Invent. math. (2015) 202:1199-1240 @ CrossMark
DOI 10.1007/500222-015-0586-8

Badly approximable points on manifolds

Victor Beresnevich

Received: 26 October 2014 / Accepted: 20 February 2015 / Published online: 5 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper is motivated by two problems in the theory of Diophan-
tine approximation, namely, Davenport’s problem regarding badly approx-
imable points on submanifolds of a Euclidean space and Schmidt’s problem
regarding the intersections of the sets of weighted badly approximable points.
The problems have been recently settled in dimension two but remain open in
higher dimensions. In this paper we develop new techniques that allow us to
tackle them in full generality. The techniques rest on lattice points counting and
a powerful quantitative result of Bernik, Kleinbock and Margulis. The main
theorem of this paper implies that any finite intersection of the sets of weighted
badly approximable points on any analytic nondegenerate submanifold of R”
has full dimension. One of the consequences of this result is the existence of
transcendental real numbers badly approximable by algebraic numbers of any
bounded degree.

Mathematics Subject Classification 11J13 - 11J83

1 Introduction

The notion of badly approximable numbers, as much of the classical and
modern theory of Diophantine approximation, is underpinned by Dirichlet’s
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fundamental result. It states that for every « € R and any Q > 1 there exists
g € Nand p € Z such that |ga — p| < Q7! and ¢ < Q. In particular, it
implies that for every real irrational number « the inequality

p‘ 1
o — — <—2

q q

holds for infinitely many rational numbers p/g written as reduced fractions of
integers p and g. A real number « is then called badly approximable if there
exists a constant ¢ = c¢(«) > 0 such that

o — —

; > 5 (1)

q

|

for all (g, p) € N x Z. In what follows, the set of badly approximable real
numbers will be denoted by Bad.

It is well known that a real irrational number « is badly approximable
if and only if the partial quotients of its continued fraction expansion are
uniformly bounded. For instance, any real quadratic irrational number is in
Bad, since its continued fraction expansion is eventually periodic.! Using
continued fractions one can easily produce continuum many examples of badly
approximable real numbers. Beyond the cardinality, Jarnik [27] established
that dim Bad (the Hausdorff dimension of Bad) is 1. However, the Lebesgue
measure of Bad is known to be zero. This is a trivial consequence of the
divergence case of Khintchine’s theorem [37], and can also be relatively easily
proved using the Lebesgue density theorem, see [18] or [15, Corollary 2].

1.1 Higher dimensions: Schmidt’s conjecture

Higher dimensions offer various ways of generalising the notion of badly
approximable numbers. For now, we restrict ourselves to considering simulta-
neous Diophantine approximations by rationals. The pointy = (yy, ..., y,) €
R" is called badly approximable if there exists a constant ¢ = ¢(y) > 0 such
that

max |lqyi|| > cg™V/" 2)
1<i<n

for all ¢ € N, where ||x|| denotes the distance of x from the nearest integer.
The quantities ||gy;|| are equal to |gy; — p;| for some p; € Z and thus give
rise to ‘approximating’ rationals p1/q, ..., pn/q. Once again, the notion of
badly approximable points is underpinned by Dirichlet’s theorem, this time

1 It is not known whether there are any real algebraic numbers of degree > 3 that are badly
approximable.
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for R”, which implies that the inequality maxi<;<, [|gyill < g~ "/" holds for
infinitely many ¢ € N. The set of badly approximable points in R” will be
denoted by Bad(n). Observe that Bad(1) = Bad.

The first examples of badly approximable points in R” were given by Perron
[40] who used an algebraic construction and produced infinitely yet countably
many elements of Bad(n). For instance, (¢, ..., «") € Bad(n) whenever « is
areal algebraic number of degree n + 1. However, it was not until 1954 when
first Davenport [21] for n = 2 and then Cassels [19] for n > 2 showed that
Bad(n) was uncountable. The fact that Bad(n) has full Hausdorff dimension
was proved by Schmidt [43] who introduced powerful ideas based on a specific
type of games. The dimension result for Bad(n) comes about as a consequence
of the fact that Bad(n) is winning for Schmidt’s game. Furthermore, Schmidt
proved that affine transformations of Bad () are winning and that the collection
of winning sets in R” is closed under countable intersections.

