disseminated in

infected animals and induces selective apoptotic destruction of
macrophages and neutrophils (do Vale et al., 2003, 2005, 2007).

The simultaneous destruction of these cell types by AIP56 has
two dramatic consequences for the host. On one hand, the drastic

reduction of the number of phagocytes impairs the phagocytic
defense, favoring pathogen dissemination (do Vale et al., 2007).
On the other hand, it compromises the host capacity to clear

apoptosing cells, leading to the lysis of the phagocytes by post-
apoptotic secondary necrosis with consequent release of their

highly cytotoxic tissue-damaging contents (do Vale et al., 2007;
Silva et al., 2008).

AIP56: Spreading the Misery by Killing
the Soldiers and Preventing their Burial
AIP56 is the founding and the only characterized member of
a continuously growing family of bacterial proteins identified

in different organisms, mainly marine Vibrio species and
Arsenophonus nasoniae. It is an AB-type toxin, possessing a

catalytic A domain at its N-terminal region and a B domain
involved in binding/internalization into target cells at its

C-terminal region (Silva et al., 2013; Figure 3). The catalytic
domain of AIP56 is a zinc-dependent metalloprotease that cleaves

the p65 subunit of NF-κB (Silva et al., 2013), an evolutionarily
conserved transcription factor that regulates the expression of
inflammatory and anti-apoptotic genes, playing a key role in

host responses to microbial pathogen invasion. AIP56 has likely
originated from a fusion of two components: its A domain is

related to NleC, a type III secreted effector present in several
enteric pathogenic bacteria (Yen et al., 2010; Baruch et al., 2011;

Pearson et al., 2011; Sham et al., 2011; Hodgson et al., 2015) that
are associated with severe human illness and death worldwide,

whereas its B domain is related to a protein of unknown function
from the lambda-like bacteriophage APSE2, a phage that infects

Hamiltonella defensa (Degnan et al., 2009).
Although mammals are not susceptible to Phdp infection,

likely due to temperature and osmolality restrictions, AIP56 is
able to intoxicate mouse bone marrow derived macrophages

(mBMDM; Pereira et al., 2014), through a mechanism similar
to the one operating during intoxication of fish cells. Upon

encountering susceptible cells, AIP56 binds to a still unidentified
cell-surface receptor and is internalized through clathrin-

mediated endocytosis (Pereira et al., 2014; Figure 3). Once in
early endosomes, the toxin either follows the recycling pathway

back to the extracellular medium or undergoes low pH-induced
translocation across the endosomal membrane into the cytosol

to display its toxic activity (Pereira et al., 2014). AIP56 cleaves

an evolutionarily conserved peptide bond of the Rel homology
domain of NF-κB p65, removing residues crucial for p65-DNA

interaction and compromising NF-κB activity (Silva et al., 2013;
Figure 3). During intoxication, the proteolytic activity of AIP56

results in a complete depletion of p65 and leads to the apoptotic
death of cells (Silva et al., 2013; Pereira et al., 2014) through a

process involving quick activation of caspases-8, -9 and -3, loss of
mitochondrial membrane potential, translocation of cytochrome

c to the cytosol and overproduction of ROS (do Vale et al., 2007;
Reis et al., 2007a,b, 2010; Costa-Ramos et al., 2011).

AIP56 plays a pivotal role in the establishment of Phdp
infection and in the development of the infection-associated

pathology. In the initial phase of Phdp infection, when local
multiplication of Phdp becomes detectable in infected tissues,

extensive infiltration of macrophages and neutrophils occurs (do
Vale et al., 2007). As the infection progresses, the pathogen
extensively multiplies and disseminates systemically, which leads

to a septicemic situation paralleled by the occurrence of AIP56
in the systemic circulation (do Vale et al., 2007). The presence of

circulating toxin correlates with the appearance of high numbers
of apoptotic macrophages and neutrophils in the peripheral

blood, in the spleen, liver, and head–kidney vasculature, as
well as in the splenic and head-kidney parenchyma and gut

lamina propria (do Vale et al., 2007). This systemic apoptotic
destruction of macrophages and neutrophils triggered by AIP56

explains the extensive phagocyte depletion observed in advanced
Phdp infections (do Vale et al., 2007). The ability of the toxin

to neutralize the main players responsible for the phagocytic
defense of the host is a very effective pathogenicity strategy

