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Abstract This paper is motivated by two problems in the theory of Diophan-
tine approximation, namely, Davenport’s problem regarding badly approx-
imable points on submanifolds of a Euclidean space and Schmidt’s problem
regarding the intersections of the sets of weighted badly approximable points.
The problems have been recently settled in dimension two but remain open in
higher dimensions. In this paper we develop new techniques that allow us to
tackle them in full generality. The techniques rest on lattice points counting and
a powerful quantitative result of Bernik, Kleinbock and Margulis. The main
theorem of this paper implies that any finite intersection of the sets of weighted
badly approximable points on any analytic nondegenerate submanifold of Rn

has full dimension. One of the consequences of this result is the existence of
transcendental real numbers badly approximable by algebraic numbers of any
bounded degree.

Mathematics Subject Classification 11J13 · 11J83

1 Introduction

The notion of badly approximable numbers, as much of the classical and
modern theory of Diophantine approximation, is underpinned by Dirichlet’s
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1200 V. Beresnevich

fundamental result. It states that for every α ∈ R and any Q > 1 there exists
q ∈ N and p ∈ Z such that |qα − p| < Q−1 and q ≤ Q. In particular, it
implies that for every real irrational number α the inequality
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holds for infinitely many rational numbers p/q written as reduced fractions of
integers p and q. A real number α is then called badly approximable if there
exists a constant c = c(α) > 0 such that
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for all (q, p) ∈ N × Z. In what follows, the set of badly approximable real
numbers will be denoted by Bad.

It is well known that a real irrational number α is badly approximable
if and only if the partial quotients of its continued fraction expansion are
uniformly bounded. For instance, any real quadratic irrational number is in
Bad, since its continued fraction expansion is eventually periodic.1 Using
continued fractions one can easily produce continuummany examples of badly
approximable real numbers. Beyond the cardinality, Jarník [27] established
that dimBad (the Hausdorff dimension of Bad) is 1. However, the Lebesgue
measure of Bad is known to be zero. This is a trivial consequence of the
divergence case of Khintchine’s theorem [37], and can also be relatively easily
proved using the Lebesgue density theorem, see [18] or [15, Corollary 2].

1.1 Higher dimensions: Schmidt’s conjecture

Higher dimensions offer various ways of generalising the notion of badly
approximable numbers. For now, we restrict ourselves to considering simulta-
neous Diophantine approximations by rationals. The point y = (y1, . . . , yn) ∈
R
n is called badly approximable if there exists a constant c = c(y) > 0 such

that
max
1≤i≤n

‖qyi‖ ≥ cq−1/n (2)

for all q ∈ N, where ‖x‖ denotes the distance of x from the nearest integer.
The quantities ‖qyi‖ are equal to |qyi − pi | for some pi ∈ Z and thus give
rise to ‘approximating’ rationals p1/q, . . . , pn/q. Once again, the notion of
badly approximable points is underpinned by Dirichlet’s theorem, this time

1 It is not known whether there are any real algebraic numbers of degree ≥ 3 that are badly
approximable.
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Badly approximable points on manifolds 1201

for Rn , which implies that the inequality max1≤i≤n ‖qyi‖ < q−1/n holds for
infinitely many q ∈ N. The set of badly approximable points in R

n will be
denoted by Bad(n). Observe that Bad(1) = Bad.

The first examples of badly approximable points inRn were given by Perron
[40] who used an algebraic construction and produced infinitely yet countably
many elements of Bad(n). For instance, (α, . . . , αn) ∈ Bad(n) whenever α is
a real algebraic number of degree n + 1. However, it was not until 1954 when
first Davenport [21] for n = 2 and then Cassels [19] for n ≥ 2 showed that
Bad(n) was uncountable. The fact that Bad(n) has full Hausdorff dimension
was proved by Schmidt [43] who introduced powerful ideas based on a specific
type of games. The dimension result forBad(n) comes about as a consequence
of the fact that Bad(n) is winning for Schmidt’s game. Furthermore, Schmidt
proved that affine transformations ofBad(n) arewinning and that the collection
of winning sets in R

n is closed under countable intersections.
In his 1983 paper [46] Schmidt formulated a conjecture that later became

the catalysis for some remarkable developments. Schmidt’s conjecture rests on
the modified notion of badly approximable points in which approximations in
each coordinate are given someweights, say r1, . . . , rn . In short, he conjectured
that there exist points in R

2 that are simultaneously badly approximable with
respect to two different collections of weights. The weights of approximation
are required to satisfy the following conditions:

r1 + · · · + rn = 1 and ri ≥ 0 for all i = 1, . . . , n . (3)

Throughout this paper the set of all n-tuples r = (r1, . . . , rn) subject to (3) will
be denoted by Rn . Formally, given r ∈ Rn , the point y = (y1, . . . , yn) ∈ R

n

will be called r-badly approximable if there exists c = c(y) > 0 such that

max
1≤i≤n

‖qyi‖1/ri ≥ cq−1 (4)

for all q ∈ N. Here, by definition, ‖qyi‖1/0 = 0. Again, a version of Dirichlet’s
theorem tells us that when c = 1 inequality (4) fails infinitely often.

The set of r-badly approximable points in R
n will be denoted by Bad(r).

As is readily seen, the classical set of badly approximable points Bad(n) is
simply Bad( 1n , . . . , 1

n ). Using this notation we can now specify the following
concrete statement conjectured by Schmidt:

Bad
(1
3 ,

2
3

) ∩ Bad
(2
3 ,

1
3

) �= ∅.

It is worth mentioning that the setsBad(r) have been studied at length in all
dimensions and for arbitrary collections of weights, see [22,34–36,41]. Partly
the interestwas fueled by natural linkswith homogeneous dynamics andLittle-
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1202 V. Beresnevich

wood’s conjecture in multiplicative Diophantine approximation, another long
standing problem—see [13] for further details. Schmidt’s conjecturewithstood
attacks for nearly 30 years. However, the recent progress has been dramatic.

In 2011 Badziahin et al. [13] made a breakthrough by proving that for any
sequence rk = (ik, jk) ∈ R2 such that

lim inf
k→∞ min{ik, jk} > 0 (5)

and any vertical line Lθ = {(θ, y) : y ∈ R} ⊂ R
2 with θ ∈ Bad one has that

dim
⋂

k Bad(rk) ∩ Lθ = 1. (6)

This readily gives that dim
⋂

k Bad(rk) = 2 and proves Schmidt’s conjecture
in a much stronger sense. Shortly thereafter, An [1] proves that for any r ∈ R2
and any θ ∈ Bad the set Bad(r) ∩ Lθ is winning for a Schmidt game in
Lθ . This immediately leads him to removing condition (5) from the theorem
of Badziahin et al., since the collection of Schmidt’s winning sets is closed
under arbitrary countable intersections. In a related paper An [2] establishes
that Bad(i, j) is winning for the 2-dimensional Schmidt game, thus giving
another proof of Schmidt’s conjecture. Generalising the techniques of [13] in
yet another directionNesharim [39], independently fromAn, proves that the set
in the left hand side of (6) intersected with naturally occurring fractals embed-
ded in Lθ is uncountable for any sequence (rk)k∈N. Subsequently, Nesharim
jointly withWeiss establishes the winning property of these intersections—see
Appendix B in [39].

As alreadymentioned, the setsBad(r) and even their restrictions to naturally
occurring fractals have been investigated in higher dimensions, see [26,34–
36]. In particular, the setsBad(r)were shown to have full Hausdorff dimension
for any r ∈ Rn . However, the theory of their mutual intersections is a different
story. In an apparent attempt to prove Schmidt’s conjecture, Kleinbock and
Weiss [36] introduced a modified version of Schmidt’s games. As they have
shown, winning sets for the same modified Schmidt game inherit the proper-
ties of classical winning sets. Namely, they have full Hausdorff dimension and
their countable intersections are winning with respect to the same game. Also
Kleinbock and Weiss have proved that Bad(r) is winning for a relevant modi-
fied Schmidt game. However, it was not possible to prove that the intersection
Bad(r1) ∩ Bad(r2) was a winning set for some modified Schmidt game as,
with very few exceptions, the correspondingmodified Schmidt gameswere not
‘compatible’. As a result the following key problem that generalises Schmidt’s
original conjecture has remained open in dimensions n ≥ 3:
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Badly approximable points on manifolds 1203

Problem 1 Let n ∈ N. Prove that for any finite or countable subset W of Rn
one has that

dim
⋂

r∈W
Bad(r) = n . (7)

The main result of this paper implies (7) in arbitrary dimensions n and for
arbitrary countable subsets W of weights satisfying a condition similar to (5).
For instance, the result is applicable to arbitrary finite collections of weights
W . The proof will be given by restricting the sets of interest to a suitable
family of curves in R

n . Interestingly, this approach, which was innovated in
[13] in the case n = 2, turns out to face another intricate problem that was first
communicated by Davenport.

1.2 Bad(r) on manifolds and Davenport’s problem

In 1964 Davenport [22] established that, given a finite collection fi : Rm →
R
ni (1 ≤ i ≤ N ) of C1 maps, if for some x0 ∈ R

m and every i = 1, . . . , N
the Jacobian of fi at x0 has rank ni , then the set

N
⋂

i=1

f−1
i (Bad(ni ))

has the power of continuum. For instance, taking f1(x, y) = x , f2(x, y) = y
and f3(x, y) = (x, y) shows that Bad(1, 0) ∩ Bad

(1
2 ,

1
2

) ∩ Bad(0, 1) has the
power of continuum. Another natural example obtained by taking fi (x) = xi

for i = 1, . . . , k shows that there are continuum many α ∈ R such that
α, α2, . . . , αk are all in Bad.

Clearly, the Jacobian condition above implies that m ≥ ni for every i .
Commenting on this, Davenport writes [22, p. 52] “Problems of a much more
difficult character arisewhen the number of independent parameters is less than
the dimension of simultaneous approximation. I do not know whether there
is a set of α with the cardinal of the continuum such that the pair (α, α2) is
badly approximable for simultaneous approximation”. Essentially, if m < ni
then fi (x) lies on a submanifold of Rni . Hence, Davenport’s problem boils
down to investigating badly approximable points restricted to submanifolds of
Euclidean spaces.

In the theory of Diophantine approximation on manifolds, see for instance,
[7–9,31,33], there are already well established classes of manifolds of inter-
est. These include non-degenerate manifolds and affine subspaces and should
likely be of primary interest when resolving Davenport’s problem.

It is worth pointing out that the result of Perron [40] mentioned in § 1.1
implies the existence of algebraic badly approximable points on the Veronese
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1204 V. Beresnevich

curves Vn = {(x, . . . , xn) : x ∈ R}. However, there are only countably many
of them. Khintchine [28] proved that Bad(n) ∩ Vn had zero 1-dimensional
Lebesgue measure. Baker [4] generalised this to arbitrary C1 submanifold
of Rn . Apparently, Bad(n) can be relatively easily replaced with Bad(r) in
Baker’s result, though, to the best of author’s knowledge, this has never been
formally addressed. To make a long story short, until recently there has been
no success in relation to Davenport’s problem even for planar curves, let alone
manifolds in higher dimension. The aforementioned work of Badziahin et
al. [13] was the first step forward. Very recently, assuming (5), Badziahin and
Velani [17] have proved (6) with Lθ replaced by any C2 planar curve which is
not a straight line. In particular, this shows that there exist uncountably many
real numbers α such that (α, α2) is in Bad(2). Also they have dealt with a
family of lines in R

2 satisfying a natural Diophantine condition. The most
recent results established in [3] by An, Velani and the author of this paper
remove condition (5) from the findings of [17] and at the same time settle
Davenport’s problem for a larger class of lines inR2 defined by a near optimal
condition. As a result, the following general version of Davenport’s problem
is essentially settled in the case n = 2:

Problem 2 Let n,m ∈ N, B be a ball inRm ,W be a finite or countable subset
of Rn and Fn(B) be a finite or countable collection of maps f : B → R

n .
Determine sufficient (and possibly necessary) conditions on W and/or Fn(B)

so that

dim
⋂

f∈Fn(B)

⋂

r∈W
f−1(Bad(r)) = m . (8)

Despite the success in resolving Problem2 for planar curves, no progress has
been made on Davenport’s problem for n ≥ 3. The results of this paper imply
(8) in arbitrary dimensions n and for arbitrary countable subsetsW of weights
satisfying a condition similar to (5) and arbitrary finite collection Fn(B) of
analytic non-degenerate maps. The proof introduces new ideas based on lattice
points counting and a powerful quantitative result of Bernik, Kleinbock and
Margulis. Indeed, the arguments presented should be of independent interest
even for n = 2.

