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Abstract Lactic acid bacteria (LAB) constitute a hetero-

geneous group of microorganisms that produce lactic ac-

id as the major product during the fermentation process.

LAB are Gram-positive bacteria with great biotechnolog-

ical potential in the food industry. They can produce

bacteriocins, which are proteinaceous antimicrobial mol-

ecules with a diverse genetic origin, posttranslationally

modified or not, that can help the producer organism to

outcompete other bacterial species. In this review, we

focus on the various types of bacteriocins that can be

found in LAB and the organization and regulation of

the gene clusters responsible for their production and

biosynthesis, and consider the food applications of the

prototype bacteriocins from LAB. Furthermore, we pro-

pose a revised classification of bacteriocins that can ac-

commodate the increasing number of classes reported

over the last years.
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Introduction

The production of antagonistic substances by living organisms

is a conserved characteristic throughout evolution, constitut-

ing an effective ancestral defense mechanism. Bacteriocins are

ribosomally produced antimicrobial peptides from bacteria,

either processed or not by additional posttranslational modifi-

cation (PTM) enzymes, and exported to the extracellular me-

dium (Cotter et al. 2005).

Bacteriocins produced by lactic acid bacteria (LAB) are

particularly interesting due to the long history of safe use of

some of them and the generally regarded as safe (GRAS) and

Qualified Presumption of Safety (QPS) status that most LAB

possess. LAB are a heterogeneous group of Gram-positive

fermentative bacteria belonging to Firmicutes that encom-

passes various genera (Table 1) (Carr et al. 2002). Although

bifidobacteria are not strictly LAB, they have been tradition-

ally studied together and will also be considered in this review.

We aim to provide an overview of the prevalence of bacte-

riocin classes in LAB. We highlight the classes that have been

described in LAB providing examples of the most relevant

cases for each class paying attention to the genetics, structure,

and mechanism of action. Moreover, we discuss some bacte-

riocin groups that can be detected in silico in publicly avail-

able LAB genomes even though no representative from a

LAB has yet been reported. Due to their biotechnological

interest, the application of some bacteriocins in food process-

ing is briefly described.
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Classification of bacteriocins from lactic acid

bacteria

There are a large number of bacteriocins isolated from nature.

Some databases have been created to compile this information

(e.g., van Heel et al. 2013). In addition to published bacterio-

cins, the repertoire of molecules hidden in the genomes that

have not been isolated yet represents a valuable source of

novel compounds with great potential. Diverse tools have

been created that can be used for the automated screening of

bacteriocin gene clusters (Blin et al. 2013; van Heel et al.

2013). A total of 238 complete LAB genomes deposited in

public databases and belonging to the genera indicated in

Table 1 were analyzed using Bagel3. This search resulted in

a list of 785 putative bacteriocin gene clusters, including

ribosomally produced and posttranslationally modified peptides

(RiPPs) that were not previously identified in LAB. In this list,

we could observe previously characterized bacteriocins or natural

variants, some of them spread among different species, and new

putative bacteriocins with no significant homology to known

peptides based on the blast results provided (Table S1).

Since the first classification of LAB bacteriocins, proposed

by Klaenhammer (1993), different schemes have been pro-

posed taking it as a basis. New RiPP subgroups with antimi-

crobial activity produced by bacteria have been discovered

that do not fit in either classification in spite of fitting in the

definition of bacteriocin. We propose a slightly adjusted clas-

sification for LAB that can accommodate the novel subclasses

that are appearing, based on the biosynthesis mechanism and

biological activity, which is in acoordance with previous pro-

posals (Cotter et al. 2013; Arnison 2013). Although we focus

on bacteriocins fromLAB, this scheme is also valid for known

compounds from other microorganisms (Fig. 1).

Class I: RiPPs (less than 10 kDa) This class encompasses all

the peptides that undergo enzymatic modification during bio-

synthesis, which provides molecules with uncommon amino

acids and structures that have an impact on their properties

(e.g., lanthionine, heterocycles, head-to-tail cyclization, gly-

cosylation). They consist of a leader peptide which serves for

enzyme recognition, transport, and keeping the peptide inac-

tive, which is fused to a core peptide (Arnison et al. 2013). The

key signatures for an appropriate and systematic definition of

novel members of this class have been recently suggested

(Medema et al. 2015). Other RiPP subclasses not found in

LAB are not further discussed here (for a review see

Arnison et al. 2013).