that contributes to the severity of Phdp infections by promoting
survival of the pathogen and its unrestricted extracellular

multiplication. Concomitantly, the AIP56-induced apoptosis
of both professional phagocytes leads to tissue damage with

deleterious consequences for the host. In fact, the destruction
of macrophages, the cells with the crucial role of eliminating
apoptotic cells (Parnaik et al., 2000; Wood et al., 2000),

compromises the efficient clearance of apoptotic phagocytes and
leads to their lysis by secondary necrosis (do Vale et al., 2003)

with release of their cytotoxic intracellular contents (doVale et al.,
2007). This has particularly serious consequences in the case of

neutrophils, due to their richness in highly cytotoxic molecules,
which damage many cell types and produce tissue injury, thus

contributing to the genesis of the Phdp-associated cytopathology.

Staphylococcus aureus: A BENCH OF
SECRETED MOLECULES TO SHOOT
NEUTROPHILS

Staphylococcus aureus is a Gram-positive bacterium that often

colonizes the human nares and the skin. Besides being a
commensal, S. aureus is also a redoubtable human pathogen that

causes a variety of severe diseases. To set up a successful infection,
S. aureus evolved an amazing variety of immune evasive strategies

wiping out both innate and adaptive immune responses. S. aureus
infections involve the invasion of host tissues, replication in
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FIGURE 3 | AIP56 blocks innate immunity by inducing massive apoptosis of host macrophages and neutrophils. Upon encountering susceptible cells,

apoptosis-inducing protein of 56 kDa (AIP56) binds to a still unidentified cell-surface receptor and undergoes clathrin-mediated endocytosis. Once in early

endosomes, the toxin either follows the recycling pathway back to the extracellular medium or suffers low pH-induced translocation across the endosomal

membrane into the cytosol to display its toxic activity. AIP56 is a zinc-dependent metalloprotease that cleaves the p65 subunit of nuclear factor-κB (NF-κB), an

evolutionarily conserved transcription factor that regulates the expression of inflammatory and anti-apoptotic genes and plays a key role in host responses to

microbial pathogen invasion. During infection, AIP56 disseminates systemically and its activity leads to depletion of macrophages and neutrophils by post-apoptotic

secondary necrosis, thereby blocking the phagocytic defense of the host and contributing to the occurrence of tissue damage.

abscess lesions and dissemination through purulent drainage

of these lesions and require the recruitment of immune cells
to the site of infection. Such infiltrated immune cells would

usually eliminate the bacteria. However, to counter their action,
S. aureus secretes soluble molecules targeting multiple pathways

to manipulate the capacity of neutrophils for chemotaxis,
phagocytosis, and bacterial killing, thus enabling pathogen

replication and ensuring the success of the infection. Several
recent and comprehensive reviews highlight how S. aureus

virulence factors manipulate the host immune response (Spaan
et al., 2013b; Otto, 2014; Thammavongsa et al., 2015). Here we

will focus on its secreted molecules mainly targeting neutrophils,
modulating their function, or inducing cell killing.

Avoiding Neutrophil Extravasation,
Chemotaxis, and Activation
In general, upon pathogen recognition, pro-inflammatory signals
released by resident macrophages promote the adhesion of

circulating neutrophils and further extravasation across capillary
endothelium to the site of infection. This process relies on

interactions between the endothelial surface receptors (e.g.,
selectins and ICAM1) and their respective ligands on the

surface of neutrophils (e.g., PSGL1 and β2-integrin) (Spaan
et al., 2013b). To inhibit neutrophil recruitment to the infected

tissues, S. aureus secretes two anti-inflammatory factors that
prevent neutrophil adhesion to the blood vessels and further

transmigration (Figure 4A). The staphylococcal SSL5 binds
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PSGL1 in a glycan dependent manner at the surface of

neutrophils, blocking its interaction with P-selectin expressed
by endothelial cells and abrogating the early steps of neutrophil

attachment (Bestebroer et al., 2007). In addition, SSL5 was
shown to inactivate matrix metalloproteinase from human

neutrophils, accounting for the limited capacity of neutrophils
to transmigrate into infected tissues (Itoh et al., 2010). The

extracellular adherence protein (Eap) recognizes endothelial
ICAM1, preventing its interaction with β2-integrins at the surface

of neutrophils and further inhibiting extravasation (Chavakis
et al., 2002).