In his 1983 paper [46] Schmidt formulated a conjecture that later became
the catalysis for some remarkable developments. Schmidt’s conjecture rests on
the modified notion of badly approximable points in which approximations in
each coordinate are given some weights, say rq, . . ., r,. In short, he conjectured
that there exist points in R? that are simultaneously badly approximable with
respect to two different collections of weights. The weights of approximation
are required to satisfy the following conditions:

r+---+r,=1 and r; >0forall i=1,...,n. 3)

Throughout this paper the set of all n-tuplesr = (rq, ..., r,) subject to (3) will
be denoted by R,,. Formally, given r € R, the pointy = (y1, ..., y,) € R”
will be called r-badly approximable if there exists ¢ = c(y) > 0 such that

max gy ||/ > cq™! 4)

1<i<n
forallg € N. Here, by definition, ||gy;||'/° = 0. Again, a version of Dirichlet’s
theorem tells us that when ¢ = 1 inequality (4) fails infinitely often.

The set of r-badly approximable points in R” will be denoted by Bad(r).
As is readily seen, the classical set of badly approximable points Bad(n) is
simply Bad(%, ey %). Using this notation we can now specify the following
concrete statement conjectured by Schmidt:

1 2 2 1
It is worth mentioning that the sets Bad(r) have been studied at length in all

dimensions and for arbitrary collections of weights, see [22,34-36,41]. Partly
the interest was fueled by natural links with homogeneous dynamics and Little-
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1202 V. Beresnevich

wood’s conjecture in multiplicative Diophantine approximation, another long
standing problem—see [ 13] for further details. Schmidt’s conjecture withstood
attacks for nearly 30 years. However, the recent progress has been dramatic.

In 2011 Badziahin et al. [13] made a breakthrough by proving that for any
sequence ry = (ix, jx) € Rz such that

lim inf min{ig, ji} > 0 5)
k— 00

and any vertical line Lg = {(0, y) : y € R} C R? with # € Bad one has that
dim (), Bad(ry) N Ly = 1. (6)

This readily gives that dim (), Bad(ry) = 2 and proves Schmidt’s conjecture
in a much stronger sense. Shortly thereafter, An [1] proves that for any r € R,
and any 6 € Bad the set Bad(r) N Ly is winning for a Schmidt game in
Lg. This immediately leads him to removing condition (5) from the theorem
of Badziahin et al., since the collection of Schmidt’s winning sets is closed
under arbitrary countable intersections. In a related paper An [2] establishes
that Bad(Z, j) is winning for the 2-dimensional Schmidt game, thus giving
another proof of Schmidt’s conjecture. Generalising the techniques of [13] in
yet another direction Nesharim [39], independently from An, proves that the set
in the left hand side of (6) intersected with naturally occurring fractals embed-
ded in Lg is uncountable for any sequence (ry)xen. Subsequently, Nesharim
jointly with Weiss establishes the winning property of these intersections—see
Appendix B in [39].

As already mentioned, the sets Bad (r) and even their restrictions to naturally
occurring fractals have been investigated in higher dimensions, see [26,34—
36]. In particular, the sets Bad (r) were shown to have full Hausdorff dimension
for any r € R,,. However, the theory of their mutual intersections is a different
story. In an apparent attempt to prove Schmidt’s conjecture, Kleinbock and
Weiss [36] introduced a modified version of Schmidt’s games. As they have
shown, winning sets for the same modified Schmidt game inherit the proper-
ties of classical winning sets. Namely, they have full Hausdorff dimension and
their countable intersections are winning with respect to the same game. Also
Kleinbock and Weiss have proved that Bad(r) is winning for a relevant modi-
fied Schmidt game. However, it was not possible to prove that the intersection
Bad(r;) N Bad(r;) was a winning set for some modified Schmidt game as,
with very few exceptions, the corresponding modified Schmidt games were not
‘compatible’. As aresult the following key problem that generalises Schmidt’s
original conjecture has remained open in dimensions n > 3:
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Badly approximable points on manifolds 1203

Problem 1 Let n € N. Prove that for any finite or countable subset W of R,
one has that
dim (") Bad(r) =n. (7)
reW

The main result of this paper implies (7) in arbitrary dimensions n and for
arbitrary countable subsets W of weights satisfying a condition similar to (5).
For instance, the result is applicable to arbitrary finite collections of weights
W. The proof will be given by restricting the sets of interest to a suitable
family of curves in R”. Interestingly, this approach, which was innovated in
[13] in the case n = 2, turns out to face another intricate problem that was first
communicated by Davenport.