Class II: unmodified bacteriocins (less than 10 kDa) This

class groups bacteriocins that do not contain unusual modifi-

cations. Thus, they do not require enzymes for their matura-

tion other than a leader peptidase and/or a transporter.

Class III These are unmodified bacteriocins larger than

10 kDa with bacteriolytic or non-lytic mechanism of action.

Class I: small posttranslationally modified peptides

Class Ia. Or lanthipeptides (types I, II, III, and IV)

Lanthipeptides are peptides possessing unusual amino acids,

such as lanthionine and/or (methyl)lanthionine (Arnison et al.

2013). Lanthipeptides undergo PTMs, and generally the genes

involved in the maturation process are located in the same

operon. Based on the PTM enzymes involved in the matura-

tion process, lanthipeptides can be divided into four types, but

Table 1 Number of putative bacteriocin gene cluster identified in 238 complete genomes

Genera Class I Class II Class III Total

Lanthipeptide I Lanthipeptide II Cyclic peptide Sactipeptide Glycocin Lasso peptide LAP

Aerococcus (1) 0

Bifidobacterium (31) 2 2 4

Carnobacterium (3) 1 6 1 8

Enterococcus (12) 3 1 1 13 7 25

Lactobacillus (59) 16 23 3 86 76 204

Lactococcus (13) 3 7 1 20 1 32

Leuconostoc (8) 1 6 7

Oenococcus (1) 1 1

Pediococcus (3) 1 2 3

Streptococcus (105) 16 22 15 7 5 4 33 388 10 500

Tetragenococcus (1) 1 1

Weisella (1) 0

TOTAL 19 29 41 15 29 4 37 514 97 785

Numbers in parentheses () indicate the number of genomes analyzed per genus
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only types I (LanBC-modified) and II (LanM-modified) can

be considered lantibiotics (Knerr and van der Donk 2012).

Types III and IV have no known antimicrobial activity and

are not further considered here.

A great number of different lantibiotics are produced

by LAB (Table 1). Among them, nisin, a type I lantibiotic

produced by Lactococcus lactis, is the best studied. The

nisin biosynthetic gene cluster consists of 11 genes

(Fig. 2). Promoters transcribing the nisABTCIP (biosyn-

thesis and immunity) and nisFEG (immunity) operons are

controlled by the two-component system NisRK that re-

sponds to the nisin concentration in a typical quorum

sensing (QS) system (Lubelski et al. 2008). This QS

mechanism has been also shown for type II lantibiotics

such as bovicin HJ50 (Ni et al. 2011).

Lantibiotic maturation is a process encompassing sever-

al enzymatic reactions. The nisin precursor is modified by

the dehydratase NisB which dehydrates Ser and Thr via

glutamyl-tRNA-dependent glutamylation and elimination

(Garg et al. 2013; Ortega et al. 2015). The cyclase NisC

promotes the reversible Michael-type nucleophilic attack

from the thiol group of a cysteine to an N-terminal-

l o c a t e d d e h y d r a t e d r e s i d u e r e n d e r i n g t h e

(methyl)lanthionine rings (Lubelski et al. 2008; Yang and

van der Donk 2015). Subsequently, the fully modified pre-

cursor is transported (NisT) and proteolytically activated

(NisP) (Lubelski et al. 2008). For some type I lantibiotics,

this step is performed most likely intracellularly (e.g.,

Pep5) or even by an unknown leader peptidase not associ-

ated to the lantibiotic cluster (e.g., subtilin) (Knerr and van

der Donk 2012). In type II lantibiotics, the processes of

dehydration and cyclization are carried out by a bifunction-

al LanM enzyme that performs the phosphorylation-

elimination reaction on the dehydratable residues and

forms the rings (Knerr and van der Donk 2012). Lacticin

3147 from L. lactis is one of the best-studied type II

lantibiotics. It consists of two peptides, LtnA1 and

LtnA2, which are processed by LtnM1 and LtnM2, respec-

tively. Finally, the bifunctional enzyme LtnT removes the

leader peptide and translocates the modified peptides

(Suda et al. 2012). Recently, the role of the leader peptide

of lantibiotics as an activator of the PTM enzymes has been

revealed (Oman et al. 2012). Apart from lanthionine rings

and dehydrated residues, other modified amino acids have

been detected in lantibiotics (Knerr and van der Donk

2012; Ortega et al. 2014; Lohans et al. 2014).
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Fig. 1 Proposed classification

scheme for bacteriocins and their

structures. Classes identified in

silico are depicted in gray.