Staphylococcus aureus also secretes a number of antagonists
of neutrophil receptors interfering with chemokine signaling and

limiting neutrophil recruitment (Figure 4A). In particular, SSL5
directly binds the N-terminus of G-protein coupled chemokine

receptors (GPCRs) inhibiting calcium mobilization and actin
polymerization, thus impairing neutrophil responses to a huge
diversity of chemokines (e.g., CXCL8, CXCL1, CCL2, and CCL5)

and to complement fragments C3a and C5a (Bestebroer et al.,
2009). Similarly to the recognition of PSGL1 by SSL5, binding to

GPCRs relies on the presence of sialic acid residues (Baker et al.,
2007; Bestebroer et al., 2007, 2009). In addition, SSL5 was shown

to bind to platelet glycoproteins, inducing platelet activation
and aggregation, which could be important for colonization and

immune evasion by S. aureus (de Haas et al., 2009). SSL10 inhibits
CXCL12-mediated responses by targeting CXCR4 (Walenkamp

et al., 2009) and SSL3 binds to TLR2, hindering immune
recognition of staphylococcal lipoproteins and peptidoglycan

(Yokoyama et al., 2012).
Phenol-soluble modulins are produced by all S. aureus strains

and have multiple roles in staphylococcal pathogenesis (Cheung
et al., 2014a). In particular, PSMs are potent pro-inflammatory

molecules that interact with human formyl peptide receptor
2 (FPR2) (Kretschmer et al., 2010), a GPCR involved in the

recognition of pathogens. At nanomolar concentrations, PSMs
bind to and activate FPRs, with the strongest activation occurring
through FPR2, stimulating several FPRs effector functions such

as chemotaxis and pro-inflammatory cytokine production (e.g.,
CXCL8; Fu et al., 2006). However, human isolates of S. aureus

evolved other strategies to counter neutrophil chemotaxis by
directly interfering with FPRs signaling and limiting cytotoxicity

while promoting bacterial replication (McCarthy and Lindsay,
2013; Cheung et al., 2014b). Inhibition of FPRs-mediated

pro-inflammatory signaling occurs via the secretion of the
chemotaxis-inhibitor protein of S. aureus (CHIPS) (de Haas

et al., 2004) and the FPR2/ALS-inhibitory protein (FLIPr) and
its homologue FLIPrL (Prat et al., 2006, 2009; Figure 4A).

While CHIPS binds and inhibits FPR1 and C5aR, FLIPr
and FLIPrL block FRP2-mediated signaling, thus avoiding

recognition of PSMs secreted by S. aureus, impairing pro-
inflammatory response and reducing neutrophil recruitment

(Haas et al., 2004, 2005; Prat et al., 2006, 2009). Clearly,
CHIPS, FLIPr and FLIPrL, and PSMs have opposite effects

on FPRs activation. Thus the production/secretion of these
bacterial molecules is likely to be under strict control to

allow the establishment of the infection and to evade immune
recognition.

The repertoire of secreted molecules by S. aureus to evade

the early steps of immune response also include Stathopain
A (ScpA), a cysteine protease that specifically cleaves the

N-terminus of human CXCR2 (Laarman et al., 2012), a
GPCR responding to several chemokines (e.g., CXCL1-3 and

CXCL5-8). Stathopain A inhibits CXCR2-mediated calcium
mobilization, migration, intracellular signaling and activation

of neutrophils (Laarman et al., 2012), appearing as an
important immunomodulatory molecule causing neutrophil

unresponsiveness to several chemokines and blocking their
recruitment to the site of infection.

Blocking Complement Activation,
Opsonization, and Phagocytosis
Staphylococcus aureus display intrinsic physical features (e.g.
thick peptidoglycan layer and capsule) that confer resistance to
complement-mediated killing and neutrophil phagocytosis. In

addition, S. aureus secretes a variety of highly specific proteins
with complement-modulating functions (Figure 4B), thereby

delaying the innate immune attack and generating a window
of opportunity to replicate and establish within the host (Spaan

et al., 2013b; Thammavongsa et al., 2015). Several of these
secreted molecules target C3 or C3 convertases, both central

molecules in the complement activation cascade. Aureolysin is
a metalloproteinase that cleaves C3, generating a modified C3b