1.2 Bad(r) on manifolds and Davenport’s problem

In 1964 Davenport [22] established that, given a finite collection f; : R" —
R% (1 <i < N)of C! maps, if for some xg € R” andeveryi =1,..., N
the Jacobian of f; at Xy has rank »n;, then the set

N
()t Bad(n,))

i=1

has the power of continuum. For instance, taking fi(x, y) = x, fa(x,y) =y
and f3(x, y) = (x, y) shows that Bad(1, 0) N Bad (%, 1) N Bad(0, 1) has the
power of continuum. Another natural example obtained by taking f;(x) = x’
for i = 1,...,k shows that there are continuum many o € R such that
a,a?, ..., af are all in Bad.

Clearly, the Jacobian condition above implies that m > n; for every i.
Commenting on this, Davenport writes [22, p.52] “Problems of a much more
difficult character arise when the number of independent parameters is less than
the dimension of simultaneous approximation. I do not know whether there
is a set of & with the cardinal of the continuum such that the pair (a, o?) is
badly approximable for simultaneous approximation”. Essentially, if m < n;
then f;(x) lies on a submanifold of R". Hence, Davenport’s problem boils
down to investigating badly approximable points restricted to submanifolds of
Euclidean spaces.

In the theory of Diophantine approximation on manifolds, see for instance,
[7-9,31,33], there are already well established classes of manifolds of inter-
est. These include non-degenerate manifolds and affine subspaces and should
likely be of primary interest when resolving Davenport’s problem.

It is worth pointing out that the result of Perron [40] mentioned in § 1.1
implies the existence of algebraic badly approximable points on the Veronese
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1204 V. Beresnevich

curves V,, = {(x, ..., x") : x € R}. However, there are only countably many
of them. Khintchine [28] proved that Bad(n) N V), had zero 1-dimensional
Lebesgue measure. Baker [4] generalised this to arbitrary C ' submanifold
of R". Apparently, Bad(n) can be relatively easily replaced with Bad(r) in
Baker’s result, though, to the best of author’s knowledge, this has never been
formally addressed. To make a long story short, until recently there has been
no success in relation to Davenport’s problem even for planar curves, let alone
manifolds in higher dimension. The aforementioned work of Badziahin et
al. [13] was the first step forward. Very recently, assuming (5), Badziahin and
Velani [17] have proved (6) with Lg replaced by any C? planar curve which is
not a straight line. In particular, this shows that there exist uncountably many
real numbers « such that (o, «?) is in Bad(2). Also they have dealt with a
family of lines in R? satisfying a natural Diophantine condition. The most
recent results established in [3] by An, Velani and the author of this paper
remove condition (5) from the findings of [17] and at the same time settle
Davenport’s problem for a larger class of lines in R? defined by a near optimal
condition. As a result, the following general version of Davenport’s problem
is essentially settled in the case n = 2:

Problem 2 Letn, m € N, B be aball in R™, W be a finite or countable subset
of R, and F,(B) be a finite or countable collection of maps f : B — R".
Determine sufficient (and possibly necessary) conditions on W and/or F;,(B)
so that

dim ﬂ ﬂf—l(Bad(r))zm. (8)

feF,(B) reW

Despite the success in resolving Problem 2 for planar curves, no progress has
been made on Davenport’s problem for n > 3. The results of this paper imply
(8) in arbitrary dimensions n and for arbitrary countable subsets W of weights
satisfying a condition similar to (5) and arbitrary finite collection F,(B) of
analytic non-degenerate maps. The proof introduces new ideas based on lattice
points counting and a powerful quantitative result of Bernik, Kleinbock and
Margulis. Indeed, the arguments presented should be of independent interest
even forn = 2.