Structure of non-lytic bacteriocins

of class III still remains

uncharacterized. *Bacteriocins

from non-lactic acid bacteria
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The mechanism of action of most lantibiotics relies on

lipid II binding. Nisin inhibits its target removing lipid II

from its natural location and subsequent insertion into the

cell membrane to form a pore (Breukink et al. 1999;

Hasper et al. 2006; Lubelski et al. 2008). Lacticin 3147

also targets lipid II, and a three-step model has been pro-

posed where the α-peptide binds to lipid II, then it is rec-

ognized by the β-peptide which inserts into the membrane

and forms a pore (Wiedeman et al. 2006; Suda et al. 2012).

It has been reported that other type II lantibiotics lack the

ability to form pores after interaction with lipid II via a

specific binding pocket (Islam et al. 2012), but can strong-

ly induce a cell stress response (Sass et al. 2008). The pore-

forming ability of some lantibiotics is compromised by the

membrane composition and thickness of the sensitive

strain (Wiedeman et al. 2006).
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Class Ib. Or head-to-tail cyclized peptides

Head-to-tail cyclized bacteriocins are a group of RiPPs whose

N- and C-termini are linked by a peptide bond, thereby

rendering a circular molecule (Fig. 1). All of them contain

only alpha helical segments (either 4 or 5) and share a

similar structure with a saposin folding (Montalbán-López

et al. 2012a; Lohans et al. 2013; Acedo et al. 2015; Himeno

et al. 2015).

In spite of their similar structure, two different mechanisms

of action are shown for circular bacteriocins, both involving

pore formation. In the case of carnocyclin A, it is able to form

pores in bacterial membranes in a voltage-dependent manner

(Gong et al. 2009). Multimers of carnocyclin A are not found

in solution (Martin-Visscher et al. 2009). On the other hand,

AS-48 forms dimers in aqueous solution which rearrange in

the membrane to bury the hydrophobic core in the lipid bilayer

(Cruz et al. 2013; Cebrián et al. 2015). Studies with garvicin

ML show that the expression of a maltose-binding protein in

L. lactis increases the sensitivity to this bacteriocin

(Gabrielsen et al. 2012). This constitutes the first report on a

putative target for a circular bacteriocin, although its exact role

remains to be demonstrated.

The gene cluster of AS-48 is formed by 10 genes including

as-48Awhich codes for the structural gene, as-48B for a pu-

tative cyclase, as-48C for a DUF95 protein related to immu-

nity and production (Mu et al. 2014), as-48C1D for a putative

ABC transporter related to production, as-48D1 for a typical

immunity protein, and as-48EFGH for an additional ABC

transporter which is immunity related (Fig. 2) (Maqueda

et al. 2008). The minimal set for the functional expression of

the circular bacteriocin circularin has been determined as

cirABCDE (equivalent to as-48ABCDD1) (Maqueda et al.

2008). The transporter As-48EFGH is not present in some of

the known gene clusters indicating that it has a minor role for

production and it is related only to immunity (Maqueda et al.

2008; Gabrielsen et al. 2014a). No gene encoding for a puta-

tive regulator has been found in the LAB circular bacteriocins

described, the only exception being a putative circular bacte-

riocin cluster detected in silico in Streptococcus pneumoniae

that contains a putative regulator upstream the structural gene

(Maqueda et al. 2008; Bogaardt et al. 2015). The expression of

AS-48 requires the expression of a large transcript that encom-

passes as-48ABC which is posttranscriptionally processed, a

second transcript including as-48C1DD1EFGH, and a third

transcript from a weak promoter that transcribes as-

48D1EFGH (Sánchez-Hidalgo et al. 2011; Cebrián et al.

2014). The typical organization, where the expression of the

structural gene is paired to the expression of the immunity and

the maturation machinery, is not present in the garvicin ML

gene cluster (Gabrielsen et al. 2014b).

The fact that there is not a C-terminal extension in circular

bacteriocins as in the case of cyclotides or cyanobactins and

that the leader peptide seems to be cleaved off in a separate

step could indicate that the cyclization takes place during

transport involving the ATPase activity to provide the energy

necessary for the peptide bond formation (Montalbán-López

et al. 2012a; Craik and Malik 2013; Gabrielsen et al. 2014a;

Scholz et al. 2014).