fragment that is further degraded instead of being covalently
linked to the bacterial surface where it would promote the

generation of the chemoattractant molecule C5a (Laarman et al.,
2011). In addition, this proteinase degrades human antimicrobial

peptides highly potent against S. aureus (Sieprawska-Lupa et al.,
2004). Thus, aureolysin activity promotes infection by blocking

the complement cascade impairing bacterial C3b opsonization,
phagocytosis, and neutrophil-mediated killing (Sieprawska-Lupa

et al., 2004; Laarman et al., 2011). Staphylococcal component
inhibitor (SCIN) specifically binds to human C3 convertase
and blocks its activity thereby preventing the production

of C3a, C3b, and C5a, thus interfering with complement
activation and with neutrophil-mediated killing of S. aureus

(Rooijakkers et al., 2005a, 2009; Figure 4B). In addition, S. aureus
secreted extracellular fibrinogen-binding protein (Efb) together

with its homologue extracellular complement-binding protein
(Ecb), were shown to inhibit both C3 and C5 convertases

(Jongerius et al., 2010a,b, 2007). Other S. aureus secreted
proteins target both C3 and immunoglobulin binding, thus

impairing complement activation and opsonization, this is
the case of staphylococcal binder of immunoglobulin (Sbi;

Haupt et al., 2008) and staphylokinase (Rooijakkers et al.,
2005b).

Besides their role in blocking neutrophil extravasation
and chemotaxis (described above), some SSLs also hinder

complement activation and phagocytosis. SSL7 binds IgA and
complement C5, inhibiting the production of C5a and further

phagocytosis and bacterial clearance during in vivo infection
(Bestebroer et al., 2010). SSL10 binds to IgG1 preventing

recognition by Fc Receptors (FcR), thus impairing IgG1
opsonization and phagocytosis (Patel et al., 2010; Figure 4B).
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FIGURE 4 | Continued
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FIGURE 4 | Continued

Strategies evolved by Staphylococcus aureus to counteract innate immune response. (A) Secreted bacterial factors that inhibit neutrophils extravasation,

chemotaxis and activation. Neutrophil rolling is modulated by staphylococcal superantigen-like 5 (SSL5) that binds P-selectin glycoprotein ligand-1 (PSGL-1),

blocking its interaction with P-selectin. The adhesion of neutrophils to the endothelium and consequent transmigration is inhibited by extracellular adherence protein

(Eap), which binds to intercellular adhesion molecule 1 (ICAM-1). In addition to inhibiting PSGL-1, SSL5 inhibits neutrophil responses to chemokines and to

anaphylatoxins, by binding to different chemokine receptors. Several staphylococcal molecules impair neutrophil chemotaxis and important co-signaling events

during migration and phagocytosis: chemotaxis-inhibitor protein of S. aureus (CHIPS) binds and inhibits formyl peptide receptor 1 (FPR1) and C5a receptor (C5aR);

formyl peptide receptor-like 1 inhibitor (FLIPr)-like inhibit FPR1; FLIPr and FLIPr-like inhibit FPR2; staphopain (ScpA) cleaves Chemokine (C–X–C Motif) Receptor 2

(CXCR2); staphylococcal SSL3 inhibits toll-like receptor 2 (TLR2)-mediated signaling, the bicomponent leukocidins Panton-Valentine leukocidin (PVL),

gamma-hemolysin (Hlg) ABC, leukocidin (Luk) FM, Luk GH/AB, and Luk DE interact with chemoattractant receptors of the G-protein-coupled receptor (GPCR)

family. Both Hla and Luk GH/AB induce cell lysis by binding ADAM metallopeptidase domain 10 (ADAM10) and CD11b, respectively. The cytolytic peptides

phenol-soluble modulins (PSMs) have an amphipathic alpha-helical region that likely contributes to their lytic activity, presumably by membrane insertion and pore

formation. (B) Secreted bacterial factors that inhibit opsonization and phagocytosis by neutrophils. The secreted metalloprotease aureolysin inhibits phagocytosis

and killing of bacteria by neutrophils by cleaving C3. Staphylococcal complement inhibitor (SCIN), SCIN-B, and SCIN-C associate with and inhibits C3 convertase,

thereby preventing the production of C3a, C3b, and further C5a and consequently interfering with complement activation. The extracellular fibrinogen binding protein

(EFB) and the extracellular complement-binding protein (ECB) also inhibit complement activation by inactivating C5 convertase and staphylococcal SSL7 targets C5.

