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Increasing reports of antimicrobial resistance and limited new antibiotic discoveries and

development have fuelled innovation in other research fields and led to a revitalization

of bacteriophage (phage) studies in the Western world. Phage therapy mainly utilizes

obligately lytic phages to kill their respective bacterial hosts, while leaving human cells

intact and reducing the broader impact on commensal bacteria that often results from

antibiotic use. Phage therapy is rapidly evolving and has resulted in cases of life-saving

therapeutic use and multiple clinical trials. However, one of the biggest challenges this

antibiotic alternative faces relates to regulations and policy surrounding clinical use and

implementation beyond compassionate cases. This review discusses the multi-drug

resistant Gram-negative pathogens of highest critical priority and summarizes the current

state-of-the-art in phage therapy targeting these organisms. It also examines phage

therapy in humans in general and the approaches different countries have taken to

introduce it into clinical practice and policy. We aim to highlight the rapidly advancing

field of phage therapy and the challenges that lie ahead as the world shifts away from

complete reliance on antibiotics.

Keywords: bacteriophage, phage therapy, regulations, clinical trials, antimicrobial resistance, alternative

treatments

THE CHALLENGE OF MULTI-DRUG RESISTANT BACTERIA

In 2017 the World Health Organization published a list of global priority pathogens comprising
12 species of bacteria categorized into critical, high and medium priority based on their level
of resistance and available therapeutics (Tacconelli et al., 2018). The current rate of resistance
development far exceeds the level of antibiotic discovery and development and represents a global
public health challenge. Estimates have suggested that upwards of 10 million people could die
each year due to antimicrobial resistance by 2050 (O’neill, 2014). While this is a contentious
figure (De Kraker et al., 2016), it nonetheless highlights the serious problem we face regarding
therapeutic options for multi-drug resistant (MDR) bacterial infections (Bassetti et al., 2017). The
natural predators of bacteria are the bacterial viruses known as bacteriophages or phages. Found
ubiquitously, these organisms are estimated to be present at numbers equivalent to a trillion
per grain of sand on Earth (Keen, 2015). Evolving in parallel with bacteria, phages are potential
antibacterial therapeutic agents against such MDR pathogens (Burrowes et al., 2011). Here we
focus on three critical priority pathogens, Acinetobacter baumannii, Pseudomonas aeruginosa, and
members of the Enterobacteriaceae (Tacconelli et al., 2018) and the current advances in phage
therapy research to target these organisms, as well as exploring more general issues of clinical trials
and regulatory complexities of phage therapy.
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Acinetobacter baumannii
A. baumannii is recognized as a critical priority pathogen
due to the increasing incidence of antimicrobial resistance and
significant role in nosocomial infections (Mcconnell et al., 2013).
Around 20 years after an early trial of anti-A. baumannii
phage therapy in mice (Soothill, 1992), a surge in reports of
A. baumannii lytic phage isolation and their in vitro activity
occurred, as reviewed by Garcia-Quintanilla et al. (2013). Since
this time, significant advances have been made with further
in vitro studies (Liu et al., 2016; Ghajavand et al., 2017)
and numerous in vivo animal studies (Kusradze et al., 2016;
Regeimbal et al., 2016; Yin et al., 2017; Zhou et al., 2018). Phage
therapy evaluation in a mouse model of A. baumannii infection
resulted in 2.3-fold increased survival in the phage-treated group
compared to control groups (Cha et al., 2018).

A novel lysin from A. baumannii prophages with the capacity
to kill clinical MDR isolates and rescue mice from lethal
infections has also been characterized (Lood et al., 2015). The
use of these enzymatic compounds is not a new concept; and
although lysin use has been restricted in Gram-negative bacteria
due to their outer membrane barrier, a rise in the literature
suggests that this no longer poses a constraint on lysin use in
Gram-negatives (Thandar et al., 2016; Peng et al., 2017; Larpin
et al., 2018).