Class Ic. Or sactibiotics

Sactipeptides (also referred to as sactibiotics when they pos-

sess antimicrobial activity) are sulphur-to-α-carbon-

containing peptides (Arnison et al. 2013; Mathur et al.

2015). To the best of our knowledge, there has been no

sactipeptide from a LAB characterized so far and only puta-

tive clusters have been identified in silico (Table 1) (Table S1)

(Murphy et al. 2011), awaiting further study.

They show great diversity, with the hairpin structure and

the sulfur linkages being the common feature. The best stud-

ied, subtilosin A, is a negatively charged circular sactipeptide

produced by Bacillus subtilis (Fig. 1) (Kawulka et al. 2003;

Maqueda et al. 2008). It exhibits 3S-to-α-carbon bonds and

displays a broad spectrum activity against diverse bacteria

(Montalbán-López et al. 2011; Mathur et al. 2015). Thuricin

CD is a narrow-spectrum two-component linear sactibiotic

produced by Bacillus thuringiensis with potent activity

against Clostridium difficile (Rea et al. 2010). Thurincin H,

also produced by B. thuringiensis, is a single peptide with 4S-

to-α-carbon bonds (Mathur et al. 2015).

No specific receptor has been identified for sactibiotics.

The model, subtilosin A, can partly bury in the membrane of

target cells, causing a disorder in the hydrophobic region of

the membranes creating transient pores (Noll et al. 2011). On

the other hand, thurincin H does not appear to affect the mem-

brane permeability (Wang et al. 2014).

The common features in the sactibiotic gene clusters are the

presence of the structural gene(s), immunity proteins, trans-

porters, and S-adenosylmethionine enzymes containing a typ-

ical [4S-4Fe] conserved region (Fig. 2) (Flühe et al. 2013).

Class Id. Or linear azol(in)e-containing peptides

Linear azol(in)e-containing peptides (LAPs) are peptides

possessing various combinations of heterocyclic rings of thi-

azole and (methyl)oxazole, which are derived from cysteine,

serine, and threonine residues via ATP-dependent

cyclodehydration and subsequent flavin mononucleotide-

dependent dehydrogenation (Melby et al. 2011). The most

relevant LAB-produced LAP is streptolysin S (Fig. 1) (Cox

et al. 2015). Streptolysin S is modified by the cyclodehy

dratase SagCD. Recently, the SagD-homolog YcaO was

shown to be an ATP-dependent enzyme that phosphorylates

the amide backbone, although the function of the SacC homo-

log was not clear (Dunbar et al. 2012). Often, the SagCD

Appl Microbiol Biotechnol



analogs in other gene clusters are fused as a single protein.

Additionally, the synthesis of streptolysin S requires the dehy-

drogenase SagB, the protease SagE, the ABC transporter

SagGHI, and SagF, probably related with immunity (Lee

et al. 2008). The whole set cluster is controlled by a single

promoter with a rho-independent terminator behind the struc-

tural gene sagA (Fig. 2) (Nizet et al. 2000). Additional modifi-

cations have been found in other LAP clusters (Lee et al. 2008).

The mechanism of action of LAPs is unclear yet. Microcin

B17, from Escherichia coli, can inhibit bacterial gyrase under

certain conditions in a mechanism similar to quinolones

(Heddle et al. 2001).

Class Ie. Or glycocins

Glycocins are bacteriocins containing glycosylated residue(s)

(Arnison et al. 2013). Glycocin F from Lactobacillus

plantarum was the first glycocin described in LAB (Stepper

et al. 2011). Glycocin F is arranged as two alpha helices held

together by disulfide bonds (Venugopal et al. 2011). It pos-

sesses an N-acetylglucosamineβ-O-linked to serine and anN-

acetylhexosamine S-linked to the C-terminal cysteine, a very

infrequent type of glycosylation (Stepper et al. 2011). Little is

known about the mechanism of action of glycocins. The O-

linked N-acetylglucosamine could interact reversibly with tar-

get cells (Stepper et al. 2011). Apart from glycocin F,

enterocin F4-9 from Enterococcus faecium has also been de-

scribed (Fig. 1) (Maky et al. 2015). The biosynthetic gene

cluster of enterocin F4-9 consists of five genes (Fig. 2): enfT,

a putative ABC-transporter; the structural gene enfA49; the

glycosyltransferase enfC; and enfB and enfI, which resemble

a thioldisulfide isomerase and an immunity protein, respec-

tively (Maky et al. 2015). Unlike glycocin F, enterocin F4-9 is

assumed to be bacteriostatic (Maky et al. 2015).