Staphylococcal binder of immunoglobulin (SBI) affect both the function of complement and immunoglobulin binding, blocking the classical complement activation

pathway, and associates with C3 inhibiting the alternative pathway. Staphylokinase (SAK) forms enzymatically active complexes with C3b blocking complement

activation. Staphylococcal SSL10 binds IgG, affecting Fc receptor (FcR) recognition and complement activation.

Avoiding NET Bactericidal Activities
In addition to phagocytosis and intracellular killing, neutrophils
evolved an alternative defense mechanism to trap extracellular
pathogens and prevent their dissemination. This strategy

relies on the release of nuclear content together with
antimicrobial cytosolic and granular proteins to form neutrophil

extracellular traps (NETs), which are scaffolds that act as
physical barriers to pathogen progression protecting host

tissues from damage (Papayannopoulos and Zychlinsky,
2009). A secreted staphylococcal nuclease (Nuc) has the

capacity to degrade NETs thereby allowing S. aureus to
resist their bactericidal activities in vitro as well as in a

respiratory tract infection model (Berends et al., 2010). NET
degradation by Nuc leads to the production of monophosphate

nucleotides that are further converted into deoxyadenosine
through the activity of adenosine synthase (AdsA), another

S. aureus secreted protein. Interestingly, the accumulation
of deoxyadenosine generated by AdsA activity promotes the

autocleavage of pro-caspase-3, triggering caspase-3-induced
apoptosis of infiltrating macrophages (Thammavongsa et al.,

2013). Together, staphylococcal Nuc and AdsA act in a
concerted mode to promote bacterial survival in S. aureus

abscesses, by excluding macrophages from the infection
foci.

Neutrophil Killing: The Ultimate Defense
In line with its ability to evade almost every step of the innate
immune response, S. aureus induce the death of innate immune

cells, trough the secretion of PSMs and several other toxins. As
mentioned above, PSMs are S. aureus secreted molecules with

multiples roles in infection (Wang et al., 2007; Cheung et al.,
2014a). They trigger inflammatory responses by interacting with

FPR2 and display, at higher concentrations, FPR2-independent
cytolytic activity likely through membrane insertion and pore

formation (Kretschmer et al., 2010; Figure 4A). In particular,
PSMα peptides are able to trigger the lysis of the phagosome after

neutrophil ingestion allowing intracellular bacterial replication,
and ultimately are responsible for lysis of neutrophils promoting

bacterial survival and escape to the extracellular milieu (Wang

et al., 2007; Geiger et al., 2012; Chatterjee et al., 2013; Grosz
et al., 2014). In vitro, expression levels of PSMs correlate

with levels of cytotoxicity (Rasigade et al., 2013). Moreover,
mutants deficient for PSMα production are perturbed in

biofilm formation (Peschel and Otto, 2013) and attenuated in
the mouse bloodstream infection model (Wang et al., 2007).

Altogether, these observations strongly suggest that PSMα-
triggered effects may play a key role in in vivo S. aureus
infection.

In addition to PSMs whose cytolytic activity is receptor-
independent, S. aureus secretes other cytolytic toxins that

interact with specific receptors at the surface of eukaryotic
cells, oligomerize and form pores inducing cell leakage and

ultimately total lysis. S. aureus-produced toxins targeting
white blood cells belong to the beta-barrel pore-forming

toxins and comprise hemolysin-α (Hla, also called α-toxin)
and bicompetent leukocidins (Otto, 2014; Thammavongsa

et al., 2015; Figure 4A). In vivo infection studies have
shown that Hla is required for several S. aureus-associated

pathologies, such as pneumonia and severe skin infections
(Bubeck Wardenburg et al., 2007; Bubeck Wardenburg and

Schneewind, 2008; Kennedy et al., 2010). Hla interacts with high
affinity with ADAM10 at the surface of host cells (Wilke and

Bubeck Wardenburg, 2010) to damage epithelial, endothelial
and immune cells (Berube and Bubeck Wardenburg, 2013;