2 Main results and corollaries

In what follows, an analytic map f : B → R
n defined on a ball B ⊂ R

m will
be called nondegenerate if the functions 1, f1, . . . , fn are linearly independent
overR. Themore general notion of nondegeneracy that does not require analyt-
icity canbe found in [33].Given an integern ≥ 2,Fn(B)will denote a family of
maps f : B → R

n with a common domain B. To avoid ambiguity, let us agree
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Badly approximable points on manifolds 1205

from the beginning that all the intervals and balls mentioned in this paper are
of positive and finite diameter. Recall thatRn denotes the collection of weights
of approximation and is defined by (3). Given r = (r1, . . . , rn) ∈ Rn , let

τ(r) def= min{ri : ri �= 0} , (9)

that is τ(r) is the smallest strictly positive weight within r. The following
result regarding Problem 2 represents the main finding of this paper.

Theorem 1 Let m, n ∈ N, 1 ≤ m ≤ n, B be an open ball inRm andFn(B) be
a finite family of analytic nondegenerate maps. Let W be a finite or countable
subset of Rn such that

inf{τ(r) : r ∈ W } > 0 . (10)

Then (8) is satisfied.

Condition (10) matches (5) and is satisfied whenever W is finite. Now we
consider the following basic corollary regarding badly approximable points
on manifolds.

Corollary 1 Let M be a manifold immersed into R
n by an analytic nonde-

generate map. Let W ⊂ Rn be a finite or countable set of weights. Assume
that (10) is satisfied. Then dim

⋂

r∈W Bad(r) ∩ M = dimM . In particular,
for any finite collection r1, . . . , rN ∈ Rn we have that

dim
N
⋂

k=1

Bad(rk) ∩ M = dimM.

Note that the corollary is applicable to M = R
n , which is clearly ana-

lytic and nondegenerate. In this case Corollary 1 establishes an analogue of
Schmidt’s conjecture in arbitrary dimensions n ≥ 2 by settling Problem 1
subject to condition (10).

2.1 Reduction to curves

When m = 1 the nondegeneracy of an analytic map f = ( f1, . . . , fn) is
equivalent to the Wronskian of f ′

1, . . . , f ′
n being not identically zero. More

generally, the map f (not necessarily analytic) defined on an interval I ⊂ R

will be called nondegenerate at x0 ∈ I if f is Cn on a neighborhood of x0
and the Wronskian of f ′

1, . . . , f ′
n does not vanish at x0. This definition of

nondegeneracy at a single point is adopted within the following more general
result for curves. Note that if f is nondegenerate at least at one point, then the
functions 1, f1, . . . , fn are linearly independent over R.
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1206 V. Beresnevich

Theorem 2 Let n ∈ N, n ≥ 2, I ⊂ R be an open interval and Fn(I ) be a
finite family of maps defined on I nondegenerate at the same point x0 ∈ I . Let
W be a finite or countable subset of Rn satisfying (10). Then

dim
⋂

f∈Fn(I )

⋂

r∈W
f−1(Bad(r)) = 1. (11)

Our immediate goal is to show that Theorem 1 is a consequence of Theo-
rem 2. In metric Diophantine approximation the idea of reducing the case of
manifolds to curves is not new. For instance, Badziahin et al. [13] use fibering
of R2 into vertical lines in their proof of Schmidt’s conjecture. Underpin-
ning our reduction of Theorem 1 to Theorem 2 is the following version of
Marstrand’s slicing lemma, see [24, Corollary 7.12] or [25, Theorem 10.11].

Marstrand’s slicing Lemma Let m > 1 and S be a subset of Rm . Let s > 0
and let U be a subset of Rm−1 such that dim{(t, u2, . . . , um) ∈ S} ≥ s for
each (u2, . . . , um) ∈ U . Then

dim S ≥ dimU + s.

Wewill also need the following formal statementwhich is a slightlymodified
extract from Sprindžuk’s survey [48, pp. 9–10].

The FiberingLemma Let f0, . . . , fn be analytic functions in m real variables
defined on an open neighborhood of 0. Assume that f0, . . . , fn are linearly
independent over R. Then there is a sufficiently large integer d0 > 1 such that
for every d > d0 and every u = (u1, u2, . . . , um) ∈ R

m with u1 . . . um �= 0
the following functions of one real variable

φu,i : Eu → R (0 ≤ i ≤ n)

given by

φu,i (t)
def= fi

(

u1t
1+dm , u2t

d+dm , . . . , umt
dm−1+dm

)

,

where Eu ⊂ R is a neighbourhood of 0, are linearly independent over R.
Although the proof of the Fibering Lemma mostly follows the argument of

[48, pp. 9–10], for completeness full details are given in Appendix C. Note
that Sprindžuk’s version of fibering involves the parametrisation φ̃u,i (t) =
fi (u1t, u2td , . . . , umtd

m−1
).

Proof of Theorem 1 modulo Theorem 2 LetFn(B) be as in Theorem 1 and let
f = ( f1, . . . , fn) ∈ Fn(B). Without loss of generality we will assume that B
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Badly approximable points on manifolds 1207

is centred at 0. Also assume thatm ≥ 2 as otherwise there is nothing to prove.
Let u1 = 1, t0 > 0 and δ2, . . . , δm > 0 be sufficiently small numbers such
that

(

t1+dm , u2t
d+dm , u3t

d2+dm , . . . , umt
dm−1+dm

)

∈ B

whenever
1
2 t0 < t < t0,

1
2δi < ui < δi (2 ≤ i ≤ m) . (12)

The existence of t0, δ2, . . . , δm is guaranteed by the fact that 0 is an interior
point of B. LetU be the set of u = (u2, . . . , um) satisfying the right hand side
inequalities of (12) and D be the set of (t, u2, . . . , um) satisfying (12).

By the nondegeneracy of f , the functions 1, f1, . . . , fn are linearly inde-
pendent. Since they are also analytic, by the Fibering Lemma, there exists
d0(f) > 0 such that for every d > d0(f) and every u ∈ U the coordinate
functions of the map

fu(t) = f
(

t1+dm , u2t
d+dm , u3t

d2+dm , . . . , umt
dm−1+dm

)

(13)

defined on the interval I = (12 t0, t0
)

together with 1 are linearly independent
over R. Since Fn(B) is finite,

d0=max{d0(f) : f ∈ Fn(B)}
is well defined. Let d > d0. Then for every f ∈ Fn(B) and every u ∈ U the
coordinate functions of the map (13) together with 1 are linearly independent
over R. By the well known criterion of linear independence, their Wronskian
is not identically zero. Hence, the Wronskian of f ′u = d

dt fu is not identically
zero. As an analytic function, it has isolated zeros. Hence, for a fixed u, there
are at most countably many points in I where the Wronskian of f ′u vanishes
for some f ∈ Fn(B). Hence, there exists a point x0 ∈ I , which may depend
on u, such that for every f ∈ Fn(B) the Wronskian of f ′u is not zero, that is fu
is non-degenerate at x0. Thus, Theorem 2 is applicable and we conclude that
the following subset of I

Su =
⋂

f∈Fn(B)

⋂

r∈W
f−1
u (Bad(r))

has Hausdorff dimension 1. Here, by definition, f−1
u (Bad(r)) is the set of

t ∈ I = (12 t0, t0
)

such that fu(t) ∈ Bad(r). Then, by Marstrand’s slicing
lemma, the set

S = {(t, u2, . . . , um) : t ∈ Su, u ∈ U } ⊂ D
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1208 V. Beresnevich

has Hausdorff dimension ≥ dimU + 1 = m. Let S′ ⊂ B be the image of S
under the map

(t, u2, . . . , um) → (x1, . . . , xm)

def=
(

t1+dm , u2t
d+dm , u3t

d2+dm , . . . , umt
dm−1+dm

)

. (14)

Then, in view of the definitions of S, Su and fu, we have that

S′ ⊂
⋂

f∈Fn(B)

⋂

r∈W
f−1(Bad(r)) . (15)

Further, note that (14) maps D into B injectively and is bi-Lipschitz on D,
since the map itself and its inverse (defined on the image of D) have con-
tinuous bounded derivatives. It is well known that bi-Lipschitz maps pre-
serves Hausdorff dimension, see for example [24, Corollary 2.4]. Therefore,
dim S′ = dim S ≥ m. By (15), and the fact that any subset of Rm is of dimen-
sion ≤ m, we obtain (8) and thus complete the proof of Theorem 1 modulo
Theorem 2. ��

2.2 The dual form of approximation

So far we have been dealing with simultaneous rational approximations. Here
we introduce the dual definition of badly approximable points—see part (iii)
of Lemma 1 below. This has two purposes. Firstly, it is the dual form that
will be used in the proof of the results. Secondly, the dual form provides a
natural environment for considering Diophantine approximation by algebraic
numbers and will allow us to deduce further corollaries of our main results.

Lemma 1 (Equivalent definitions of Bad(r) ) Let r = (r1, . . . , rn) ∈ Rn and
y = (y1, . . . , yn) ∈ R

n. Then the following three statements are equivalent:

(i) y ∈ Bad(r).
(ii) There exists c > 0 such that for any Q ≥ 1 the only integer solution

(q, p1, . . . , pn) to the system

|q| < Q, |qyi − pi | <
(

c Q−1)ri (1 ≤ i ≤ n) (16)

is q = p1 = · · · = pn = 0.
(iii) There exists c > 0 such that for any H ≥ 1 the only integer solution

(a0, a1, . . . , an) to the system

|a0 + a1y1 + · · · + an yn| < cH−1, |ai | < Hri (1 ≤ i ≤ n) (17)

is a0 = · · · = an = 0.
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Badly approximable points on manifolds 1209

The equivalence of (i) and (ii) is a straightforward consequence of the defi-
nition of Bad(r). The equivalence of (ii) and (iii) is relatively well known, see
Appendix in [13] for a similar statement. Indeed, this equivalence is essen-
tially a special case of Mahler’s version of Khintchine’s transference Principle
appearing in [38]. Tomake this paper self-contained we provide further details
in Appendix A.

2.3 Approximation by algebraic numbers of bounded degree

There are two classical interrelated settings in the theory of approximation by
algebraic numbers of bounded degree. One of them boils down to investigating
small values of integral polynomials P with deg P ≤ n at a given number ξ .
The other deals with the proximity of algebraic numbers α of degree ≤ n
to a given number ξ , see [14] for further background. In particular, the long
standing Wirsing–Schmidt conjecture [45, p. 258], which was motivated by
Wirsing’s theorem [49], states that for any n ∈ N and any real transcendental
number ξ there is a constant C = C(ξ, n) > 0 such that

|ξ − α| ≤ C(ξ, n)H(α)−n−1

holds for infinitely many algebraic numbers α of degree ≤ n, where H(α)

denotes the height of α (to be recalled a few lines below). The n = 1 case
of the conjecture is a trivial consequence of the theory of continued fractions.
For n = 2 it was proved by Davenport and Schmidt [23]. However, there are
only partial results for n > 2. Note, however, that using Dirichlet’s theorem
it is easily shown that for any ξ ∈ R there exists c0 = c0(ξ, n) > 0 such that
|P(ξ)| < c0H(P)−n for infinitely many P ∈ Z[x] with deg P ≤ n.