Advances have also been made in human phage therapy
trials. A key case in the United States involved the first
intravenous administration of phage therapy and resulted in the
successful treatment and recovery of a patient with A. baumannii
pancreatic pseudocyst infection (Schooley et al., 2017). This
has led to increased phage therapy exposure to the public and
arguably increased clinical awareness regarding this alternative
therapeutic. More recently another case study involving infection
at a craniectomy site with a MDR-A. baumannii, applied a
personalized phage cocktail intravenously in an attempt to
improve patient outcomes (Lavergne et al., 2018). Unfortunately,
the patient passed away after life support efforts were ceased
following the family’s request. In cases such as this it is difficult
to navigate the regulatory issues in a timely manner; while
personalized therapy is ideal to adapt to patient needs it can be
a challenge.

Pseudomonas aeruginosa
P. aeruginosa is a major opportunistic pathogen and cause of
nosocomial infections (Lyczak et al., 2000; Breidenstein et al.,
2011). It is also a frequent cause of chronic lung infections in
cystic fibrosis patients and as such has been assessed as a target
for phage therapy (Olszak et al., 2015). Phage therapy for P.
aeruginosa infections dates back more than 50 years (Bertoye
et al., 1959; Soothill, 2013), but recent developments in use of
both phage lysins and live phage are very promising. A review
by Rossitto and colleagues describes the current literature in
this field and the challenges associated with phage therapy in
cystic fibrosis, in particular they suggest that future studies
include testing on both mucoid and non-mucoid P. aeruginosa
isolates and the use of both pulmonary and non-pulmonary
host models (Rossitto et al., 2018). Spray-dried formulations of
phages have also been thoroughly tested for inhaled application

against P. aeruginosa lung infection (Chang et al., 2017, 2018).
Immunogenicity data has been assessed using an in vitro
human lung model and demonstrated an increase in IL-6 and
TNF-a for one of two phages (Shiley et al., 2017). The human
immune response is an important consideration when assessing
therapeutic phage application (Krut and Bekeredjian-Ding, 2018)
however, beneficial effects of the immune response conducive to
positive phage therapy outcomes have also been reported (Roach
et al., 2017).

A cocktail of six phages was observed to successfully treat
respiratory P. aeruginosa infection in mice and, additionally,
sepsis in Galleria mellonella models (Forti et al., 2018). Ability
of some phages to penetrate P. aeruginosa biofilms is another
major advantage over conventional treatments (Fong et al.,
2017; Waters et al., 2017), while co-administration of phages
and antibiotics has been reported as a mechanism of restoring
antibiotic sensitivity (Chan et al., 2016). In the latter case, where
phages utilize components of multidrug efflux pump systems as
receptors, mutation to confer phage-resistance alters the pump
mechanism, leading to antibiotic re-sensitization. A case study
of aortic prosthetic graft infection by P. aeruginosa with direct
administration to the graft of a combination of phage and
ceftazidime was successful in resolving and possibly eradicating
infection (Chan et al., 2018). Finally, phage lysin research is also
on the increase: Guo et al. described a novel endolysin with
in vitro activity against P. aeruginosa and other Gram-negative
bacteria on the critical priority pathogens list (Guo et al., 2017),
with similar reports from other groups (Larpin et al., 2018).

Enterobacteriaceae
Within the family Enterobacteriaceae, Escherichia coli, and
Klebsiella spp. ranked highest in the WHO critical priority list
of antibiotic-resistant bacteria followed by Enterobacter, Serratia
and Proteus spp. (Tacconelli et al., 2018). While occupying many
commensal niches, E. coli isolates include significant intestinal
and extraintestinal pathogens (Bolocan et al., 2016). The majority
of early phage research was undertaken with coliphages (phages
that infect E. coli), particularly T4 (Stahl, 1989; Edgar, 2004),
evidenced by numerous studies, some of which are summarized
by Bolocan et al. (2016). More recently, in vitro and in vivo
studies have shown promising results, for example control of
enteropathogenic E. coli in mice with hospital sewage-isolated
phage (Vahedi et al., 2018) and effect of coliphages against
planktonic and biofilm-associated infections (Tkhilaishvili et al.,
2018).