Figure 4A). Mice lacking ADAM10 expression in the lung
epithelium resist to lethal pneumonia (Becker et al., 2014),
whereas animals lacking ADAM10 specifically on myeloid

lineage develop exacerbated skin infections (Inoshima et al.,
2011). Although these results suggest that the outcome of Hla-

mediated effects may dependent on the infected tissue, the
role of Hla on tissue-specific innate immunity requires further

analysis.
Leukocidins are composed by two distinct and independently

secreted subunits that form heteromultimeric pores in the
membrane of host myeloid cells (Otto, 2014). S. aureus

produce different arrays of leukocidins with different species
and cell type specificities, which are mainly dictated by their
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interaction with host GPCRs (Spaan et al., 2013b; Otto, 2014;

Thammavongsa et al., 2015; Figure 4A). In vitro assays with
purified proteins, as well as ex-vivo infections with S. aureus,

have shown that leukocidin AB (LukAB, also called LukGH)
kills human, but not mouse, neutrophils upon binding to

CD11b (DuMont et al., 2013a). In addition, purified LukAB
induce the release of NETs (Malachowa et al., 2013) and

also promotes the escape from the phagosome in neutrophils,
thus enabling S. aureus replication (DuMont et al., 2013b).

Gamma-hemolysin HlgAB andHlgCB bind chemokine receptors
(e.g., CXCR1, CXCR2, and CCR2) and complement receptors

(e.g., C5aR), respectively (Spaan et al., 2014), and promote
the lysis of human neutrophils and macrophages in vitro.

LukED, produced by a large majority of clinical isolates of
S. aureus, triggers the lysis of neutrophils and macrophages

of different vertebrates by binding chemokine receptors such
as CCR5, CXCR1 and CXCR2 (Alonzo et al., 2013; Reyes-
Robles et al., 2013). Importantly, LukED was shown to play

a critical role in S. aureus systemic infections in mice, by
promoting bacterial replication in vivo through direct killing

of neutrophils (Alonzo et al., 2012). Lastly, Panton-Valentine
leukocidin (PVL), which is secreted by a small percentage of

S. aureus isolates, binds C5aR on neutrophils and macrophages
and has a restricted activity toward human and rabbit cells

(Spaan et al., 2013a, 2015). Despite the several attempts to
evaluate the exact contribution of each of these toxins to

S. aureus-associated pathologies, their vast species and cell type
specificities have rendered this analysis highly challenging. In

this context, the data obtained from commonly used animal
infection models (e.g., mice and rats) should be interpreted with

caution.

Mycobacterium ulcerans: SABOTAGE OF
THE HOST IMMUNE RESPONSE BY A
POLYKETIDE TOXIN

Mycobacterium ulcerans is the causative agent of Buruli ulcer,
a chronic ulcerative skin disease that usually starts as painless

nodules on the limbs that then develop into large ulcers.
These can lead to severe scars and local deformities, including

disabling contractures, if not treated at early stages (WHO
Buruli ulcer fact sheet N◦ 199, Updated July 2014). Buruli

ulcer occurs most frequently in children living in tropical
environments, near wetlands. The disease is more common

in poor and rural areas of Africa but is also found in South
America, Asia and Australia.Mycobacterium ulcerans is currently

recognized as an environmental pathogen, but its reservoirs
and mode of transmission remain doubtful (WHO Buruli ulcer

fact sheet N◦ 199, Updated July 2014). Genetically very close
to M. tuberculosis and M. marinum, M. ulcerans is unique

among human pathogenic mycobacteria due to the secretion of
a lipid toxin, the mycolactone (George et al., 1999; Hong et al.,

2008). Mycolactone displays cytotoxic and immunosuppressive
activities and is considered the major pathogenicity factor

in Buruli ulcer, being essential for M. ulcerans virulence,
immune modulation, and colonization (George et al., 1999;

Coutanceau et al., 2005; Marsollier et al., 2005; Torrado et al.,

2007a, 2010; Simmonds et al., 2009; Guenin-Mace et al.,
2011).