2 Main results and corollaries

In what follows, an analytic map f : B — R” defined on a ball B C R™ will
be called nondegenerate if the functions 1, f1, ..., f, are linearly independent
over R. The more general notion of nondegeneracy that does not require analyt-
icity can be found in [33]. Given anintegern > 2, F,(B) will denote a family of
maps f : B — R” with a common domain B. To avoid ambiguity, let us agree
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Badly approximable points on manifolds 1205

from the beginning that all the intervals and balls mentioned in this paper are
of positive and finite diameter. Recall that R,, denotes the collection of weights
of approximation and is defined by (3). Givenr = (r1,...,r,) € Ry, let

7(r) def min{r; : r; # 0}, 9)

that is t(r) is the smallest strictly positive weight within r. The following
result regarding Problem 2 represents the main finding of this paper.

Theorem 1 Letm,n € N, 1 <m < n, B be an open ball in R™ and F,,(B) be
a finite family of analytic nondegenerate maps. Let W be a finite or countable
subset of R, such that

inf{t(r):re W} >0. (10)

Then (8) is satisfied.

Condition (10) matches (5) and is satisfied whenever W is finite. Now we
consider the following basic corollary regarding badly approximable points
on manifolds.

Corollary 1 Let M be a manifold immersed into R™ by an analytic nonde-
generate map. Let W C R, be a finite or countable set of weights. Assume
that (10) is satisfied. Then dim (.. Bad(r) N M = dim M . In particular,
for any finite collectionry, ..., ry € Ry, we have that

N
dim ﬂ Bad(ry) N M = dim M.
k=1

Note that the corollary is applicable to M = R", which is clearly ana-
lytic and nondegenerate. In this case Corollary 1 establishes an analogue of
Schmidt’s conjecture in arbitrary dimensions n > 2 by settling Problem 1
subject to condition (10).

2.1 Reduction to curves

When m = 1 the nondegeneracy of an analytic map f = (f1,..., fu) is
equivalent to the Wronskian of f], ..., f, being not identically zero. More
generally, the map f (not necessarily analytic) defined on an interval I C R
will be called nondegenerate at xy € I if £ is C" on a neighborhood of x(
and the Wronskian of fl/ e f,; does not vanish at xg. This definition of
nondegeneracy at a single point is adopted within the following more general
result for curves. Note that if f is nondegenerate at least at one point, then the
functions 1, fi, ..., f, are linearly independent over R.
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1206 V. Beresnevich

Theorem 2 Letn € N, n > 2, I C R be an open interval and F, (1) be a

finite family of maps defined on I nondegenerate at the same point xg € 1. Let
W be a finite or countable subset of R, satisfying (10). Then

dim () ()£ '®Bad@) =1. (11)

feF,(I) rew

Our immediate goal is to show that Theorem 1 is a consequence of Theo-
rem 2. In metric Diophantine approximation the idea of reducing the case of
manifolds to curves is not new. For instance, Badziahin et al. [13] use fibering
of R? into vertical lines in their proof of Schmidt’s conjecture. Underpin-
ning our reduction of Theorem 1 to Theorem 2 is the following version of
Marstrand’s slicing lemma, see [24, Corollary 7.12] or [25, Theorem 10.11].

Marstrand’s slicing Lemma Let m > 1 and S be a subset of R™. Let s > 0
and let U be a subset ome_l such that dim{(¢, us, ..., uy) € S} > s for
each (uy, ...,uy) € U. Then

dim S > dim U + s.

We will also need the following formal statement which is a slightly modified
extract from SprindZuk’s survey [48, pp.9-10].

The Fibering Lemma Let fy, . . ., f, be analytic functions in m real variables
defined on an open neighborhood of 0. Assume that fy, ..., f, are linearly
independent over R. Then there is a sufficiently large integer do > 1 such that
for every d > do and everya = (uy,up, ..., uy) € R™ withuy...uy, %20
the following functions of one real variable

$ui:EBu—> R (0=<i=<n)
given by

def -1
bui ) fi (e ),

where Ey C R is a neighbourhood of 0, are linearly independent over R.
Although the proof of the Fibering Lemma mostly follows the argument of

[48, pp.9-10], for completeness full details are given in Appendix C. Note

that SprindZuk’s version of fibering involves the parametrisation ¢y ;(f) =

m—1
fi(urt, urtd, ..., umtd ).