Class If. Or lasso peptides

Lasso peptides are a group of RiPPs that show as a main

characteristic the presence of an amide bond between the first

amino acid in the core peptide chain and a negatively charged

residue in positions +7 to +9 generating a ring that embraces

the C-terminal linear part of the polypeptide (Fig. 1) (Arnison

et al. 2013; Hegemann et al. 2015). Moreover, lasso peptides

display diverse activities which range from antimicrobial to

putative antiviral or anticancer (Maksimov et al. 2012).

Additional modifications might be naturally present in lasso

peptides (Hegemann et al. 2015). Up to date, no lasso peptide

from LAB has been reported, but a few are predicted to occur

in streptococci (Table 1) (Table S1).

The first antimicrobial lasso peptide characterized was

microcin J25, produced by E. coli (Fig. 1). A cluster of four

genes is required for the production of microcin J25, namely,

the structural gene mcjA, the immunity determinant mcjD, the

leader peptidase mcjB, and the cyclase mcjC (Fig. 2) (Yan

et al. 2012). Microcin J25 uses the siderophore transporter

FhuA to enter the cell where it acts as a selective transcription

inhibitor able to temporarily block the RNA elongation by the

RNA polymerase (Mathavan et al. 2014). Additionally,

microcin J25 induces the generation of reactive oxygen spe-

cies that contribute to the inhibition mechanism (Chalon et al.

2009). Similarly, capistruin is a transcription inhibitor

(Kuznedelov et al. 2011) whereas lassomycin is a protease

inhibitor that targets Mycobacterium tuberculosis (Gavrish

et al. 2014).

One of the main interests of lasso peptides is their use as

peptide scaffolds due to their high stability. Diverse peptide

sequences with additional functionalities or even unnatural

amino acids can be displayed in lasso peptides (Piscotta

et al. 2015; Hegemann et al. 2015).

Class II: unmodified bacteriocins

Class IIa. Or pediocin-like bacteriocins

The pediocin-like class IIa bacteriocins are broad spectrum

antimicrobials particularly active agains Listeria (Kjos

et al. 2011). The structure of peptides of class IIa can be

divided in two different regions separated by a flexible

hinge (Haugen et al. 2008). The cationic N-terminal half

contains two cysteine residues joined by a disulfide bridge,

and a conserved YGNGVXC motif, which has been sug-

gested to participate in target interaction (Cui et al. 2012).

The replacement of this disulfide bridge by hydrophobic

interaction can still retain the activity (Sit et al. 2012). The

C-terminus is less conserved and seems to be involved in

the target cell specificity (Cui et al. 2012).

Class IIa bacteriocins are subdivided into eight groups

on the basis of their primary structures (Nissen-Meyer

et al. 2009). However, the first and the most extensively

studied representative of this class is pediocin PA-1. The

gene cluster of pediocin PA-1, like most IIa bacteriocins,

is plasmid encoded (Ennahar et al. 1999). The pediocin

PA-1 operon contains four genes, namely, the structural

gene pedA; the immunity determinant pedB; and pedC

and pedD which encode an ABC transporter and the ac-

cessory protein (Fig. 2). The operon produces two differ-

ent transcripts; the smaller and most abundant corre-

sponds to the pedABC genes, while the second transcript

is larger and covers pedABCD (Nissen-Meyer et al. 2009;

Cui et al. 2012). The leader peptide serves as a recogni-

tion signal for the processing and the secretion of the

bacteriocin by a dedicated ABC transporter. In a few

cases, the bacteriocin is secreted by the sec-dependent

translocation system (De Kwaadsteniet et al. 2006).

Class IIa bacteriocins can be constitutively produced
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(e.g., pediocin PA-1) or regulated by a QS system (e.g.,

sakacin A) (Ennahar et al. 1999).

The mode of action of class IIa bacteriocins comprises

three basic steps: pediocin binds to the sugar transporter man-

nose phosphotransferase system (Man-PTS) receptors, inserts

into the cytoplasmic membrane, and finally forms the pore

complex (Diep et al. 2007).