In animal models, injection of mycolactone alone is sufficient
to cause ulcers similar to those found in infected hosts

(George et al., 1999, 2000). Concerning the mechanism of
cellular intoxication, it has been proposed that, due to its

hydrophobic nature, mycolactone passively diffuses through the
plasma membrane (Snyder and Small, 2003; Figure 5). At

micromolar concentrations, mycolactone is highly cytotoxic to
a variety of mammalian cells, with variable susceptibility levels

depending on the cell type (Hall and Simmonds, 2014). The
mycolactone cytotoxicity has been linked to its apoptogenic

activity. Apoptosis was observed in several cell types incubated
in vitro with mycolactone (George et al., 2000; Gama et al.,

2014), when primary mouse macrophages were incubated with
toxigenic M. ulcerans strains (Oliveira et al., 2005), and in
guinea pigs (George et al., 2000) and mice (Oliveira et al., 2005;

Torrado et al., 2007b) infected with mycolactone-producing
M. ulcerans. More importantly, massive apoptosis has been

observed in Buruli ulcer lesions (Walsh et al., 2005). The
mycolactone-induced cell death mechanisms appear to be

complex and are not completely understood. It has been shown
that mycolactone induces cell cycle arrest at the G1/G0-phase

(George et al., 1999), but the connection between this effect
of mycolactone and its cytotoxicity remains unclear. Early

studies on mycolactone reported the occurrence of early actin
cytoskeleton rearrangements, cell rounding, and detachment

following incubation with the toxin (George et al., 1998, 1999).
More recently, studies with HeLa and Jurkat T cells have

shown that mycolactone induces increased actin polymerisation
in intoxicated cells, as a consequence of its binding to the

GTPase domain of the actin-cytoskeleton regulator Wiskott-
Aldrich syndrome protein WASP (Guenin-Mace et al., 2013).

This leads to hyper-activation of WASP and re-localization of
the Arp2/3 complex and consequently, to major cytoskeletal
rearrangements, including the formation of filopodia (Guenin-

Mace et al., 2013). In epithelial cells, this causes loss of cell
adhesion and E-cadherin-dependent tight junctions, ultimately

leading to the death of detached cells by anoikis (Guenin-
Mace et al., 2013). Recent studies performed in vitro with

murine fibroblasts confirmed the cytoskeleton as a main target
of mycolactone, by showing that mycolactone causes changes

in microtubules and affects several regulators and structural
components of microtubules and microfilaments (Gama et al.,

2014). These deleterious effects inflicted by mycolactone upon
the cytoskeleton likely contribute to the formation of the

lesions characteristic of Burulli ulcer. Additionally, given the
central role of the cytoskeleton in controlling key cellular

functions, such as endocytosis, intracellular trafficking, cell
adhesion and migration, it is reasonable to speculate that,

by highjacking cytoskeleton functions, mycolatone perturbs
the functions of phagocytic cells. Indeed, it is likely that

the decreased phagocytic activity of macrophages exposed to
mycolactone (Adusumilli et al., 2005; Coutanceau et al., 2005)

results from the effect of the toxin upon the cytoskeleton of those
cells. Further investigations are required to determine whether
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FIGURE 5 | Mycolactone inhibits the secretion of most cytokines, chemokines and other inflammatory mediators by macrophages. In eukaryotic cells,

secretory proteins cross the ER membrane before being transported in vesicles to the Golgi complex and then to the plasma membrane. Mycolactone enters cells

by passive diffusion through the plasma membrane and inhibits the production of inflammatory mediators by macrophages by blocking the translocation of nascent

proteins into the ER. The proteins wrongly accumulated in the cytosol are then degraded by the proteasome.

cytoskeleton is manipulated by mycolactone in macrophages and

neutrophils and what are the consequences of this manipulation
in vivo.

In addition to its known cytotoxic effects toward distinct
cell types, at non-cytotoxic concentrations, mycolactone

interferes with important functions of immune cells, including
monocytes, macrophages, and DCs (Arango Duque and

Descoteaux, 2014; Hall and Simmonds, 2014). It is well
recognized that macrophages play crucial roles in mycobacterial

infections, including in Buruli ulcer. Although Buruli ulcer
histopathology is characterized by extensive areas of necrosis

with abundant extracellular bacteria, studies on infected
humans, and experimental M. ulcerans infections revealed that

M. ulcerans is phagocytosed by macrophages and neutrophils,
similarly to the other pathogenic mycobacteria (Torrado
et al., 2007b; Silva et al., 2009) and escape the microbicidal

activity of the macrophages presumably by mycolactone-
dependent interference with the IFNγ–dependent phagosome

maturation and NO production required to control M. ulcerans
infection (Torrado et al., 2010). After an initial phase of

intracellular proliferation, varying according to the strain
cytotoxicity/virulence, M. ulcerans causes apoptosis/necrosis

of the host macrophage through a mycolactone-dependent
mechanism and becomes extracellular (Torrado et al.,

2007b).