In this section we will deal with real numbers badly approximable by alge-
braic numbers. Given a polynomial P with integer coefficients, H(P) will
denote the height of P , which, by definition, is the maximum of the absolute
values of the coefficients of P . Given an algebraic number α ∈ C, H(α) will
denote the (naive) height of α, which, by definition, is the height of the mini-
mal defining polynomial P of α over Z. It is also convenient to introduce the
following three sets:

Bn =
{

ξ ∈ R : ∃c1 = c1(ξ, n) > 0 such that |P(ξ)| ≥ c1H(P)−n

for all non-zero P ∈ Z[x], deg P ≤ n

}

,

W∗
n =
{

ξ ∈ R : ∃c2 = c2(ξ, n) > 0 such that |ξ − α| < c2H(α)−n−1

for infinitely many real algebraic α with degα ≤ n

}

,

B∗
n =
{

ξ ∈ R : ∃c3 = c3(ξ, n) > 0 such that |ξ − α| ≥ c3H(α)−n−1

for all real algebraic α with degα ≤ n

}

.
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1210 V. Beresnevich

The sets Bn and B∗
n are the natural generalisations of badly approximable

numbers to the context of approximation by algebraic numbers. They are
known to have Lebesgue measure zero, e.g., by a Khintchine type theorem
proved in [10]. Within this paper we will deal with the following two conjec-
tures that Bugeaud formulated as Problems 24 and 25 in his Cambridge Tract
[14, §10.2]:

Conjecture B1 Bn contains a real transcendental number.

Conjecture B2 W∗
n ∩ B∗

n contains a real transcendental number.

Note that Conjecture B1 is stronger than Conjecture B2 since we have that

Bn ⊂ W∗
n ∩ B∗

n . (18)

The proof of (18) is rather standard. Indeed, it rests on theMeanValueTheorem
andMinkowski’s theorem for convex bodies, see Appendix B for details. Here
we establish the following Hausdorff dimension result that easily settles the
above conjectures.

Theorem 3 For any natural number n and any interval I in R

dim
n
⋂

k=1

Bk ∩ I = dim
n
⋂

k=1

(W∗
k ∩ B∗

k ∩ I ) = 1.

Proof Without loss of generality we will assume that n ≥ 2. Let

f : R → R
n such that f(x) = (x, x2, . . . , xn),

1 ≤ k ≤ n be an integer and rk = (1k , . . . , 1
k , 0, . . . , 0

) ∈ Rn , where the num-
ber of zeros is n− k. Let ξ ∈ R be such that f(ξ) ∈ Bad(rk). By Property (iii)
of Lemma 1, there exists c(ξ, n, k) > 0 such that for any H ≥ 1 the only
integer solution (a0, a1, . . . , an) to the system

|a0 + a1x + · · · + anx
n| < c(ξ, n, k)H−1,

|ai | < H1/k (1 ≤ i ≤ k),

|ai | < H0 (k + 1 ≤ i ≤ n)

is a0 = · · · = an = 0. Hence, for any non-zero polynomial P(x) =
akxk + · · · + a0 ∈ Z[x] with H(P) < H1/k we must have that |P(ξ)| ≥
c(ξ, n, k)H−1 > c(ξ, n, k)H(P)−k . By definition, this means that ξ ∈ Bk . To
sum up, we have just shown that f−1(Bad(rk)) ⊂ Bk . Hence
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Badly approximable points on manifolds 1211

n
⋂

k=1

f−1(Bad(rk)) ⊂
n
⋂

k=1

Bk
(18)⊂

n
⋂

k=1

W∗
k ∩ B∗

k .

By Theorem 2, for any interval I ⊂ Rwe have that dim
⋂n

k=1 f
−1(Bad(rk))∩

I = 1. In view of the above inclusions the statement of Theorem 3 now readily
follows. ��
Remark An interesting problem is to show that Theorem3 holdswhen n = ∞.

3 Lattice points counting

The rest of the paper will be concerned with the proof of Theorem 2, which
will rely heavily on efficient counting of lattice points in convex bodies. The
lattices will arise upon reformulating Bad(r) in the spirit of Dani [20] and
Kleinbock [30]. This will require the following notation. Given a subset � of
R
n+1, let

δ(�) = inf
a∈�\{0} ‖a‖∞, (19)

where ‖a‖∞ = max{|a0|, . . . , |an|} for a = (a0, . . . , an). Given 0 < κ < 1,
let

G(κ; y) =
(

κ−1 κ−1y
0 In

)

, (20)

where y ∈ R
n is regarded as a row and In is the n × n identity matrix. Finally,

given r ∈ Rn , b > 1 and t ∈ R, define the (n + 1) × (n + 1) unimodular
diagonal matrix

gtr,b = diag
{

bt , b−r1t , . . . , b−rnt
}

. (21)

Lemma 2 Let y ∈ R
n, r ∈ Rn. Then y ∈ Bad(r) if and only if there exists

κ ∈ (0, 1) and b > 1 such that for all t ∈ N

δ
(

gtr,bG(κ; y)Zn+1) ≥ 1. (22)

Proof The necessity is straightforward as all one has to do is to take H = bt

and divide each inequality in (17) by its right hand side. Then, assuming
that y ∈ Bad(r), the non-existence of integer solutions to (17) would imply
(22) with κ = c. The sufficiency is only slightly harder. Assume that for
some κ and b inequality (22) holds for all t ∈ N, while y /∈ Bad(r). Take
c = κ/b. By definition, there is an H > 1 such that (17) has a non-zero
integer solution (a0, . . . , an). Take t = [log H/ log b] + 1, where [·] denotes
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1212 V. Beresnevich

the integer part. Note that Hb−t < 1 and H−1bt ≤ b. Then (17) implies that
δ(gtr,bG(κ; y)Zn+1) < 1, contrary to (22). The proof is thus complete. ��
Remark Lemma 2 can be regarded as a variation of the Dani–Kleinbock cor-
respondence between badly approximable points in Rn and bounded orbits of

certain lattices under the actions by the diagonal semigroup
{

gtr,b : t > 0
}

,

where b > 1. It is easily seen that this semigroup is independent of the choice
of b > 1, which is usually taken to be e = exp(1). The correspondence was
first established by Dani [20] in the case r = ( 1n , . . . , 1

n

)

and then extended
by Kleinbock [30] to the case of arbitrary positive weights and can be stated
as follows. The point y ∈ R

n is r-badly approximable if and only if the orbit
of the lattice G(1; y)Zn+1 under the action by

{

gtr,e : t > 0
}

is bounded.

We proceed by recalling two classical results from the geometry of numbers.
In what follows, vol
(X) denotes the 
-dimensional volume of X ⊂ R


 and
#X denotes the cardinality of X . Also det� will denote the determinant or
covolume of a lattice �.

Minkowski’s Convex Body Theorem (see [45, Theorem2B]) Let K ⊂ R

 be

a convex body symmetric about the origin and let� be a lattice inR
. Suppose
that vol
(K ) > 2
 det�. Then K contains a non-zero point of �.

Theorem (Blichfeldt [12]) Let K ⊂ R

 be a convex bounded body and let �

be a lattice in R

 such that rank (K ∩ �) = 
. Then

#(K ∩ �) ≤ 
! vol
(K )

det�
+ 
.

The following lemma is a straightforward consequence of Blichfeldt’s theo-
rem.

Lemma 3 (cf. Lemma 4 in [34]) Let K be a convex bounded body in R
 with
0 ∈ K and vol
(K ) < 1/
!. Then rank (K ∩ Z


) ≤ 
 − 1.

Proof Assume the contrary, that is assume that rank (K ∩ Z

) = 
 (note that

the rank cannot be bigger than 
). It means that K contains at least 
 non-zero
integer points. Since 0 ∈ K , we then have that #

(

K ∩ Z


) ≥ 
 + 1. However,

since detZ
 = 1 and vol
(K ) < 1/
!, by Blichfeldt’s theorem, we conclude
that

#
(

K ∩ Z


)

≤ 
! vol
(K )

det�
+ 
 < 
! 1/
!

1
+ 
 < 1 + 
,

contrary to the above lower bound. ��
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Badly approximable points on manifolds 1213

The bodies K of interest will arise as the intersection of parallelepipeds

�θ = {x = (x0, . . . , xn) ∈ R
n+1 : |xi | < θi , i = 0, . . . , n

}

(23)

with 
-dimensional subspaces of Rn+1, where θ = (θ0, . . . , θn) is an (n + 1)-
tuple of positive numbers. In view of this, we now obtain an estimate for the
volume of the bodies that arise this way (Lemma 4 below) and then verify
what Blichfeldt’s theorem means for such bodies (Lemma 5 below).

Lemma 4 Let 
 ∈ N, 
 ≤ n + 1, θ = (θ0, . . . , θn) with θ0, . . . , θn > 0. Then
for any linear subspace V of Rn+1 of dimension 
 we have that

vol
(�θ ∩ V ) ≤ 2
(n + 1)
/2�
, where �
 = max
I⊂{0,...,n}

#I=


∏

i∈I
θi .

Proof Since V is a linear subspace of Rn+1 of dimension 
, it is given by
n + 1 − 
 linear equations. Using Gaussian elimination, we can rewrite these
equations to parametrise V with a linear map f : R
 → R

n+1 of xi1, . . . , xi

such that

f(xi1, . . . , xi
) = (xi1, . . . , xi
)M,

where M = (mi, j ) is an 
 × (n + 1) matrix with |mi, j | ≤ 1 for all i and j .
Then note that vol
(�θ ∩ V ) is bounded by the area of the intersection of V
with the cylinder |xi j | ≤ θi j for j = 1, . . . , 
. This area is equal to

∫ θi1

−θi1

. . .

∫ θi


−θi


∥
∥
∥
∥

∂f
∂xi1

∧ · · · ∧ ∂f
∂xi


∥
∥
∥
∥
e
dxi1 . . . dxi
, (24)

where ‖ · ‖e is the Euclidean norm on
∧

(

R
n+1
)

. Since |mi, j | ≤ 1, every
coordinate of every partial derivative of f is bounded by 1 in absolute value.
Hence ‖∂f/∂xi j ‖e ≤ √

n + 1 and the integrand in (24) is bounded above by
(
√
n + 1)
. This readily implies that the area given by (24) is bounded above

by 2
(n + 1)
/2θi1 . . . θi
 ≤ 2
(n + 1)
/2�
, whence the result follows. ��
Lemma 5 Let c(n) = 4n+1(n + 1)(n+1)/2(n + 1)! and let θ and �
 be as in
Lemma 4. Then for any discrete subgroup� of Rn+1 with 
 = rank

(

�∩�θ

)

>

0 we have that

#
(

� ∩ �θ

) ≤ c(n)
�


δ(�)

+ n + 1. (25)

Proof Let V = span(� ∩ �θ ) and � = V ∩ �. Clearly, rank (�) = 
 and
furthermore � is a lattice in V . Also note that � ∩ �θ = � ∩ �θ . Since
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1214 V. Beresnevich

� ⊆ �, we have that δ(�) ≤ δ(�). Let B(r) denote the open ball in V of
radius r centred at the origin. Note that the length of any non-zero point in
� is bigger than or equal to δ(�) ≥ δ(�). Hence, by Minkowski’s convex
bodies theorem, we must have that vol


(

B(δ(�)
) ≤ 2
 det�, whence we

obtain det� ≥ vol
(B(δ(�)))2−
 ≥ (δ(�)/2)
. Now using this inequality,
Blichfeldt’s theorem, Lemma 4 and the fact that 
 ≤ n + 1 readily gives (25).

We are now approaching the key counting result of this section. Let

�(b, u)
def= �θ with θ = (bu, 1, . . . , 1), (26)

where u > 0, b > 1 and �θ is given by (23). Given r ∈ Rn , let

z(r) def= #{ i : ri = 0 } and λ(r) def= (1 + τ(r)
)−1

. (27)

Recall that τ(r), δ(·), gtr,b and �(b, u) are given by (9), (19), (21) and (26)
respectively, and [x] denotes the integer part of x .
Lemma 6 Let b > 1, r ∈ Rn, λ = λ(r), z = z(r), t ∈ N, u ∈ R, 1 ≤ λu ≤ t
and c(n) be as in Lemma 5. Let gt = gtr,b. Let � be a discrete subgroup of

R
n+1 such that rank� ≤ n − z and

δ
(

gt−[λu]�
) ≥ 1. (28)

Then
#(gt�) ∩ �(b, u) ≤ 2c(n)bτbλu . (29)

Proof Let x = (x0, . . . , xn) ∈ � be such that gtx ∈ �(b, u). By the defini-
tions of gt = gtr,b and �(b, u), we have that bt |x0| < bu and b−ri t |xi | < 1
for i = 1, . . . , n. Equivalently, for s ∈ Z, 1 ≤ s ≤ u − 1, we have that

bt−s |x0| < bu−s and b−ri (t−s)|xi | < bri s (1 ≤ i ≤ n).