Proof of Theorem 1 modulo Theorem 2 Let F,(B) be as in Theorem 1 and let
f=(f1,..., fn) € Fu(B). Without loss of generality we will assume that B
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Badly approximable points on manifolds 1207

is centred at 0. Also assume that m > 2 as otherwise there is nothing to prove.
Letu; = 1,1 > 0and §,,...,5, > 0 be sufficiently small numbers such
that

m m 2 m m—1 m
(tl+d oyt ddm A" )e B

, ust

whenever
o<t <to, Y8 <ui<8 Q2<i<=m. (12)

The existence of 1y, 82, ..., 8, is guaranteed by the fact that 0 is an interior
point of B. Let U be the set of u = (u», ..., u,) satisfying the right hand side
inequalities of (12) and D be the set of (¢, ua, ..., uy,) satisfying (12).

By the nondegeneracy of f, the functions 1, f1, ..., f, are linearly inde-
pendent. Since they are also analytic, by the Fibering Lemma, there exists
do(f) > 0 such that for every d > do(f) and every u € U the coordinate
functions of the map

m m 2 m m—1 m
O (R S IR (E)

defined on the interval I = (%to, to) together with 1 are linearly independent
over R. Since F,,(B) is finite,

do=max{dy(f) : f € F,(B)}

is well defined. Let d > dp. Then for every f € F,(B) and every u € U the
coordinate functions of the map (13) together with 1 are linearly independent
over R. By the well known criterion of linear independence, their Wronskian
is not identically zero. Hence, the Wronskian of f;, = %fu is not identically
zero. As an analytic function, it has isolated zeros. Hence, for a fixed u, there
are at most countably many points in / where the Wronskian of f vanishes
for some f € F,(B). Hence, there exists a point xo € I, which may depend
on u, such that for every f € 7, (B) the Wronskian of f], is not zero, that is f,
is non-degenerate at xo. Thus, Theorem 2 is applicable and we conclude that
the following subset of 1

Sa= () [)fa'Bad(r)

feF,(B) reW
has Hausdorff dimension 1. Here, by definition, f_ I(Bad(r)) is the set of
tel = (%to, to) such that f,(r) € Bad(r). Then, by Marstrand’s slicing

lemma, the set

S={{t,uy,...,up):t €Sy, ueclU} CD
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1208 V. Beresnevich

has Hausdorff dimension > dim U + 1 = m. Let S’ C B be the image of §
under the map

(t,MZ,---aum)'_) (-xl’7xm)

def m m 2. gm m—1+d™
= (tH'd cupt Ty oyt ) (14)

Then, in view of the definitions of S, Sy and f,;, we have that

sSc () ()t '®Badw)). (15)

feF,(B) reW

Further, note that (14) maps D into B injectively and is bi-Lipschitz on D,
since the map itself and its inverse (defined on the image of D) have con-
tinuous bounded derivatives. It is well known that bi-Lipschitz maps pre-
serves Hausdorff dimension, see for example [24, Corollary 2.4]. Therefore,
dim §’ = dim S > m. By (15), and the fact that any subset of R is of dimen-
sion < m, we obtain (8) and thus complete the proof of Theorem 1 modulo
Theorem 2. O

2.2 The dual form of approximation

So far we have been dealing with simultaneous rational approximations. Here
we introduce the dual definition of badly approximable points—see part (iii)
of Lemma 1 below. This has two purposes. Firstly, it is the dual form that
will be used in the proof of the results. Secondly, the dual form provides a
natural environment for considering Diophantine approximation by algebraic
numbers and will allow us to deduce further corollaries of our main results.

Lemma 1 (Equivalent definitions of Bad(r) ) Letr = (r1,...,r,) € Ry, and
y=1,-..,Yn) € R™ Then the following three statements are equivalent:
(1) y € Bad(r).
(ii) There exists ¢ > O such that for any Q > 1 the only integer solution
(g, p1, - .-, Pn) to the system

gl < Q. lgyi—pil<(cQ™")" (<i<n (16)
isq=p1=---=p,=0.
(iii) There exists ¢ > O such that for any H > 1 the only integer solution
(ag, ai, ..., ay) to the system

lag + aryr + -+ apyal < cH™', Jaj| < H" (1<i<n) (17)

isay=---=a, =0.
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The equivalence of (i) and (ii) is a straightforward consequence of the defi-
nition of Bad(r). The equivalence of (ii) and (iii) is relatively well known, see
Appendix in [13] for a similar statement. Indeed, this equivalence is essen-
tially a special case of Mahler’s version of Khintchine’s transference Principle
appearing in [38]. To make this paper self-contained we provide further details
in Appendix A.