Klebsiella spp. are frequent nosocomial and community-
acquired pathogens recognized for their MDR status. Cao et al.
administered intranasal phage to treat K. pneumoniae lung
infection in mice, resulting in protection against lethal infection
and lower inflammatory cytokine levels in the lung (Cao et al.,
2015). Similarly, in a burn woundmousemodel ofK. pneumoniae
infection, topical phage application resulted in a significant
reduction in mortality (Kumari et al., 2011) and a liposome
loaded phage cocktail enhanced bacterial clearance and rate of
healing (Chadha et al., 2017).

Other phage therapeutic uses include prevention of biofilm
formation. Depolymerase producing K. pneumoniae phage, in
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combination with iron antagonizing agents, showed ability
to eradicate early biofilms of K. pneumoniae: a promising
preventative strategy (Chhibber et al., 2013). Progress has also
been made in lysin research: Yan et al. described a novel fusion
protein that combines the receptor binding domains of colicin A
with an E. coli phage lysin to overcome the blocking effect of the
Gram-negative outer membrane, with successful control of E. coli
both in vitro and in a mouse model (Yan et al., 2017).

While many studies have addressed phage therapy in vitro and
in vivo, there is much further work required for translation into
humans. Case reports have been discussed, but lack the robust
evidence of clinical trials.

PHAGE THERAPY IN HUMANS

Phage use in Eastern Europe and the former Soviet Union has
been widespread since their discovery; as a result therapeutic
phage use is integrated within their health care systems. However,
this potential therapy is only recently being investigated
according to rigorous scientific standards (Kutter et al., 2010;
Villarroel et al., 2017). Abedon has presented a list of key
criteria that should be thoroughly considered and reported in
phage therapy studies (Abedon, 2017). Information critical to the
success of clinical trials includes the adequate characterization
and selection of phages as well as of the subjects (humans)
and the target bacteria. Additional data are also required such
as formulations, dosing and efficacy, however, without the
foundation of characterized and well-planned targets these are
of no value. Detailed reporting would improve the quality of
future research and enable replication and extension of previous
studies. Another consideration is the choice of appropriate
disease targets for phage therapy (Harper, 2018). For example, the
species specificity characteristic ofmost phages is generally highly
desirable in monomicrobial diseases, however, this specificity can
be a major limitation in cases of polymicrobial infections unless,
perhaps, the phage is administered in combination with a suitable
antibiotic. Such considerations are imperative for patient safety
in clinical trials, as removal of one pathogen and consequent
overgrowth of a second could potentially have fatal consequences
(Harper, 2018). On the other hand, it may be that broad-host-
range phages are more common than is currently believed, due in
part to biases in phage isolation methods (De Jonge et al., 2018):
this disparity deserves much further research.

CLINICAL TRIALS INVOLVING PHAGES

One of the current challenges of progressing phage therapy into
the clinic is the lack of validated and adequately controlled
clinical trials. Additional care should be taken in the planning
and design of such trials as, while clinical trial design for
phage therapy will naturally share many parallels with standard
drug clinical trials, there are several factors that are unique to
phages. These include pharmacological considerations such as
the dosage (Payne and Jansen, 2003). As these are self-replicating
viruses, their dose has the potential to exponentially increase
upon reaching the bacteria of interest. This leads to another

consideration of application: phages require direct contact with
the bacteria and if distributed too broadly they will be less
efficacious. Topical applications have been widely used to address
this, however, as mentioned other methods have been used with
success.When consideringmonotherapy or combination therapy
approaches, phage cocktails offer broad spectrum activity and
reduce the chances of resistance formation, however, it should be
noted that combination therapy greatly increases the challenge
of assessing inflammatory effects, potential for gene transfer
and phage resistance development for all phages in a cocktail
(Parracho et al., 2012).