Class IIb. Or two-peptide bacteriocins

Class IIb bacteriocins consist of two very different pep-

tides, and full activity requires the presence of both pep-

tides in about equal quantities (Nissen-Meyer et al. 2010).

In some cases, such as lactococcin G from L. lactis

(Nissen-Meyer et al. 1992), antimicrobial activity requires

the presence of both peptides. However, for others such as

thermophilin 13 from Streptococcus thermophilus

(Marciset et al. 1997), individual peptides manifest antimi-

crobial activity by themselves, although their combination

always increases the activity. Exceptionally in enterocin X,

this varies in function of the indicator strain (Hu et al.

2010). The peptides can be combined with a complemen-

tary peptide from a homologous two-peptide bacteriocin

(Oppegård et al. 2007).

Mode-of-action studies of lactococcin G propose that

the peptides form a membrane-penetrating helix-helix

structure that interacts with a receptor of the membrane

of sensitive bacteria (Rogne et al. 2008), causing mem-

brane leakage. Lactococcin G-resistant mutants produced

in the lab pointed at the UppP protein, a membrane pro-

tein involved in peptidoglycan synthesis, as the putative

receptor for lactococcin G and enterocin 1071 (Kjos

et al. 2014).

The class IIb bacteriocin production requires at least

five different genes, and they might be organized in either

one or two different operons. Lactococcin G contains two

structural genes codifying the pre-bacteriocins, an immu-

nity gene, a gene that encodes a dedicated ABC transport-

er, and a gene encoding an accessory protein whose func-

tion is still unclear; all of them are arranged in the same

operon (Fig. 2) (Oppegård et al. 2010). The structural

genes are always produced in equal quantities and found

next to each other in the same operon along with only one

immunity gene. This fact suggests that the peptides work

together as one unit (Nissen-Meyer et al. 2009; Rogne

et al. 2008). The production of class IIb bacteriocins is

transcriptionally regulated by a QS system of three com-

ponents, which involves an induction factor, a membrane-

associate protein histidine kinase, and response regulators.

Plantaricin A, for instance, is the inductor factor of two

two-peptide bacteriocins, plantaricin J/K and plantaricin

E/F, from L. plantarum C11 (Diep et al. 2003).

Class IIc. Or leaderless bacteriocins

Leaderless bacteriocins are unique as they are synthetized

without an N-terminal leader peptide, which usually functions

as a recognition sequence for secretion and modification and

maintains the bacteriocin inactive inside the producer cell (Liu

et al. 2011; Masuda et al. 2012).

One of the best studied and characterized leaderless bacte-

riocins is the plasmid-encoded two-peptide enterocin L50

from E. faecium L50 (Fig. 1) (Cintas et al. 1998). The gene

cluster of enterocin L50 encodes 13 open reading frame

(ORF) (Fig. 2), including the two structural genes in tandem,

some accessory proteins, and four genes highly homologous

to the second ABC transporter as-48EFGH, which partici-

pates in immunity (Franz et al. 2007). The lack of genes

encoding immunity proteins is a common feature among lead-

erless bacteriocins, and the self-immunity mechanism is there-

fore still unclear (Iwatani et al. 2012).

NMR research has shown that enterocins 7A and 7B are

highly homologous to enterocins L50A and L50B and, unlike

most linear bacteriocins such as EJ97 (Neira et al. 2010),

maintain a defined structure in aqueous conditions (Lohans

et al. 2013). Moreover, enterocins 7A and 7B share a structur-

al motif with the circular bacteriocins. Lacticin Q causesmem-

brane leakage without any specific membrane receptor

(Yoneyama et al. 2009a). Cationic lacticin Q binds to nega-

tively charged membranes by electrostatic interactions and

forms huge toroidal pores that cause leakage (Yoneyama

et al. 2009b). In spite of the lack of a docking molecule, the

mechanism is selective against several sensitive Gram-

positive bacteria due to accumulation of hydroxyl radicals as

activity-inducing factor (Li et al. 2013). On the contrary, a zinc-

dependent membrane metallopeptidase has been identified as

the docking molecule of the leaderless bacteriocin LsbB from

L. lactis subsp. lactis BGMN1-5 (Uzelac et al. 2013). Recently,

it has been described for the first time that the expression of

LsbB is regulated by a transcription terminator sequence

located downstream of the structural gen (Uzelac et al. 2015).