This can be written as gt−sx ∈ �θ , where θ = (bu−s, br1s, . . . , brns). There-
fore,

(gt�) ∩ �(b, u) = � ∩ �θ , (30)

where � = gt−s�. Now take s = [λu]. Recall that λ < 1 and that, by the
conditions of Lemma 6, [λu] ≤ t . Then, by the left hand side of (28), we have
that δ(�) ≥ 1. Hence, by Lemma 5 and (30), we get

#(gt�) ∩ �(b, u) = #
(

� ∩ �θ

) ≤ c(n)�
 + n + 1, (31)
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Badly approximable points on manifolds 1215

where 
 = rank � = rank� ≤ n − z. Note that all the components of θ are
≥ 1 and exactly z of them equal 1. Then, since 
 ≤ n − z and s = [λu], we
get that

�
 ≤ θ0 . . . θn

min{θi : θi > 1} = bu

min{bu−s, bτ s} ≤max{bλu, bu−τ(λu−1)} = bτbλu .

Combining this estimate with (31) and the obvious fact that n+1 < c(n)bτbλu

gives (29). ��

4 ‘Dangerous’ intervals

In view of Lemma 2, when proving Theorem 2 we will aim to avoid the

solutions of the inequalities δ
(

gtr,bGxZ
n+1
)

< 1, where Gx = G(κ; y) with
y = f(x) and κ is a sufficiently small constant. For fixed r, b, t, f and κ the
above inequality is equivalent to the existence of (a0, a) ∈ Z

n+1 with a �= 0
satisfying

{ |a0 + a.f(x)| < κb−t ,

|ai | < bri t (1 ≤ i ≤ n).
(32)

Here the dot means the usual inner product. That is a.b = a1b1 + · · · + anbn
for any given a = (a1, . . . , an) and b = (b1, . . . , bn). In this section we
study intervals arising from (32) that, for obvious reasons, are referred to
as dangerous (see [45] for similar terminology). We will consider several
cases that are tied up with the magnitude of a.f ′(x); i.e., the derivative of
a0 + a.f(x)—see Propositions 1 and 2 below.

Throughout Fn(I ) and x0 are as in Theorem 2. First we discuss some con-
ditions that arise from the nondegeneracy assumption on maps in Fn(I ). Let
f = ( f1, . . . , fn) ∈ Fn(I ). Since f is nondegenerate at x0 ∈ I , there is a suf-
ficiently small neighborhood If of x0 such that the Wronskian of f ′

1, . . . , f ′
n ,

which, by definition, is the determinant det
(

f (i)
j

)

1≤i, j≤n , is non zero every-
where in If . Then every coordinate function f j is non-vanishing at all but
countably many points of If ⊂ I—see, e.g., [5, Lemma 3]. Since f ∈ Cn

and Fn(I ) is finite, we can choose a compact interval I0 ⊂ ⋂f∈Fn(I ) If ⊂ I
satisfying

Property F There are constants 0 < c0 < 1 < c1 such that for every map
f = ( f1, . . . , fn) ∈ Fn(I ), for all x ∈ I0, 1 ≤ i ≤ n and 0 ≤ j ≤ n one has
that
∣
∣
∣det
(

f (i)
j (x)

)

1≤i, j≤n

∣
∣
∣ > c0, | f ′

j (x)| > c0 and | f (i)
j (x)| < c1. (33)
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1216 V. Beresnevich

Next, we prove two auxiliary lemmas that are well known in a related
context.

Lemma 7 (cf. Lemma 5 in [5]) Let I0 ⊂ I be a compact interval satisfying
Property F. Let 2c2 = c0c

−n+1
1 n!−1, where c0 and c1 arise from (33). Then for

any f ∈ Fn(I ), any a = (a1, . . . , an) ∈ Z
n \{0} and any x ∈ I0 there exists

i ∈ {1, . . . , n} such that |a.f (i)(x)| ≥ 2c2 max1≤ j≤n |a j |.
Proof Solving the system a1 f

(i)
1 (x) + · · · + an f

(i)
n (x) = a.f (i)(x), where

1 ≤ i ≤ n, by Cramer’s rule with respect to ai and using (33) to estimate the
determinants involved in the rule we obtain

|a j | ≤ cn−1
1 · n!c−1

0 max
1≤i≤n

∣
∣
∣a.f (i)(x)

∣
∣
∣

for each j = 1, . . . , n, whence the statement of lemma readily follows. ��
Lemma 8 (cf. Lemma 6 in [5])Let I0 ⊂ I and c2 be as in Lemma 7. Then there
is δ0 > 0 such that for any interval J ⊂ I0 of length |J | ≤ δ0, any f ∈ Fn(I )
and a = (a1, · · · , an) ∈ Z

n\{0}, there is an i ∈ {1, . . . , n} satisfying

inf
x∈J

∣
∣
∣a.f (i)(x)

∣
∣
∣ ≥ c2 max

1≤ j≤n
|a j |. (34)

Proof Since I0 is compact, for each f ∈ Fn(I ) and 1 ≤ i ≤ n, the map
f (i) is uniformly continuous on I0. Hence, there is a δi,f > 0 such that for
any x, y ∈ I0 with |x − y| ≤ δi,f we have

∣
∣f (i)(x) − f (i)(y)

∣
∣ < c2/n. Let

J ⊂ I0 be an interval of length |J | ≤ δi,f and x, y ∈ J . By Lemma 7, there is
i ∈ {1, . . . , n} such that |a.f (i)(x)| ≥ 2c2h, where h = max1≤ j≤n |a j |. Then

|a.f (i)(y)| ≥ |a.f (i)(x)| − |a.f (i)(y) − a.f (i)(x)| ≥ 2c2h − nhc2/n = c2h.

(35)
Since Fn(I ) is finite, δ0 = inf i,f δi,f > 0. Hence (35) implies (34) provided
that |J | ≤ δ0. ��
Proposition 1 Let I0 ⊂ I be a compact interval satisfying Property F and
f ∈ Fn(I ). Further, let δ0 be as in Lemma 8, r ∈ Rn and

γ = γ (r) def= max{r1, . . . , rn}. (36)

Finally, let t ∈ N, 
 ∈ Z≥0, b > 1, a ∈ Z
n\{0}, a0 ∈ Z, 0 < κ < 1 and

D1
t,
,r,b,κ,f(a0, a) =

⎧

⎨

⎩
x ∈ I0 :

|a0 + a.f(x)| < κb−t

bγ t−(1+γ )
 ≤ |a.f ′(x)| < bγ t−(1+γ )(
−1)

|ai | < bri t

⎫

⎬

⎭
.
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Badly approximable points on manifolds 1217

Then, there is a constant c3 > 0 depending on n, |I0|, c1, c2 and δ0 only such
that the set D1

t,
,r,b,κ,f(a0, a) can be covered by a collectionD1
t,
,r,b,κ,f (a0, a)

of at most c3 intervals � of length |�| ≤ κb−(1+γ )(t−
).

Proof We will abbreviate D1
t,
,r,b,κ,f(a0, a) as D1 and naturally assume that

D1 �= ∅ as otherwise there is nothing to prove. Since I0 can be covered by

at most
[

δ−1
0 |I0|

]

+ 1 intervals J of length |J | ≤ δ0, it suffices to prove the

proposition under the assumption that |I0| ≤ δ0. Let f (x) = a0 + a.f(x).
Then, by Lemma 8, we have that | f (i)(x)| > 0 for a fixed i ∈ {1, · · · , n} and
all x ∈ I0. First consider the case i > 1. Then, using Rolle’s theorem, one
finds that the function f ( j)(x) vanishes on I0 at≤ i− j points (0 ≤ j ≤ i−1).
Assuming that I0 = [a, b], let x0 = a < x1 < · · · < xs−1 < xs = b be the
collection consisting of the points a and b and all the zeros of

∏i−1
j=0 f ( j)(x).

Then, as we have just seen s ≤ 1 +∑i−1
j=0(i − j) = i(i + 1)/2 + 1. By the

choice of the points xi , we have that for 1 ≤ q ≤ s and 0 ≤ j ≤ i − 1
the function f ( j)(x) is monotonic and does not change sign on the interval
[xq−1, xq ]. Therefore, in view of the definition of D1 we must have that �q =
D1 ∩ [xq−1, xq ] is an interval. Hence, D1 = ⋃s

q=1 �q , a union of at most
(i + 1)i/2 + 1 ≤ (n + 1)n/2 + 1 intervals.

It remains to estimate the length of each �q . To this end, take any
x1, x2 ∈ �q . By the construction of �q , the numbers f (x1) and f (x2)
have the same sign and satisfy the inequality | f (xi )| < κb−t . Hence,
| f (x1) − f (x2)| < κb−t . By the Mean Value Theorem, | f (x1) − f (x2)| =
| f ′(θ)(x1 − x2)|. Hence |x1 − x2| ≤ κb−t/| f ′(θ)|. Since �q ⊂ D1 is an
interval, θ ∈ D1. Hence, | f ′(θ)| ≥ bγ t−(1+γ )
 and we obtain that |x1 − x2| ≤
κb−t b−γ t+(1+γ )
 = κb−(1+γ )(t−
). This estimate together with the obvious
equality |�q | = supx1,x2∈�q

|x1 − x2| implies that |�q | ≤ κb−(1+γ )(t−
).

Thus, if i > 1, the set D1 can be covered by at most n(n + 1)/2 + 1 intervals
of length κb−(1+γ )(t−
).

Now consider the case i = 1. Recall that f (x) = a0 + a.f(x). Then, by the
definition of D1 and (33), for x ∈ D1 we get

bγ t−(1+γ )
 ≤ | f ′(x)| = |a.f ′(x)| ≤ c1n max
1≤ j≤n

|a j |. (37)

Further, (34)i=1 implies that infx∈I0 | f ′(x)| ≥ c2 max1≤ j≤n |a j |. Therefore,
f is monotonic on I0 and D1 is covered by a single interval � defined by the
inequality | f (x)| < κb−t . Arguing as above and using (37) we get

|�| ≤ 2κb−t

infx∈I0 | f ′(x)| ≤ 2κb−t

c2 max1≤ j≤n |a j |
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1218 V. Beresnevich

≤ 2c1nκb−t

c2bγ t−(1+γ )

= 2c1n

c2
× κb−(1+γ )(t−
).

Thus, by splitting � into smaller intervals if necessary, D1 can be covered by

at most
[
2c1n
c2

]

+ 1 intervals of length κb−(1+γ )(t−
). ��
Proposition 2 Let I0 ⊂ I be a compact interval satisfying Property F and
γ = γ (r) be given by (36). Then there are constants K0 > 0 and 0 < κ0 < 1
such that for any f ∈ Fn(I ), any r ∈ Rn, t ∈ N, 0 ≤ ε < γ , b > 1 and
0 < κ < κ0 the set

D2
t,ε,r,b,κ,f

=
⎧

⎨

⎩
x ∈ I0 : ∃ a∈Z

n\{0} and a0∈Z such that
|a0 + a.f(x)|<κ b−t

|a.f ′(x)|<nc1b(γ−ε)t

|ai | < bri t

⎫

⎬

⎭

can be covered by a collection D2
t,ε,r,b,κ,f of intervals such that

|�| ≤ δt for all � ∈ D2
t,ε,r,b,κ,f (38)

and

#D2
t,ε,r,b,κ,f ≤ K0 (κ b−εt )α

δt
, (39)

where δt = κ b−t (1+γ−ε) and α = 1
(n+1)(2n−1) .

Proposition 2 will be derived from a theorem due to Bernik, Kleinbock and
Margulis using the ideas of [6]. In what follows |X | denotes the Lebesgue
measure of a set X ⊂ R. The following is a simplified version of Theorem 1.4
from [11] that refines the results of [33].