Some have argued that exposure to bacteriophages occurs in
humans every day and is evidence of their safety, however, in
the context of clinical trials there are a number of considerations
that should be addressed. The first of these relates to the
sterility and purity of the phage preparation. It is imperative
that products exclude toxins and bacterial debris to comply with
good manufacturing practice or equivalent quality assurance
standards. Parracho et al. described the quality parameters
recommended for bacteriophage products from the point
of phage identification through to manufacturing processes
(Parracho et al., 2012). Secondly, concerns surrounding the
potential for the onset of toxic shock as a result of the bactericidal
effect of phages must also be addressed. While this has been
reported to not be an issue (Speck and Smithyman, 2016) and this
method of bacterial killing is shared by bactericidal antibiotics
(Dufour et al., 2017), this is a necessary safety consideration prior
to clinical trials.

Previous clinical trials involving phage therapy have been
described in detail by Kutter et al. and include those undertaken
in Georgia and Poland (Kutter et al., 2010). Worth noting are two
phage therapy clinical trials that are used as examples throughout
the literature, addressing safety of phages for treating venous leg
ulcers (Rhoads et al., 2009) and safety and efficacy in chronic
otitis (Wright et al., 2009). Rhoads and colleagues reported
on safety in a small phase I trial in patients with venous leg
ulcers and reported no adverse events with the administration
of phages (Rhoads et al., 2009). Wright et al. demonstrated
efficacy and safety of anti-Pseudomonal phages against late stage
recurrent otitis which was dominated by MDR-P. aeruginosa.
These are among the first controlled clinical trials in humans
conducted in the western world. More recently, a number of
clinical trials have been registered (https://clinicaltrials.gov/ and
https://globalclinicaltrialdata.com/) as summarized in Figure 1

(Miedzybrodzki et al., 2012; Sarker et al., 2016; Leitner et al.,
2017). At both web sites, use of the search phrase “phage
therapy” resulted in 15 studies/trials in the former site, of which
nine were phage therapy-related, with a focus on treatment
of infection. Two additional studies were identified using the
global clinical trials resource. Search results did not all represent
standard clinical trials, for example sputum collections for in
vitro phage testing and expanded access interventional trials were
also included. Additional, scientifically sound clinical trials are
vital to increasing the western clinical worlds’ acceptance of
phage therapy applications. While many observational studies
have been conducted, these have been limited by small sample
sizes andmany are poorly controlled. Conversely, promising case
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FIGURE 1 | A current summary of human phage therapy trials and the range of target sites/infections (see www.clinicaltrials.gov or https://globalclinicaltrialdata.com/

where citation is not given). This figure includes a licensed image obtained by the authors.

studies do exist, however, robust clinical trial data is what is
required by regulators in order to progress clinical guidelines for
phage therapy.

REGULATION AND POLICY
DEVELOPMENT

No framework currently exists that explicitly defines phages in
the context of medicinal products for use in humans, however,
in Georgia these are embedded in the healthcare system as a
standard medical application (Kutateladze, 2015). Specifically,
the Eliava Institute of Bacteriophages, Microbiology and Virology
has several phage preparations readily available (over-the-
counter) and a broader range of products, specifically supplied
to medical practitioners (Kutter et al., 2010; Kutateladze, 2015).
Similarly, Poland has the Hirszfeld Institute of Immunology
and Experimental Therapy, although this center supplies
personalized phage products directly to physicians using a more
tailored approach (Kutter et al., 2010). In other parts of the world,
however, bacteriophages present a unique regulatory agenda.