Class IId. Or non-pediocin-like, single-peptide

bacteriocins

Class IId is a heterogeneous group of unrelated single linear

peptide bacteriocins with different structures, mechanisms of

secretion, and manners of action such as lactococcin 972,

lactococcin A, and enterocin B (Franz et al. 2007).

Lactococcin 972 is a heat-sensitive pH-stable peptide ac-

tive against closely related lactococci species (Martínez et al.

1999). The NMR structure of lactococcin 972 has been recent-

ly determined (Turner et al. 2012). The gene cluster is located

in a plasmid and comprises the structural gene lcn972 and two

hypothetical genes which could encode a dedicated ABC

transporter involved in immunity (Fig. 2) (Campelo et al.
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2014). The mature protein is secreted via a sec-dependent

system. Two different transcripts are produced: one comprises

the whole operon, and the second corresponds to the structural

gene (Martínez et al. 1999). The mechanism of action in

lactococcin 972 is through the inhibition of the cell wall bio-

synthesis in lactococci by binding to the cell wall precursor

lipid II (Martínez et al. 2000).

Lactococcin A is a narrow spectrum bacteriocin produced

by strains of L. lactis (Holo et al. 1991). The biosynthesis of

lactococcin A involves four different genes: the structural

gene (lcnA), the immunity gene (lciA), and two genes (lcnC,

lcnD) that encode the dedicated ABC transporter system and

its accessory protein (Stoddard et al. 1992). The Man-PTS is

the target receptor of lactococcin A (Diep et al. 2007).

Class III

Class III bacteriocins are large-molecular-weight and heat-

labile antimicrobial proteins usually composed of different

domains. For instance, based on sequence analysis,

enterolysin A consists of an N-terminal endopeptidase domain

and a C-terminal substrate recognition domain similarly to

zoocin A (Nilsen et al. 2003; Lai et al. 2002). Zoocin A, a

D-alanyl-L-alanine endopeptidase, is one of the best-

characterized LAB bacteriolysins (Fig. 2) (Simmonds et al.

1996). It shows antimicrobial activity against other strep-

tococci by cleaving the peptidoglycan cross-links of the

target cell wall (Simmonds et al. 1996). The zif gene, close

to zooA, encodes an immunity protein which adds L-ala-

nine into the peptidoglycan cross-bridges, thus decreasing

the ability of zoocin A to degrade the peptidoglycan layer

(Gargis et al. 2009).

Millericin B is a murein hydrolase. Its production depends

on the expression of three genes encoding millericin B pre-

cursor (MilB), immunity protein (MilF), and transporter pro-

tein (MilT) (Beukes et al. 2000). Similarly, enterolysin A

cleaves within the peptidoglycan of target cells between L-

alanine and D-glutamic acid of the stem peptide and between

L-lysine of the stem peptide and D-aspartic acid of the

interpeptide bridge (Khan et al. 2013).

On the other hand, non-lytic bacteriocins exhibit their bac-

tericidal mode without causing concomitant cell lysis. For

instance, dysgalacticin from S. pyogenes binds to the

glucose- and/or Man-PTS, resulting in the inhibition of the

sugar uptake, and also causes a membrane leakage of small

molecules (Swe et al. 2009). In contrast, caseicin from

Lactobacillus casei inhibits the biosynthesis of DNA and pro-

teins of target bacteria (Müller and Radler 1993). Little is

known about their genetics. The biosynthesis of helveticin J

from Lactobacillus helveticus 481 involves at least three ORF,

but their specific functions remain still unknown (Fig. 2)

(Joerger and Klaenhammer 1990).

Application in the food industry

Nowadays, consumers ask for safe, healthy, tasting, long

shelf-life, and minimally processed food products. LAB are

food-grademicroorganisms that have been extensively used in

fermented foods, and many of them have GRAS and QPS

status. As a result, bacteriocins and other metabolites pro-

duced by LAB are also generally considered as safe com-

pounds with interesting properties (e.g., stability, antimicrobi-

al activity, lack of toxicity, no flavor alteration) (Carr et al.

2002; Cotter et al. 2005). Until now, only nisin and pediocin

PA-1 have been commercialized as food additives. However,

other LAB bacteriocins also offer promising perspectives to

be used as biopreservatives in food, like for instance the

enterocin AS-48 (Sánchez-Hidalgo et al. 2011) or lacticin

3147 (Suda et al. 2012).