Theorem 4 (Theorem 1.4 in [11]) Let I ⊂ R be an open interval, x0 ∈ I and
f : I → R

n be nondegenerate at x0. Then there is an open interval J ⊂ I
centred at x0 and EJ > 0 such that for any real ω, K , T1, . . . , Tn satisfying

0 < ω ≤ 1, T1, . . . , Tn ≥ 1, K > 0 and ωKT1 · · · Tn ≤ max
i

Ti

the set

S(ω, K , T1, . . . , Tn)
def=
⎧

⎨

⎩
x ∈ I : ∃a ∈ Z

n\{0}
‖a.f(x)‖ < ω

|a.f ′(x)| < K
|ai | < Ti (1 ≤ i ≤ n)

⎫

⎬

⎭
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Badly approximable points on manifolds 1219

satisfies

|S(ω, K , T1, . . . , Tn)∩ J | ≤ EJ ·max

(

ω,

(
ωKT1 . . . Tn
maxi Ti

) 1
n+1
) 1

2n−1

. (40)

Wewill also use the following elementary consequence of Taylor’s formula.

Lemma 9 Let f : J → R be a C2 function on an interval J . Let ω, K > 0
and y ∈ J be such that | f ′′(x)| < K 2/ω for all x ∈ J and

| f (y)| < ω/2 and | f ′(y)| < K/2 . (41)

Then | f (x)| < ω and | f ′(x)| < K for all x ∈ J with |x − y| < ω/2K.

Proof of Proposition 2 Fix any f ∈ Fn(I ). We will abbreviate D2
t,ε,r,b,κ,f as

D2 and naturally assume that it is non-empty as otherwise there is nothing
to prove. By (33), f is nondegenerate at any x ∈ I0 and therefore Theo-
rem 4 is applicable. Let J = J (x) be the interval centred at x that arises
from Theorem 4. Since I0 is compact there is a finite cover of I0 by inter-
vals J (x1), . . . , J (xs), where s = sf depends on f . Let 0 < κ0 < 1
and κ0 ≤ min1≤i≤s |I0 ∩ J (xi )|. The existence of κ0 is obvious because
|I0 ∩ J (x)| > 0 for each x ∈ I0.

Let 0 < κ < κ0, r ∈ Rn , t ∈ N, 0 ≤ ε < γ , b > 1 and let

ω = 2κ b−t , K = 2nc1b
(γ−ε)t and Ti = bri t (1 ≤ i ≤ n). (42)

Note that since ε < γ and c1 > 1 we have that K > 2. Also note that ω < 2κ .
For each i ∈ {1, . . . , s} define the interval Ji = (ai + ω/2K , bi − ω/2K ),
where [ai , bi ] is the intersection of I0 and the closure of J (xi ). Since κ <

κ0 ≤ |I0 ∩ J (xi )|, ω < 2κ and K > 2, we have that Ji �= ∅ for each i . Let

D̃2 = ⋃

1≤i≤s

⋃

y∈D2∩Ji

(

y − ω/2K , y + ω/2K
)

. (43)

Our goal now is to use Lemma 9 with f (x) = a0 + a.f(x) in order to show
that

D̃2 ⊂ ⋃

1≤i≤s
S(ω, K , T1, . . . , Tn) ∩ J (xi ). (44)

In view of the definitions of D2 and S(ω, K , T1, . . . , Tn) and the choice of
parameters (42), inequalities (41) hold for every y ∈ D2. Further, by (33), the
inequalities |ai | < bri t and the fact that ri ≤ γ for all i implied by (36), we
get that

| f ′′(x)| ≤ nc1 max
1≤ j≤n

|a j | ≤ nc1 max
1≤ j≤n

bri t ≤ nc1b
γ t . (45)
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Next, K 2/ω = 1
2n

2c21κ
−1b2(γ−ε)t bt > nc1bγ t because ε ≤ γ ≤ 1, c1 > 1

and κ < 1. Therefore, by (45), we have that | f ′′(x)| ≤ K 2/ω for all x ∈ I0.
Thus, Lemma 9 is applicable and for 1 ≤ i ≤ s we have that {x : |x − y| <

ω/2K } ⊂ S(ω, K , T1, . . . , Tn) ∩ J (xi ) each y ∈ D2 ∩ Ji . This proves (44).
Next, by Theorem 4, condition r1 +· · ·+ rn = 1 and (44) we conclude that

|D̃2| ≤ Ef · (4nc1κb−εt)α , (46)

where Ef = s max1≤i≤s EJ (xi ). By (43), D̃2 can be written as a union of
disjoint intervals of length ≥ ω/K = (nc1)−1κ b−t (1+γ−ε) = (nc1)−1δt . By
splitting some of these intervals if necessary, we get a collection D̃2 of disjoint
intervals � such that 1

c1n
δt ≤ |�| ≤ δt . Let

K0 = max
f∈Fn(I )

max{4sf , (4nc1)1+αEf}.

Then, by (46) and the above inequality, we get

#D̃2 ≤ Ef · (4nc1κb−εt
)α

1
c1n

δt
≤ K0 (κ b−εt )α

2δt
. (47)

LetD2 be the collection of all the intervals in D̃2 together with the 2s intervals
[ai , ai + ω/2K ] and [bi − ω/2K , bi ] (1 ≤ i ≤ s). It is easily seen that 2s is
less than or equal to the right hand side of (47). Then, by (47) and the definition
of D2, we get (38) and (39). Also, by construction, we see that D2 is a cover
of D2. The proof is thus complete. ��

5 A Cantor sets framework

Let R ≥ 2 be an integer. Given a collection I of compact intervals in R, let
1
RI denote the collection of intervals obtained by dividing each interval in I
into R equal closed subintervals. For example, for R = 3 and I = {[0, 1]}
we have that 1

RI = {[0, 1
3 ], [13 , 2

3 ], [23 , 1]
}

. Let I0 ⊂ R be a compact interval.
The sequence (Iq)q≥0 will be called an R-sequence in I0 if

I0 = {I0} and Iq ⊂ 1
RIq−1 for q ≥ 1. (48)

The intervals lying in Iq will be called to be of level q. Thus, the intervals
of level q are obtained from intervals of level q − 1 by, firstly, splitting the
intervals of Iq−1 into R equal parts to form 1

RIq−1, and, secondly, removing
some of the intervals from 1

RIq−1 to form Iq . Given q ∈ N, the intervals that
are being removed in this procedure will be denoted by
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Îq def= ( 1
RIq−1

)\Iq .
Naturally, Iq will denote any interval from the collection Iq , that is any interval
of level q. Observe that

|Iq | = R−q |I0| for q ≥ 0. (49)

By definition, given Iq ∈ Iq with q ≥ 1, there is a unique interval Iq−1 ∈
Iq−1 such that Iq ⊂ Iq−1; this interval Iq−1 will be called the precursor of
Iq . Obviously it is independent of the choice of the R-sequence (Iq)q≥0 with
Iq ∈ Iq .
We also define the limit set of (Iq)q≥0 as

K((Iq)q≥0)
def=
⋂

q≥0

⋃

Iq∈Iq
Iq . (50)

This is a Cantor type set. The classical middle third Cantor set can be con-
structed this way in an obviousmanner with R = 3 and I0 = [0, 1]. Theorem 2
will be proved by finding suitable Cantor type setsK((Iq)q≥0). The construc-
tion of the corresponding R-sequences will be based on removing the intervals
that intersect dangerous intervals—see Sect. 4.

Note that ifIq �= ∅ for allq so that (Iq)q≥0 is genuinely an infinite sequence,
then K((Iq)q≥0) �= ∅. However, ensuring that K((Iq)q≥0) is large requires
better understanding of the sets Iq . There are various techniques in fractal
geometry that are geared towards this task—see [24]. We shall use a recent
powerful result of Badziahin andVelani [16] restated below using our notation.
Naturally, if we expect that the Cantor setK((Iq)q≥0) is large, then the number
of removed intervals at level q, that is the cardinality of Îq , should be relatively
small. In what follows, given q ∈ N and an interval J , let

Îq � J
def= {Iq ∈ Îq : Iq ⊂ J } .

This denotes the subcollection of removed intervals (when going from level
q − 1 to level q) that lie over a given interval J . The key characteristic that is
‘assessing’ the proportion of removed intervals at a particular level is given by

dq(Iq) = min
{Îq,p}

q−1
∑

p=0

(
4

R

)q−p

max
Ip∈Ip

#
(Îq,p � Ip

)

, (51)

where the minimum is taken over all partitions {Îq,p}q−1
p=0 of Îq , that is Îq =

⋃q−1
p=0 Îq,p. Also define the corresponding global characteristic as
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d
(

(Iq)q≥0
) = sup

q>0
dq(Iq).

The goal is to ensure that d((Iq)q≥0) is small. Then as we shall shortly see the
corresponding Cantor set is large. Note that when estimating dq(Iq) the key is
to arrange the removed intervals into a partition

⋃q−1
p=0 Îq,p which makes the

sum on the right of (51) small.

Theorem 5 (Theorem 4 in [16]) Let R ≥ 4 be an integer, I0 be a compact
interval in R and (Iq)q≥0 be an R-sequence in I0. If d((Iq)q≥0) ≤ 1 then

dimK((Iq)q≥0) ≥
(

1 − log 2

log R

)

. (52)

In order to facilitate the comparison of Theorem 5 to [16, Theorem 4] we
summarise the correspondence between the notation and objects used in this
paper and in [16]:

Our notation/object Corresponding notation/object in [16]
q n + 1
R Rn (allowed to vary with n)

1
RIq−1 In+1

Iq Jn+1

p n − k (0 ≤ k ≤ n)

maxIp∈Ip #
(Îq,p � Ip

)

rn−k,n

Given the above correspondence table, it is readily verified that our condition
d((Iq)q≥0) ≤ 1 corresponds to condition (16) within [16, Theorem 4]. Hence
Theorem 5 above is an immediate consequence of Theorem 4 from [16].

Let M > 1, X ⊂ R and I0 be a compact interval. We will say that X is
M-Cantor rich in I0 if for any ε > 0 and any integer R ≥ M there exists an
R-sequence (Iq)q≥0 in I0 such that K((Iq)q≥0) ⊂ X and d((Iq)q≥0) ≤ ε.
We will say that X is Cantor rich in I0 if it is M-Cantor rich in I0 for some M .
We will say that X is Cantor rich if it is Cantor rich in I0 for some compact
interval I0. The following statement readily follows from Theorem 5 and our
definitions.

Theorem 6 Any Cantor rich set X satisfies dim X = 1.

We now proceed with a discussion of the intersections of Cantor rich sets.
To some extent this already appears in [16, Theorem 5] and in [13]. First we
prove the following auxiliary statement.
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Lemma 10 Let
(

I j
q

)

q≥0
be a family of R-sequences in I0 indexed by j . Given

q ∈ Z≥0, let Jq =⋂ j I j
q . Then (Jq)q≥0 is an R-sequence in I0 such that

Ĵq ⊂⋃ j Î j
q for all q ≥ 0 (53)

and

K
((Jq

)

q≥0

)

⊂⋂ j K
((

I j
q

)

q≥0

)

. (54)

Proof The validity of (48) for (Jq)q≥0 follows from the uniqueness of the
precursor of an interval in any R-sequence from that sequence and the fact
that I j

0 = {I0} for all j , which means thatJ0 =⋂ j I j
0 = {I0}. Thus, (Jq)q≥0

is truly an R-sequence. The inclusion (53) is obvious for q = 0 for both sides
of the inclusion are empty sets in this case. To see (53) for q > 0, observe
that Jq−1 ⊂ I j

q−1 and this implies that 1
RJq−1 ⊂ 1

RI
j
q−1 for each j . Then we

have

Ĵq = 1
RJq−1\Jq = 1

RJq−1\⋂ j I j
q = ⋃

j

(
1
RJq−1\I j

q

)

⊂⋃ j

( 1
RI

j
q−1\I j

q
) = ⋃

j Î j
q .

Finally, by the inclusion Jq ⊂ I j
q , we have that

⋃
Jq ⊂ ⋃ I jq for each pair

of j and q, where the union is taken over Jq ∈ Jq and I jq ∈ I j
q respectively.

Hence, by (50), we have that K((Jq)q≥0) ⊂ K((I j
q )q≥0) for all j , whence

(54) now follows. ��
Theorem 7 Let I0 be a compact interval. Then any countable intersection
of M-Cantor rich sets in I0 is M-Cantor rich in I0. In particular, any finite
intersection of Cantor rich sets in I0 is Cantor rich in I0.