2.3 Approximation by algebraic numbers of bounded degree

There are two classical interrelated settings in the theory of approximation by
algebraic numbers of bounded degree. One of them boils down to investigating
small values of integral polynomials P with deg P < n at a given number &.
The other deals with the proximity of algebraic numbers « of degree < n
to a given number &, see [14] for further background. In particular, the long
standing Wirsing—Schmidt conjecture [45, p. 258], which was motivated by
Wirsing’s theorem [49], states that for any n € N and any real transcendental
number & there is a constant C = C (&, n) > 0 such that

& —a| < CE, n)H(@) ™"

holds for infinitely many algebraic numbers « of degree < n, where H ()
denotes the height of « (to be recalled a few lines below). The n = 1 case
of the conjecture is a trivial consequence of the theory of continued fractions.
For n = 2 it was proved by Davenport and Schmidt [23]. However, there are
only partial results for n > 2. Note, however, that using Dirichlet’s theorem
it is easily shown that for any & € R there exists co = co(§, n) > 0 such that
|P(&)| < coH(P)™" for infinitely many P € Z[x] with deg P < n.

In this section we will deal with real numbers badly approximable by alge-
braic numbers. Given a polynomial P with integer coefficients, H (P) will
denote the height of P, which, by definition, is the maximum of the absolute
values of the coefficients of P. Given an algebraic number o € C, H (o) will
denote the (naive) height of «, which, by definition, is the height of the mini-
mal defining polynomial P of o over Z. It is also convenient to introduce the
following three sets:

B,=lteRr: dc; = c1(&,n) > Osuch that |P(§)| > cH(P)™"
" " for all non-zero P € Z[x], deg P <n ’
wi=lecr: 3y = cp(E,n) > O such that |§ — | < coH ()}
no " for infinitely many real algebraic & with degax <n |’
g=lecr: Je3 = ¢3(&,n) > O such that |§ — | > c3H (o) "}
no " for all real algebraic o with dega < n '
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1210 V. Beresnevich

The sets B, and B} are the natural generalisations of badly approximable
numbers to the context of approximation by algebraic numbers. They are
known to have Lebesgue measure zero, e.g., by a Khintchine type theorem
proved in [10]. Within this paper we will deal with the following two conjec-
tures that Bugeaud formulated as Problems 24 and 25 in his Cambridge Tract
[14, §10.2]:

Conjecture B1 B, contains a real transcendental number.
Conjecture B2 W, N B} contains a real transcendental number.

Note that Conjecture B1 is stronger than Conjecture B2 since we have that
B, cW,;NB;. (18)

The proof of (18) is rather standard. Indeed, it rests on the Mean Value Theorem
and Minkowski’s theorem for convex bodies, see Appendix B for details. Here
we establish the following Hausdorff dimension result that easily settles the
above conjectures.

Theorem 3 For any natural number n and any interval I in R

n n
dimﬂskm = dimﬂ(wgmzs;m) = 1.
k=1 k=1

Proof Without loss of generality we will assume that n > 2. Let

f:R—> R" suchthat f(x) = (x,x2,...,x"),

1 <k < nbeaninteger and ry = (%, R %, o,..., 0) € R,;, where the num-
ber of zeros is n — k. Let £ € R be such that f(§) € Bad(ry). By Property (iii)
of Lemma 1, there exists c(§, n, k) > O such that for any H > 1 the only

integer solution (agp, ay, . . ., a,) to the system

lag + ajx + -+ apx"| < c(€,n, k)H™",
laj| < HY* (1 <i <k,
lail < H® (k+1<i<n)

isay = -+ = a, = 0. Hence, for any non-zero polynomial P(x) =
arx® 4+ -+ 4+ ag € Z[x] with H(P) < H'Y* we must have that |[P(&)| >
c(E,n,k)H™" > c(&, n, k)H(P)~*. By definition, this means that & € B. To
sum up, we have just shown that f~! (Bad(r;)) C Bi. Hence
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Badly approximable points on manifolds 1211

n n (18) n
(' ®Badr) c (B C (\WinB;.
k=1 k=1 k=1

By Theorem 2, for any interval / C R we have that dim ﬂzzl f—1(Bad(ry))N
I = 1.In view of the above inclusions the statement of Theorem 3 now readily
follows. O

Remark Aninteresting problem is to show that Theorem 3 holds whenn = oo.