Bacteriocins can be added as bacteriocin preparations or by

direct inoculation of the bacteriocin-producing strain. The

bacteriocin preparation can be a purified or semi-purified bac-

teriocin added as food preservative, such as nisin which is

commonly exploited under the name of Nisaplin™

(Danisco, E234) (Cotter et al. 2005). In fact, nisin is the only

bacteriocin licensed as biopreservative in over 50 countries.

Bacteriocins can also be added in the form of concentrated

fermentate generated from a bacteriocin-producing strain.

For instance, ALTA 2431™ (Quest) is a fermentation product

from a pediocin PA-1-producing strain (Rodríguez et al.

2002). Bacteriocinogenic strains can be as well directly inoc-

ulated into the food as starter, adjunct, or protective cultures.

Actually, LAB and, therefore, their bacteriocins, have been

empirically applied as starter cultures in the production of

traditional foods (Leroy et al. 2006; Alegría et al. 2010).

Recently, bacteriocins have also been incorporated into pack-

aging films to control food-borne pathogenic bacteria ensur-

ing a gradual release of bacteriocins into the food and avoiding

the inactivation of the bacteriocin by interaction with food

components (Guerra et al. 2005). Furthermore, several studies

have shown that bacteriocin antimicrobial activity is enhanced

against Gram-negative bacteria when combined with physico-

chemical treatments (hurdle technology) such as high pressure

(Pérez Pulido et al. 2015), organic acids (Ukuku and Fett

2004), phenolic compounds (Grande et al. 2007), and pulsed

electric fields (Martínez Viedma et al. 2008).

Enhancement of probiotic action

Many LAB strains are proposed as probiotics, i.e., live micro-

organisms which, when administered in adequate amounts,

confer a health benefit on the host (FAO/WHO 2001). In re-

cent years, several in vitro and in vivo studies have shown that

LAB bacteriocins exhibit a protective effect in the gastrointes-

tinal tract (GIT) by excluding pathogens or promoting gut

colonization (Corr et al. 2007; Dobson et al. 2012;

Appl Microbiol Biotechnol



Kommineni et al. 2015). For instance, the antilisterial Abp118

from Lactobacillus salivarius UCC118 protects mice against

infection with the pathogen L. monocytogenes (Corr et al.

2007), and the S. mutans BCS3-L1 strain is able to replace

existing S. mutans populations and persist over time in the oral

cavity, due to the advantage conferred by its bacteriocin,

mutacin 1140 (Hillman et al. 2000). Furthermore,

Kominneni et al. (2015) proved that niche competition in the

GIT is directly influenced by bacteriocin expression by com-

mensal bacteria.

Gastrointestinal infections are a major concern in human

health, but antibiotics cause a harmful effect on gut microbi-

ota. Therefore, the anti-infective effect of LAB-producing

bacteriocins is a promising alternative to antibiotics, especial-

ly for particular cases where other methods are not allowed

(e.g., pregnant women) (Hammami et al. 2013).

Concluding remarks

The concomitant application of bacteriocin-producer

LAB or (semi)purified bacteriocins, together with the ap-

plication of other physicochemical treatments, constitutes

an effective method of natural biopreservation in food

industry and enables the reduction of other costly or

user-unfriendly treatments, while increasing the product

self-life.

The discovery of the gene clusters encoding for RiPPs

that were previously thought to be non-ribosomally pro-

duced but assembled by multimeric enzymatic complexes

demonstrates the huge chemical diversity that can be

achieved in natural products by the sequential modification

of a peptide substrate by specific PTMs. This chemical

diversity is related to different properties (i.e., antimicro-

bial spectrum, stability, potency). The conserved motifs in

the PTMs and the core peptides facilitate the high-

throughput analysis of (meta)genomic data which can help

focus the screening efforts to discover new molecules

using diverse alternatives (Montalbán-López et al. 2012b;

Hegemann et al. 2015; Rutledge and Challis 2015). In ad-

dition to the three bacteriocin classes proposed in the early

1990s (Klaenhammer 1993), our broad genome mining

analysis of LAB shows that the repertoire of antimicrobials

that are encoded in public sequences could be even broader

than expected, with some putative classes not reported so

far in LAB (i.e., lasso peptides and sactipeptides), opening

up a wide range of possibilities for future applications.
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