Proof Let {X j } j∈N be a collection of M-Cantor rich sets in I0. Let ε > 0.
Then, by definition, for each j ∈ N and R ≥ M there is an R-sequence
(I j

q )q≥0 in I0 such that K((I j
q )q≥0) ⊂ X j and dq(I j

q ) ≤ ε2− j for all q > 0.

By (51), for each j and q > 0 there exists a partition {Î j
q,p}q−1

p=0 of Î j
q such

that
q−1
∑

p=0

(
4

R

)q−p

max
Ip∈I j

p

#
(Î j

q,p � Ip
) ≤ ε2− j . (55)

For q ∈ Z≥0 define Jq = ⋂

j∈N I j
q and Ĵq,p = Ĵq ∩ ⋃ j∈N Î j

q,p. Since

Î j
q = ⋃q−1

p=0 Î j
q,p for each j , by (53), we have that Ĵq = ⋃q−1

p=0 Ĵq,p, where
q > 0. Then, for each q > 0 we get that
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1224 V. Beresnevich

q−1
∑

p=0

(
4

R

)q−p

max
Jp∈Jp

#
(Ĵq,p � Jp

) ≤
∞
∑

j=1

q−1
∑

p=0

(
4

R

)q−p

max
Ip∈I j

p

#
(

Î j
q,p � Ip

)

.

This inequality together with (55) and the definition of d((Jq)q≥0) implies

that d((Jq)q≥0) ≤ ε. By (54) and the fact that K
((

I j
q

)

q≥0

)

⊂ X j for each

j , we have thatK((Jq)q≥0) ⊂⋂ j X j . Thus the intersection
⋂

j X j meets the
definition of M-Cantor rich sets and the proof is complete. ��

The winning sets in the sense of Schmidt have been used a lot to investigate
various sets of badly approximable points. Hence we suggest the following

Problem 3 Verify if an α-winning set in R as defined by Schmidt [45] is M-
Cantor rich for some M and, if this so, find an explicit relation between M
and α.

6 Proof of Theorem 2

The following proposition is a key step to establishing Theorem 2. We will
use the Vinogradov symbol � to simplify the calculations. The expression
X � Y will mean that X ≤ CY for some C > 0, which only depends on
n, the family of maps Fn(I ) from Theorem 2 and the interval I0 occurring in
Property F.

Proposition 3 Let Fn(I ) be as in Theorem 2, I0 ⊂ I be a compact interval
satisfying Property F, c0, c1 be the same as in (33), σ = 1− (2n)−4 and κ0 be
as in Proposition 2. Further, let

�1 = nc1|I0| + 1 and �0 = �1|I0| + 1 (56)

and let

R0 = max

{

�0, nc1,
2n+1�0�1(n + 1)!

c0

}

(57)

and

m0 = max

{

4,
− log κ0

log R0
+ 1

}

. (58)

Then for any f ∈ Fn(I ), r ∈ Rn and any integers m ≥ m0 and R ≥ R0, there
exists an R-sequence (Iq)q≥0 in I0 such that

(i) for any t ∈ N and any It+m ∈ It+m we have that

δ
(

gtGxZ
n+1) ≥ 1 for all x ∈ It+m; (59)
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where gt = gtr,b is given by (21) with b
1+γ = R, γ = γ (r) and

Gx = G(κ; f(x)) is given by (20) with κ = R−m;
(ii) if q ≤ m then #Îq = 0;
(iii) if q = t + m for some t ∈ N then Îq can be written as the union

Îq = ⋃q−1
p=0 Îq,p such that for integers p = t + 3 − 2
 with 0 ≤ 
 ≤


t = [t/2n] + 1 and Ip ∈ Ip we have that

#(Îq,p � Ip) � R
1+λ
2 (q−p)− 1−λ

2 m+3 , (60)

#Îq,0 � Rσq (61)

and Îq,p = ∅ for all other p < q, where λ = λ(r) is given by (27).

Proof Note that since�0, �1 > 1and c0 < 1,wehave that R0 > 4.Letm ≥ m0
and R ≥ R0 be any integers. Define I0 = {I0} and then for q = 1, . . . ,m let
Iq = 1

RIq−1. In this case conditions (i) and (iii) are irrelevant, while (ii) is
obvious. Continuing by induction, let q = t +m with t ≥ 1 and let us assume
that Iq ′ with q ′ < q are given and satisfy conditions (i)–(iii). Define Iq to
be the collection of intervals from 1

RIq−1 that satisfy (59). By construction,
(i) holds, (ii) is irrelevant and we only need to verify condition (iii). We shall
assume that Îq �= ∅ as otherwise (iii) is obvious. By construction, Îq consists
of intervals Iq such that δ

(

gtGxZ
n+1
)

< 1 for some x ∈ Iq . Recall that this is
equivalent to the existence of (a0, a) ∈ Z

n+1 with a �= 0 satisfying the system
(32). We shall use Propositions 1 and 2 and Lemma 6 to estimate the number
of these intervals Iq . Before we proceed with the estimates note that, by (33)
and (36), the validity of (32) implies that |a.f ′(x)| ≤ nc1 max1≤ j≤n |a j | ≤
nc1 max1≤ j≤n br j t = nc1bγ t . Thus,

∀x ∈ I0 δ
(

gtGxZ
n+1) < 1 ⇒ |a.f ′(x)| ≤ nc1b

γ t . (62)

The arguments split into two cases depending on the size of t as follows. Note
that in view of our choice of m0 we have that

κ = R−m < κ0

and so Proposition 2 is applicable as appropriate.

Case 1: t ≤ 2nm. In this case let Îq,0 = Îq and Îq,p = ∅ for 0 < p < q.
Then, the only thing we need to verify is (61). Let ε = 0. Then, by (62), we
have that

{

x ∈ I0 : δ
(

gtGxZ
n+1) < 1

} = D2
0, (63)
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where D2
0 = D2

t,ε,r,b,κ,f (with ε = 0) as defined in Proposition 2. Hence, #Îq,0

is bounded by the number of intervals in 1
RIq−1 that intersect an interval from

the corresponding collection D2
0 of intervals arising from Proposition 2. By

(49), the intervals in 1
RIq−1 are of length R−q |I0|. By (38), the intervals from

D2
0 have length≤ δt = κ b−t (1+γ ). Hence, each interval fromD2

0 can intersect
at most δt/(R−q |I0|) + 2 = κ b−t (1+γ )Rq |I0|−1 + 2 intervals from 1

RIq−1.
Since b1+γ = R, κ = R−m and q = t + m, we have that δt/(R−q |I0|) =
|I0|−1. Hence each interval from D2

0 can intersect � δt Rq intervals from
1
RIq−1. Then, by (39), we get

#Îq,0 � δt R
q × K0 κα

δt
� Rq × κα. (64)

Using q = t + m, κ = R−m and t ≤ 2nm we obtain from (64) that

#Îq,0 � Rt+m × (R−m)α ≤ R

(

1− α
2n+1

)

(t+m) = R

(

1− α
2n+1

)

q
. (65)

Recall from Proposition 2 that α = 1
(n+1)(2n−1) . Consequently, σ ≥ 1− α

2n+1
and (65) implies (61).

Case 2: t > 2nm. Let ε = (2n)−1. Since
∑

i ri = 1 and γ = max{r1, . . . , rn},
we have that γ ≥ 1/n. Hence ε < γ . Recall that R > nc1. Then, by (62) and
the choice of ε, for any x ∈ I0 such that δ(gtGxZ

n+1) < 1 we have that either

|a.f ′(x)| < nc1b
(γ−ε)t

or for some 
 ∈ Z with 0 ≤ 
 ≤ 
t = [t/2n] + 1

bγ t−(1+γ )
 ≤ |a.f ′(x)| < bγ t−(1+γ )(
−1).

Then, once again using the equivalence of δ
(

gtGxZ
n+1
)

< 1 to the existence
of (a0, a) ∈ Z

n+1 with a �= 0 satisfying (32), we write that

{

x ∈ I0 : δ
(

gtGxZ
n+1) < 1

} =

t⋃


=0

⋃

a∈Zn\{0}

⋃

a0∈Z
D1


 (a0, a) ∪ D2, (66)

where

D1

 (a0, a) = D1

t,
,r,b,κ,f(a0, a) and D2 = D2
t,ε,r,b,κ,f

as defined in Propositions 1 and 2 respectively.
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By definition, intervals in Îq are characterised by having a non-empty inter-
section with the left hand side of (66). We now use the right hand side of (66)
to define the subcollections Îq,p of Îq . More precisely, for p = t+3−2
with
0 ≤ 
 ≤ 
t let Îq,p consist of the intervals Iq ∈ Îq that intersect D1


 (a0, a) for
some a ∈ Z

n \{0} and a0 ∈ Z. Next, let Îq,0 consist of the intervals Iq ∈ Îq
that intersect D2. Finally, define Îq,p = ∅ for all other p < q. By (66), it is

easily seen that Îq =⋃q−1
p=0 Îq,p. It remains to verify (60) and (61).

• Verifying (61) This is very much in line with Case 1. The goal is to count
the number intervals in 1

RIq−1 that intersect some interval from the collection
D2 arising from Proposition 2. By (49), the intervals in 1

RIq−1 are of length
R−q |I0|. By (38), the intervals from D2 have length ≤ δt = κ b−t (1+γ−ε).
Hence, each interval from D2 can intersect at most δt/(R−q |I0|) + 2 � δt Rq

intervals from 1
RIq−1. Then, by (39), we get

#Îq,0 � δt R
q × K0

(

κ b−εt
)α

δt
� Rq × (κ b−εt)α .

Using κ = R−m , b1+γ = R, q = t + m and 0 < γ ≤ 1, we obtain that

#Îq,0 � Rq ×
(

R−m R−εt/(1+γ )
)α ≤ Rq R− εα

2 (t+m) = R(1−εα/2)q . (67)

Once again using the value of α from Proposition 2we verify that σ ≥ 1− 1
2εα

and so (67) implies (61) as required.

• Verifying (60). Let p = t + 3 − 2
 with 0 ≤ 
 ≤ 
t and Ip ∈ Ip. Let S(Ip)
be the set of points (a0, a) ∈ Z

n+1 with a �= 0 such that D1

 (a0, a) ∩ Ip �= ∅.

By Proposition 1, for every (a0, a) ∈ S(Ip) any interval in D1

(a0, a) is of

length

≤ κb−(1+γ )(t−
) = R−mR−(t−
) = R−(t+m−
) = R
−q .

as κ = R−m , b1+γ = R and q = t + m. Then, by (49), any interval
from D1


(a0, a) intersects � R
 intervals from 1
RIq−1. By Proposition 1,

#D1

(a0, a) � 1. Hence,

#(Îq,p � Ip) � #S(Ip) × R
 (68)

and our main concern becomes to obtain a bound for #S(Ip). We shall prove
that

#S(Ip) � R
τ

1+γ
+λ(m+
−1)

. (69)

Armed with this estimate establishing (60) and thus completing our task
becomes simple. Indeed, using (68) and (69) gives
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#(Îq,p � Ip) � R
1+λ
2 (2
+m−3)− 1−λ

2 m+ 3+λ
2 + τ

1+γ ,

which implies (60) upon observing that 2
+m−3 = q−p and 3+λ
2 + τ

1+γ
< 3.

Proof of (69) We assume that S(Ip) �= ∅ as otherwise (69) is trivial. The proof
will be split into several relatively simple steps.

Step 1: We show that for any (a0, a) ∈ S(Ip) and any x ∈ Ip we have

|a0 + a.f(x)| < �0b
−t+(1+γ )(
−2) and |a.f ′(x)| < �1b

γ t−(1+γ )(
−1),

(70)
where �0 and �1 are given by (56).

Firstwe prove the right hand side of (70). To this end, fix any (a0, a) ∈ S(Ip)
and let x0 ∈ D1


 (a0, a) ∩ Ip. To simplify notation define f (x) = a0 + a.f(x).
By the Mean Value Theorem, for any x ∈ Ip we have

| f ′(x)| = | f ′(x0) + f ′′(x̃0)(x − x0)| ≤ | f ′(x0)| + | f ′′(x̃0)(x − x0)|, (71)

where x̃0 is a point between x and x0. By the definition of D1

 (a0, a), we have

that | f ′(x0)| ≤ bγ t−(1+γ )(
−1). Proceeding as in (45), we get that | f ′′(x̃0)| <

nc1bγ t . Substituting the estimates for | f ′(x0)| and | f ′′(x̃0)| into (71) and using
the inequity

|x − x0| ≤ |Ip| = R−p|I0| = R−(t+3−2
)|I0| (72)

implied by (49), we get

| f ′(x)| < bγ t−(1+γ )(
−1) + nc1bγ t × R−(t+3−2
)|I0|.