3 Lattice points counting

The rest of the paper will be concerned with the proof of Theorem 2, which
will rely heavily on efficient counting of lattice points in convex bodies. The
lattices will arise upon reformulating Bad(r) in the spirit of Dani [20] and
Kleinbock [30]. This will require the following notation. Given a subset A of
R+ Tet

8(A) = inf , 19
(A) acilo) llalloo (19)
where ||a||oc = max{|ag], ..., |a,|} fora = (ag, ..., a,). Given 0 < « < 1,
let
Gy = (< <Y (20)
7y - 0 In £

where y € R" is regarded as a row and I, is the n x n identity matrix. Finally,
givenr € R, b > 1 and t € R, define the (n + 1) x (n + 1) unimodular
diagonal matrix

grp =diag {p', b7, ... b7} 21)

Lemma?2 Lety € R", r € R,,. Then'y € Bad(r) if and only if there exists
k € (0,1) and b > 1 such that forall t € N

8 (2,GU; NZ') = 1. (22)

Proof The necessity is straightforward as all one has to do is to take H = b’
and divide each inequality in (17) by its right hand side. Then, assuming
that y € Bad(r), the non-existence of integer solutions to (17) would imply
(22) with k = c. The sufficiency is only slightly harder. Assume that for
some k and b inequality (22) holds for all + € N, while y ¢ Bad(r). Take
¢ = «k/b. By definition, there is an H > 1 such that (17) has a non-zero
integer solution (ao, ..., a,). Take t = [log H/logb] + 1, where [-] denotes
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1212 V. Beresnevich

the integer part. Note that Hb~" < 1 and H~'b’' < b. Then (17) implies that
8(g£’ »G (x; y)Z"t1) < 1, contrary to (22). The proof is thus complete. O

Remark Lemma 2 can be regarded as a variation of the Dani—Kleinbock cor-
respondence between badly approximable points in R” and bounded orbits of

certain lattices under the actions by the diagonal semigroup { gk, 1>0¢,

where b > 1. Itis easily seen that this semigroup is independent of the choice
of b > 1, which is usually taken to be ¢ = exp(1). The correspondence was
first established by Dani [20] in the case r = (,ll e %) and then extended
by Kleinbock [30] to the case of arbitrary positive weights and can be stated
as follows. The point y € R" is r-badly approximable if and only if the orbit

of the lattice G (1; y)Z"*! under the action by { gi’ e 1> 0} is bounded.

We proceed by recalling two classical results from the geometry of numbers.
In what follows, voly(X) denotes the ¢-dimensional volume of X C Rf and
#X denotes the cardinality of X. Also det A will denote the determinant or
covolume of a lattice A.

Minkowski’s Convex Body Theorem (see [45, Theorem 2B]) Let K C R¢ be
a convex body symmetric about the origin and let A be a lattice in Rt. Suppose
that voly(K) > 2t det A. Then K contains a non-zero point of A.

Theorem (Blichfeldt [12]) Let K C R be a convex bounded body and let A
be a lattice in Rt such that rank (K N A) = €. Then

voly (K)
et A

#KNA) < 0

The following lemma is a straightforward consequence of Blichfeldt’s theo-
rem.

Lemma 3 (cf. Lemma 4 in [34]) Let K be a convex bounded body in R with
0 € K and voly(K) < 1/£\. Then rank (K N ZH <t —1.

Proof Assume the contrary, that is assume that rank (K N Z%) = ¢ (note that
the rank cannot be bigger than £). It means that K contains at least £ non-zero
integer points. Since 0 € K, we then have that # (K N Z[) > ¢ + 1. However,
since det Z¢ = 1 and vol,(K) < 1 /£!, by Blichfeldt’s theorem, we conclude
that

(K 1/¢!
#(sz‘f)gezv‘;‘—() /

+€<€!T+€<1+Z,

contrary to the above lower bound. O
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Badly approximable points on manifolds 1213

The bodies K of interest will arise as the intersection of parallelepipeds
Mo ={x=(x0,.... %) e R i |x;| <6, i=0,....,n} (23)

with £-dimensional subspaces of R"*!, where @ = (0, ..., 6,) isan (n + 1)-
tuple of positive numbers. In view of this, we now obtain an estimate for the
volume of the bodies that arise this way (Lemma 4 below) and then verify
what Blichfeldt’s theorem means for such bodies (Lemma 5 below).