Gorski summarizes the current access schemes around the
world and identifies the main inclusion of compassionate use
cases in most countries as a last resort option (Gorski et al.,
2018). Schemes vary, however, all respond to the situation of
a critically ill or chronically suffering patient for whom all
authorized treatment options have been exhausted. While these
schemes are beneficial in the short-term, it has been recognized
that a dedicated phage therapy legal framework is essential
for the smooth introduction of natural phage therapy into
western medicine. Regulatory calls to action have been made in
Europe with discussions around regulatory hurdles and future
steps required to achieve appropriate phage-based therapeutic
guidelines (Huys et al., 2013; Verbeken et al., 2014).

Working Towards a Solution
A thorough analysis of key stakeholder opinions on the
regulatory status of phage therapy was reported by Verbeken
et al. (2014). Calls for two regulatory pathways were proposed,
including product market placement of natural phage-based
products and hospital exemption pathways for tailored phage
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therapy. The consensus among surveyed stakeholders was the
need for a dedicated new regulatory framework for phage therapy
and one which acknowledges the specific properties of phages
and their interactions, in addition to the role of hospitals as
providers of phage therapy (Verbeken et al., 2014). In the same
vein, a workshop with the European Medicines Agency (EMA)
set out to work together with all stakeholders to provide a
solution to regulatory hurdles faced by phage researchers, while
maintaining the standards of quality and safety (Pelfrene et al.,
2016). Here, the EMA confirmed that none of the current
regulations were suitable for phage therapy and discussed options
for the way forward.

Magistral Phages
Political progression in Belgium has resulted in a magistral phage
regulatory framework: a pragmatic framework to encompass
tailored phage therapy (Pirnay et al., 2018). This regulatory
framework includes amagistral formula in which non-authorized
phage products can be prepared by a pharmacist, given the
external quality assessment of the phage preparations. Quality
assurance and good manufacturing practice are of extreme
importance for any therapeutic agent and considerations for
phage banks would include the characterization of all phages so
that amongst other parameters, identity, viability, potency and
purity are ensured (Pirnay et al., 2015; Pelfrene et al., 2016).

A Therapeutic Classification for Phages
Questions regarding the biological status of phages include
whether they are living or not, which highlights the need
for defined phage-specific terms of policy. As it currently
stands, phage therapy in many cases represents the epitome of
personalized medicine as it is a process involving tailor-made
phage combinations specific for an individual patient’s bacterial
infection/s. This presents difficulties in the regulatory pipeline,
as this move toward personalized medicine breaks the mold
of regulatory conventions. It must be acknowledged that other
therapeutics, for example cancer therapy (Daly, 2007), have
faced a similar hurdle in the past and refinement is certainly
possible. The Food and Drug Administration in the United States
has recently provided an opportunity for the new Center for
Innovative Phage Applications and Therapeutics (IPATH) to
utilize phage therapy via the Emergency Investigational New
Drug scheme. These initiatives are likely to improve clinical

understanding and acceptance, while also providing supporting
evidence of the need for dedicated regulatory guidelines.

A FUTURE FOR PHAGES

There is no doubt that phage therapy is an attractive solution
to combating escalating antibiotic resistance. Numerous studies
highlight the in vitro and in vivo potential of therapeutic phages
and while a number of clinical trials have taken place over the last
decade, further data is needed to present a robust regulatory case
for clinical use. There remain obvious challenges ahead for phage
therapy, particularly regarding management of regulatory policy.
Progression toward novel schemes based around knowledge of
phage applications should guide these processes and work toward

a reasonable implementation structure. Ideally, regulatory
developments should be reached in a standardized and global
manner; however, this is understandably a challenge. While the
field is rapidly progressing toward therapeutics, fuelled by the
evident need for antibiotic alternatives, regulatory processesmust
be refined and approached from a novel phage-based perspective.
One size does not fit all and collaborative efforts to build models
that suit phages will surely result in better health outcomes for all.
Wemust also remember that despite the frustrations of legislative
parameters, it is of utmost importance to conserve high standards
of safety, quality, and efficacy. It is vital that scientists and
clinicians continue having these discussions with the appropriate
regulatory bodies and move this area forward sooner rather than
later.
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