Since b1+γ = R, we have that

| f ′(x)| < bγ t−(1+γ )(
−1) + nc1|I0|bγ t−(1+γ )(t+3−2
). (73)

Since 
 ≤ 
t < t/4 + 1, one easily verifies that (t + 3 − 2
) > (
 − 1).
Therefore (73) implies the right hand side of (70).

Now we prove the left hand side of (70). Again fix any (a0, a) ∈ S(Ip),
x0 ∈ D1


(a0, a)∩ Ip and let f (x) = a0+a.f(x). By theMean Value Theorem,
for any x ∈ Ip we have that

| f (x)| = | f (x0) + f ′(̂x0)(x − x0)| ≤ | f (x0)| + | f ′(̂x0)(x − x0)|, (74)

where x̂0 is a point between x and x0. In particular, x̂0 ∈ Ip and therefore,
by the right hand side of (70), which we have already established, | f ′(̂x0)| <

�1bγ t−(1+γ )(
−1). By the definition of D1

 (a0, a), we have that | f (x0)| ≤
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κb−t = b−t−m(1+γ ). Hence, using these estimates together with inequality
(72) and equation b1+γ = R, we get from (74) that

| f (x)| < b−t−m(1+γ ) + �1b
γ t−(1+γ )(
−1) × b−(1+γ )(t+3−2
)|I0|

= b−t−m(1+γ ) + �1|I0|b−t+(1+γ )(
−2) . (75)

Since m ≥ m0 ≥ 4 we have that −m(1 + γ ) ≤ (1 + γ )(
 − 2) for all 
 ≥ 0.
Therefore (75) implies the left hand side of (70).

Step 2: Now we utilize (70) to show that rank S(Ip) ≤ n − z. First of all,
observe that if (a0, a) ∈ S(Ip), where a = (a1, . . . , an), then |a j | < br j t = 1
whenever r j = 0. Since a j ∈ Z in this case, we have that

∀ (a0, a) ∈ S(Ip) a j = 0 whenever r j = 0. (76)

Let J = { j : r j �= 0} and J = {1, . . . , n}\ J . Note that J contains exactly
n − z > 0 elements, where z = z(r) is the number of zeros in r. Let J0 be the
subset of J obtained by removing the smallest index j0 such that r j0 = γ (r).
Note that if r has only one non-zero component then J0 = ∅. Let x ∈ Ip.
Then, using (76) and (70) we obtain that every (a0, a) ∈ S(Ip) satisfies the
system

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

|a0 +∑ j∈J a j f j (x)| < �0b−t+(1+γ )(
−2),

|∑ j∈J a j f ′
j (x)| < �1bγ t−(1+γ )(
−1),

|a j | < br j t ( j ∈ J0),

a j = 0 ( j ∈ J ) ,

(77)

where �0 and �1 ar given by (56). LetBp,x denote the set of (a0, a1, . . . , an) ∈
R
n+1 satisfying (77). Then, S(Ip) ⊂ Bp,x . Clearly, Bp,x is a convex body

lying over the n − z + 1 dimensional linear subspace of Rn+1 given by the
equations a j = 0 for j ∈ J . As is well known the n − z + 1-dimensional
volume of Bp,x is equal to

2�0b−t+(1+γ )(
−2)×2�1bγ t−(1+γ )(
−1)×∏ j∈J0 2b
r j t

|�| = 2n+1−z�0�1b−(1+γ )

|�| ,

where � is the determinant of the system of linear forms in the variables a j ,

j ∈ J ∪ {0}, staying in the first three lines of (77). Note that |�
∣
∣
∣= | f ′

j0
(x)
∣
∣
∣.

Hence, using (33) and the fact that b1+γ = R ≥ R0, we conclude that the
volume of Bp,x is

2n+1−z�0�1b−(1+γ )

| f ′
j0
(x)| <

2n+1−z�0�1

c0R
≤ 2n+1�0�1

c0R0
≤ 1

(n + 1)! ≤
1

(n − z + 1)! .
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1230 V. Beresnevich

In this case, Lemma 3 is applicable and we have that rank S(Ip) ≤ n − z as
claimed at the start of Step 2.

Step 3 : Finally, we obtain (69). To this end, let � denote the Z-span of S(Ip).
Since rank S(Ip) ≤ n− z, we have that rank � ≤ n− z. Discarding the second
inequality from (77) and using the fact that �0 ≤ R = b1+γ , which is implied
by (57), we obtain that the points (a0, a) ∈ S(Ip) satisfy the system

{ |a0 +∑n
j=1 a j f j (x)| < b−t+(1+γ )(
−1),

|a j | < br j t (1 ≤ j ≤ n) .
(78)

On applying gt to both sides of the system and dividing its first inequality by
κ = R−m = b−m(1+γ ), (78) becomes

{

btκ−1|a0 +∑n
j=1 a j f j (x)| < κ−1b(1+γ )(
−1) = b(1+γ )(m+
−1),

b−r j t |a j | < 1 (1 ≤ j ≤ n).

Hence, in view of the definitions of �(b, u), gt = gtr,b and Gx = G(κ; f(x))
given in Sect. 3, namely (20), (21) and (26), we obtain that

gtGx S(Ip) ⊂ gtGx� ∩ �(b, u) with u = (1 + γ )(m + 
 − 1). (79)

Note that 0 ≤ τ(r) ≤ 1/n ≤ γ (r) ≤ 1. Therefore λ(1 + γ ) = (1 + γ )/(1 +
τ) ∈ [1, 2]. Hence (m + 
 − 1) ≤ λu ≤ 2(m + 
 − 1). Since t > 2nm,
m ≥ 4 and 
 − 1 ≤ t/2n, one can easily see that 1 < λu < t . Hence
1 ≤ t −[λu] < t . Take x ∈ It−[λu] ∩ Ip for an appropriate interval It−[λu]. By
induction, (59) holds when t is replaced by t − [λu]. This verifies (28) with
� = Gx�. Clearly, rank� = rank � ≤ n − z. Hence, by Lemma 6 and (79),
we obtain that #S(Ip) = #gtGx S(Ip) � bτbλu . Now (69) readily follows
upon substituting b = R1/(1+γ ) and u = (1 + γ )(m + 
 − 1). ��

The following key statement is essentially a corollary of Proposition 3.

Theorem 8 Let Fn(I ) be as in Theorem 2, I0 ⊂ I be a compact interval
satisfying Property F. Then there is a constant M0 ≥ 4 such that for any
r ∈ Rn and any f ∈ Fn(I ) the set f−1(Bad(r)) is M-Cantor rich in I0 for
any M > max

{

M0, 161+1/τ
}

, where τ = τ(r) is defined by (9).

Proof Let R0 and m0 be as in Proposition 3 and M0 = max
{

R0, 4(2n)4
}

.

Let M > max
{

M0, 161+1/τ
}

, R ≥ M and m ≥ m0. Take any f ∈ Fn(I ) and
r ∈ Rn . Let (Iq)q≥0 denote the R-sequence in I0 that arises fromProposition 3.
By (59) and Lemma 2, we have that K((Iq)q≥0) ⊂ f−1(Bad(r)). Thus, by
definition, the fact that f−1(Bad(r)) is M-Cantor rich in I0 will follow on
showing that d((Iq)q≥0) can be made ≤ ε for any ε > 0.
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Observe that (1 − λ)/2 = τ/(2 + 2τ). Then, since R ≥ M > 161+1/τ , we
have that 4R− 1−λ

2 < 1. By conditions (ii) and (iii) of Proposition 3, for q > 0

q−1
∑

p=1

(
4

R

)q−p

max
Ip∈Ip

#
(Îq,p � Ip

)�
∑

q−p≥m−3

(
4

R

)q−p

R
1+λ
2 (q−p)− 1−λ

2 m+3

< R− 1−λ
2 m+3

∑


≥m−3

(

4R− 1−λ
2

)
 = R− 1−λ
2 m+3

(

4R− 1−λ
2

)m−3

1 − 4R− 1−λ
2

→ 0 (80)

as m → ∞. Further, since R ≥ M > M0 ≥ 4(2n)4 , we have that 4R−(1−σ) =
4R−(2n)−4

< 1. Once again, by conditions (ii) and (iii) of Proposition 3, for
q ≤ m we have that #

(Îq,0 � I0
) = 0, while for q > m

(
4

R

)q

#
(Îq,0 � I0

)�
(
4

R

)q

Rσq =
(

4R−(1−σ)
)q

<
(

4R−(2n)−4
)m → 0

(81)
as m → ∞. By (51), combining (80) and (81) gives dq(Iq) ≤ ε for all q > 0
provided that m is sufficiently large. This completes the proof. ��
Proof of Theorem 2 Let I0 and M0 be the same as in Theorem 8 and
M = max

{

M0, 161+1/τ0
} + 1, where τ0 = inf{τ(r) : r ∈ W }. By

(10), τ0 > 0 and so M < ∞. By Theorem 8, f−1(Bad(r)) is M-Cantor
rich in I0 for each f ∈ Fn(I ) and each r ∈ W . By Theorem 7, so is
S = ⋂

f∈Fn(I )
⋂

r∈W f−1(Bad(r)). By Theorem 6, dim S = 1. The proof
is thus complete. ��

7 Final remarks

In this section we discuss possible generalisations of our main results and
further problems. First of all, the analyticity assumption within Theorem 1
can be relaxed by making use of more general fibering techniques such as
that of [42]. This however leaves the question of whether Theorem 1 holds for
arbitrary nondegenerate submanifold of Rn as defined in [33] open. Beyond
nondegenerate manifolds, it would be interesting to obtain generalisations of
Theorems 1 and 2 for friendly measures as defined in [32] as well as for
affine subspaces of Rn and their submanifolds—see [31] for a related context.
In another direction, it would be interesting to develop the theory of badly
approximable systems of linear forms. Removing condition (10) is another
appealing problem that would be settled if the sets of interest were shown to
be winning in the sense of Schmidt (see [1], [3], [17, §1.3] and [45]). However,
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1232 V. Beresnevich

the techniques of this paper could also help accomplishing this task: the key is
to make the lower bound on M appearing in Theorem 8 independent of τ(r).
Finally, all of the above questions make sense and are of course interesting in
the case of Diophantine approximation overQp and in positive characteristic.
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Appendix A: Proof of Lemma 1

As was mentioned, the equivalence of (i) and (ii) is straightforward and thus
left to the reader. The proof of the equivalence of (ii) and (iii) will make use
of the following

Lemma 11 (Mahler [38]) Let L0, . . . , Ln be a system of linear forms in
variables u0, . . . , un with real coefficients and determinant d �= 0, and let
L ′
0, . . . , L

′
n be the transposed system of linear forms in variables v0, . . . , vn,

so that
∑n

i=0 Li L ′
i =∑n

i=0 uivi . Let λ = T0 · · · Tn/|d|. Suppose there exists
an integer point (u0, . . . , un) �= (0, . . . , 0) such that

|Li (u0, . . . , un)| ≤ Ti (0 ≤ i ≤ n). (82)

Then there exists an integer point (v0, . . . , vn) �= (0, . . . , 0) such that

|L ′
0(v0, . . . , vn)| ≤ nλ/T0 and |L ′

i (v0, . . . , vn)| ≤ λ/Ti (1 ≤ i ≤ n).