Usually, phagocytosis of a microorganism triggers signaling

events that rapidly culminate in a controlled inflammatory
response involving the secretion of several cytokines and

chemokines that recruit other inflammatory cells to the site of
infection. However, available evidence suggests that this early

response is heavily perturbed by mycolactone. Indeed, cells
exposed to mycolactone-producing strains ofM. ulcerans secrete

much less TNF than those infected with mycolactone-negative
strains (Torrado et al., 2007a) and purified mycolactone has

been shown to supress the production of several cytokines,
chemokines, and other inflammatory mediators by macrophages

(Arango Duque and Descoteaux, 2014; Hall and Simmonds,
2014). It has been proposed that this suppression is associated

with a mycolactone-induced blockade of co-translational protein
translocation into the ER and subsequent degradation of the
aberrantly located proteins in the cytosol (Hall et al., 2014;

Figure 5). Failure to produce cytokines and chemokines may
contribute to the absence of inflammatory infiltrate at the

central necrotic areas of the lesion containing high numbers
of extracellular bacilli, in addition to the lysis of recruited

inflammatory cells induced by the build-up of mycolactone. The
inflammatory infiltrates occupy a band at the periphery of the

lesion that represents a front that is continuously advancing into
healthy tissues in progressive M. ulcerans lesions (Silva et al.,

2009).
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CONCLUDING REMARKS

The clearance of infectious agents greatly depends on the host

innate immune responses that take place at early stages of
infection and in which macrophages and neutrophils are the

central players. To counteract the host defense mechanisms,
bacterial pathogens secrete a bench of different toxins that

neutralize, at different levels, the host innate immune response
and in particular, annihilate the function of macrophages and
neutrophils. Despite having different features, secreted toxins

targeting the function of innate immune cells often display
similar and/or complementary activities and modulate the same

central pathways of the host cell (e.g., inflammatory response,
cytoskeleton dynamics, and cAMP signaling). Furthermore, a

single pathogen may secrete several toxins that act differently to
produce the same outcome (e.g., inhibit chemotaxis or induce

phagocyte death). These apparently redundant strategies of
bacterial attack ensure the multistep impairment of the early host

immune responses mounted against the pathogen and guarantee
the control of host–pathogen interaction providing a window

of time and opportunity for bacterial growth and establishment
within the host.

In the past, many studies aiming to uncover the molecular
functions of bacterial toxins on host cells were performed in vitro

in several cultured cell lines, and more recently in primary
cells, using a wide range of concentrations of purified toxins.

In addition, studies on animal models (mainly in rodents)
using either purified toxins, wild type bacteria and toxin-
deficient mutants, provided a number of important observations

regarding the toxin-mediated pathologies. Together, these studies
generated an incredible amount of data that paradoxically poorly

contributed to the understanding of the role of toxins in
human infections. Whereas in the perspective of using toxins as

molecular tools to address cell biology topics there is great value
in testing toxin effects in many in vitro cell systems, several issues

render extremely difficult the interpretation of data from in vitro
studies in the context of infection. In particular, the concentration

of purified toxin used is often much higher than that produced by
bacteria during infection and it is highly variable among different

studies, and the cell lines tested are often non-relevant for the
pathophysiology of the infection. Regarding studies performed

in animal models, two major concerns have been pointed out:
(1) many toxins display species-specificity and thus routinely

used models, specially rodents, are non-relevant for the study
of many toxin-mediated human pathologies compromising the

extrapolation of data and (2) direct inoculation of purified toxins
in the animals only provide limited information that do not

necessarily recapitulate the effect of a given toxin in the context
of human bacterial infection. Thus, the data generated so far

needs to be cautiously analyzed whenever we aim to better

understand the role of toxins in the in vivo infectious process.
The accurate role of toxins in human infections needs to be

analyzed in the context of bacterial infections in different animal
species. In this perspective, future efforts should concentrate in

the development and use of appropriate animal models, possibly
non-human primates, in which available in vitro and in vivo

data can be confirmed and possibly extrapolated to the human
pathologies.
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