(83)

Proof of the equivalence of (ii) and (iii) in Lemma 1 First consider the case
when ri > 0 for all i . If n = 1 then there is nothing to prove because (16) and
(17) coincidewhen c = c′ and Q = H . Thuswewill assume that n ≥ 2.Define
the linear forms L0 = u0 and Li = u0yi −ui (1 ≤ i ≤ n). Then the transposed
forms are L ′

0 = v0 + v1y1 +· · ·+ vn yn and L ′
i = −vi (1 ≤ i ≤ n). It is easily

verified that Mahler’s lemma is applicable with d = 1. Let 0 < c < 1. Then,
the existence of a non-zero integer solution (q, p1, . . . , pn) to (16) implies
the existence of a non-zero integer solution (u0, . . . , un) to (82) with T0 = Q
and Ti = δQ−ri (1 ≤ i ≤ n), where δ = cτ < 1 and τ = min ri > 0.
By Mahler’s lemma, there is a non-zero integer solution (v0, . . . , vn) to (83),
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where λ = δn . This implies (17) with H = Q and c′ = nδ. Note that c′ → 0
as c → 0. Thus if there is c′ > 0 such that the only integer solution to (17)
is a0 = a1 = · · · = an = 0, then there must exist a c > 0 such that the
only integer solution to (16) is q = p1 = · · · = pn = 0. The converse is
proved in exactly the same way by swapping the roles of Li and L ′

i and taking
T0 = c′H−1, Ti = Hri and Q = (n + 1)H .

The case when r contains a zero is treated by induction. The case n = 1
meaning r = (r1) with r1 �= 0 has already been done. Assume that n > 1
and our desired statement holds for smaller dimensions. Assume that r con-
tains a zero component. Without loss of generality assume that rn = 0.
Since ‖x‖1/0 = 0, we have that max1≤i≤n ‖qyi‖1/ri = max1≤i≤n−1 ‖qyi‖1/ri .
Therefore, y ∈ Bad(r) if and only if y′ = (y1, . . . , yn−1) ∈ Bad(r′), where
r′ = (r1, . . . , rn−1). By induction, this is equivalent to the existence of c > 0
such that for any H ≥ 1 the only integer solution (a0, a1, . . . , an−1) to the
system

|a0 + a1y1 + · · · + an−1yn−1| < cH−1, |ai | < Hri (1 ≤ i ≤ n − 1)

is a0 = · · · = an−1 = 0. In turn, the latter statement is equivalent to (iii), since,
by rn = 0, the inequality |an| < Hrn implies that an = 0 whenever an ∈ Z. ��

Appendix B: Proof of (18)

Recall that (18) is the following inclusion

Bn ⊂ W∗
n ∩ B∗

n .

Since for n = 1 (18) becomes trivial, we will assume that n ≥ 2. Fix any
ξ ∈ Bn . Define

c1(ξ, n)
def= inf

P∈Z[x], 1≤deg P≤n
H(P)n|P(ξ)|.

Note that, by Dirichlet’s theorem, c1(ξ, n) ≤ 1 and, by the assumption that
ξ ∈ Bn , we have that

c1(ξ, n) > 0. (84)

Also note that ξ is not algebraic of degree ≤ n, since otherwise c1(ξ, n) = 0.
Assume for a moment that ξ /∈ B∗

n . Then there exists a sequence (αi )i∈N
of algebraic numbers of degree ≤ n such that H(αi )

n+1|ξ − αi | → 0 as
i → ∞. Let Pi ∈ Z[x] be the minimal polynomial of αi over Z. In particular,
Pi (αi ) = 0, 1 ≤ deg Pi = degαi ≤ n and H(Pi ) = H(αi ). Using Taylor’s
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Theorem, we get that

H(Pi )
n|Pi (ξ)| = H(Pi )

n

∣
∣
∣
∣
∣
∣

n
∑

j=1

1
j ! P

( j)(αi )(ξ − αi )
j

∣
∣
∣
∣
∣
∣

� H(Pi )
n+1|ξ − αi | = H(αi )

n+1|ξ − αi | → 0

as i → ∞, contrary to (84). Hence, ξ must be in B∗
n .

In order to show that ξ ∈ W∗
n take ε0 = (1 + n2 max{1, |ξ |n})−nc1(ξ, n),

any integer Q > 1 and consider the following system of inequalities:
⎧

⎪⎨

⎪⎩

∣
∣
∑n

i=0 aiξ
i
∣
∣ < ε0Q−n,

∣
∣
∑n

i=1 iaiξ
i−1
∣
∣ < ε−1

0 Q,

|ai | ≤ Q (2 ≤ i ≤ n).

(85)

By Minkowski’s theorem for convex bodies, there exists a non-zero integer
vector (a0, . . . , an) satisfying this system. Define the polynomial P = anxn +
· · ·+a1x+a0. Assume for a moment that |P ′(ξ)| ≤ Q. Then, using the above
system we get that

|a1| =
∣
∣
∣
∣
∣
P ′(ξ) −

n
∑

i=2

iaiξ
i−1

∣
∣
∣
∣
∣
≤ (1 + n2 max

{

1, |ξ |n−1}) Q

and

|a0| =
∣
∣
∣
∣
∣
P(ξ) −

n
∑

i=1

aiξ
i

∣
∣
∣
∣
∣
≤ (1 + nmax

{

1, |ξ |n}) Q.

Thus H(P) ≤ (1 + n2 max {1, |ξ |n}) Q and we obtain

H(P)n|P(ξ)| <
(

1 + n2 max
{

1, |ξ |n})n ε0 = c1(ξ, n).

This contradicts the definition of c1(ξ, n). Therefore, we must have that
|P ′(ξ)| > Q. By (85), we have that |P(ξ)| < ε0Q−n . Hence, by Taylor’s
formula and the fact that |P(ξ)| < ε0Q−n < 1

2Q
−n , the expression

P(x)

x − ξ
= P(ξ)

x − ξ
+ P ′(ξ) +

n
∑

i=2

1
i ! P

(i)(ξ)(x − ξ)i−1

has the same sign as P ′(ξ) for x = ξ ± Q−n−1 provided that Q is sufficiently
large. Hence P(x) must have opposite signs at ξ − Q−n−1 and ξ + Q−n−1.
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By continuity, this means that there is a root of P , say α in the interval |x −
ξ | ≤ Q−n−1. Once again using (85) we obtain that H(P) ≤ c2Q with c2 =
(1 + n2 max{1, |ξ |n})ε−1

0 . This means that

|ξ − α| ≤ Q−n−1 � H(P)−n−1 . (86)

Let Pα denote the minimal polynomial of α over Z. Since P(α) = 0, by
Gauss’s lemma, Pα divides P , that is P = PαR for some R ∈ Z[x]. Then,
by [47, §2, Lemma 8], we have that H(P) = H(PαR) � H(Pα)H(R) ≥
H(Pα) = H(α), where the constant in the Vinogradov symbol depends on n
only. Thus, H(P) � H(α) and (86) implies that

|ξ − α| ≤ Q−n−1 � H(α)−n−1 . (87)

Note that if the same α turned up in the above construction for infinitely many
Q, then ξ would be equal to this α. However, this is impossible, since, as we
noted just after (84), ξ cannot be algebraic of degree ≤ n. Therefore, there
must be infinitely many different real algebraic numbers α of degree ≤ n
satisfying (87). This means that ξ ∈ W∗

n . The proof is thus complete. ��

Appendix C: Proof of the Fibering Lemma

Here we give a proof of the Fibering Lemma stated in Sect. 2.1. We will need
the following technical statement.

Lemma 12 Let 0 < d0 < d be integers and let ed : Zm≥0 → Z≥0 be given by

ed(α1, . . . , αm)
def=

m
∑

j=1

α j (d
j−1 + dm) . (88)

Let

Sd0
def= {(α1, . . . , αm) ∈ Z

m≥0 : α1 + · · · + αm ≤ d0} . (89)

Then

(i) ed maps Sd0 into Z≥0 injectively, and
(ii) ed(Sd0) ∩ ed(Zm≥0\Sd0) = ∅.
Proof Let (α1, . . . , αm) and (α′

1, . . . , α
′
m) be two different elements of Sd0 and

let k be the largest index such that αk �= α′
k . Note that

∣
∣
∣
∣
∣
∣

m
∑

j=1

(

α j − α′
j

)

d j−1

∣
∣
∣
∣
∣
∣

≤
m
∑

j=1

d0d
j−1 = d0

dm − 1

d − 1
≤ dm − 1 . (90)
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If α1 + · · · + αm �= α′
1 + · · · + α′

m then

|ed(α1, . . . , αm) − ed(α1, . . . , αm)| ≥ dm

∣
∣
∣
∣
∣
∣

m
∑

j=1

α j −
m
∑

j=1

α′
j

∣
∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
∣

m
∑

j=1

(α j − α′
j )d

j−1

∣
∣
∣
∣
∣
∣

(90)≥ dm − (dm − 1) = 1.

Thus, ed(α1, . . . , αm) �= ed(α′
1, . . . , α

′
m) in this case. Now if α1 +· · ·+αm =

α′
1 + · · · + α′

m then

|ed(α1, . . . , αm) − ed(α1, . . . , αm)| =
∣
∣
∣
∣
∣
∣

m
∑

j=1

(α j − α′
j )d

j−1

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

k
∑

j=1

(α j − α′
j )d

j−1

∣
∣
∣
∣
∣
∣

≥ dk−1|αk − α′
k | −

k−1
∑

j=1

|α j − α′
j |d j−1

≥ dk−1 −
k−1
∑

j=1

d0d
j−1 =

{

1 if k = 1

dk−1 − d0
dk−1−1
d−1 if k > 1

≥ 1 .

Again we obtain that ed(α1, . . . , αm) �= ed(α′
1, . . . , α

′
m) and thus prove part

(i) of the lemma. Finally, observe that

max ed(Sd0) = d0(d
m−1 + dm) < min ed(Z

m≥0\Sd0) = (d0 + 1)(1 + dm),

whence (ii) readily follows. ��

Proof of the Fibering Lemma Since f0, . . . , fn are analytic we can write them
as the following absolutely convergent power series

fi (x1, . . . , xm) =
∑

α1,...,αm≥0

λ(i)
α1,...,αm

xα1
1 . . . xαm

m .

Since they are linearly independent over R for every (c0, . . . , cn) ∈ R
n+1\{0}

the function

n
∑

i=0

ci fi (x1, . . . , xm) =
∑

α1,...,αm≥0

n
∑

i=0

ciλ
(i)
α1,...,αm

xα1
1 . . . xαm

m
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is not identically zero. Hence, there exist a multiindex (α1, . . . , αm) ∈ Z
m≥0

such that
n
∑

i=0

ciλ
(i)
α1,...,αm

�= 0. (91)

Therefore, the collection of the sets

C(α1, . . . , αm) =
{

(c0, . . . , cn) ∈ R
n+1 :

n
∑

i=0

c2i = 1, (91) holds

}

taken over (α1, . . . , αm) ∈ Z
m≥0 is an open cover of the unit sphere in

R
n+1. Since the sphere is compact, there exists a finite subcover, say,

C(α
(1)
1 , . . . , α

(1)
m ), …, C(α

(N )
1 , . . . , α

(N )
m ). Let

d0 = max
{

α
(
)
1 + · · · + α(
)

m : 1 ≤ 
 ≤ N
}

.

Then, for every non-zero collection c0, . . . , cn there exists a multiindex
(α1, . . . , αm) ∈ Sd0 , where Sd0 is given by (89), such that

n
∑

i=0

ciλ
(i)
α1,...,αm

�= 0 .

Take any integer d > d0 and anyu = (u1, u2, . . . , um) ∈ R
m with u1 . . . um �=

0. Then, by what we have just shown,

n
∑

i=0

ciλ
(i)
α1,...,αm

m
∏

j=1

u
α j
j �= 0 for some (α1, . . . , αm) ∈ Sd0 . (92)

Note that

φu,i (t) =
∑

α1,...,αm≥0

λ(i)
α1,...,αm

m
∏

j=1

(u j t
d j−1+dm )α j

=
∑

α1,...,αm≥0

λ(i)
α1,...,αm

m
∏

j=1

u
α j
j t ed (α1,...,αm), (93)
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where ed is given by (88). Consider the linear the combination of functions
(93) with coefficients c0, . . . , cn:

n
∑

i=0

ciφu,i (t) =
n
∑

i=0

ci
∑

α1,...,αm≥0

λ(i)
α1,...,αm

m
∏

j=1

u
α j
j t ed (α1,...,αm)

=
∑

α1,...,αm≥0

n
∑

i=0

ciλ
(i)
α1,...,αm

m
∏

j=1

u
α j
j t ed (α1,...,αm).

By Lemma 12 and (92), the above series in t is not identically zero. Since
(c0, . . . , cn) �= 0 is arbitrary, the functions (93) are linearly independent
over R. ��
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