Lemmad Letf e N, £ <n+1,0 = (6,...,60,) with6y, ...,0, > 0. Then
for any linear subspace V of R"*! of dimension £ we have that

volg(TTp NV) < 28 + 1)?0,, where ©; =  max 0;.

Proof Since V is a linear subspace of R"*! of dimension ¢, it is given by
n + 1 — £ linear equations. Using Gaussian elimination, we can rewrite these
equations to parametrise V with a linear map f : R® — R"*! of Xips - nes Xig
such that

f(xil"--axi() = (xip---,xig)M,

where M = (m; ;) is an £ x (n + 1) matrix with |m; ;| < 1 forall i and j.
Then note that vol,(ITg N V') is bounded by the area of the intersection of V

with the cylinder |x,'j| < Gij for j =1, ..., €. This area is equal to
Oy O | of of
/ / — AN N — dxil...dxie, 24)
—0;, —0i, axil axié e
where || - ||, is the Euclidean norm on A“ (R"*1). Since |m; ;| < 1, every

coordinate of every partial derivative of f is bounded by 1 in absolute value.
Hence ||0f/dx;; [l < +/n + 1 and the integrand in (24) is bounded above by
(+/n + 1). This readily implies that the area given by (24) is bounded above
by 2¢(n + 1)%/26;, ... 6;, < 2¢(n + 1)*/2@,, whence the result follows. O

Lemma 5 Let c(n) = 4" (n + D*TD/2(n + 1)! and let @ and O, be as in
Lemma 4. Then for any discrete subgroup T of R"T1 with ¢ = rank (F N 1'[0) >

0 we have that
Oy

()¢

Proof Let V = span(I' N I1g) and A = V N T. Clearly, rank (A) = ¢ and
furthermore A is a lattice in V. Also note that ' N 1y = A N Iy. Since

#(I' NMy) < c(n) +n+1. (25)
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1214 V. Beresnevich

A C T', we have that §(I") < §(A). Let B(r) denote the open ball in V of
radius r centred at the origin. Note that the length of any non-zero point in
A is bigger than or equal to §(A) > &(I"). Hence, by Minkowski’s convex
bodies theorem, we must have that vol¢(B(8(I')) < 2‘det A, whence we
obtain det A > voly(B(8(A)))27¢ > (8(A)/2)¢. Now using this inequality,
Blichfeldt’s theorem, Lemma 4 and the fact that £ < n + 1 readily gives (25).

We are now approaching the key counting result of this section. Let

Nk, u) ¥, with 0 =0"1,....1), (26)

where u > 0, b > 1 and Iy is given by (23). Givenr € R, let

@) L #i =0} and A E (14+7m) " 27)

Recall that 7(r), §(-), gi’b and I1(b, u) are given by (9), (19), (21) and (26)
respectively, and [x] denotes the integer part of x.

Lemma6 Letbh > 1, re R, A=A(r),z=z(r),teNuelR 1<iu<t
and c(n) be as in Lemma 5. Let g' = g:_’b. Let A be a discrete subgroup of
R™*! such that rank A < n — z and

8(g' A > 1. (28)

Then
#(g'A) NTI(b, u) < 2c(n)b*b™. (29)

Proof Letx = (xq,...,x,) € A be such that g'x € I1(b, u). By the defini-

tions of g’ = g;’b and T1(b, u), we have that b’ |xg| < b* and b7 |x;| < 1
fori =1,...,n. Equivalently, fors € Z, 1 <s < u — 1, we have that

b |xol < b5 and b |x;| < b (1 <i <n).

This can be written as g’ 5x € Iy, where = (b"*, 0", ..., b'™%). There-
fore,

(&'M)NT(b,u) = I' NIy, (30)
where I' = g’ 7*A. Now take s = [Au]. Recall that A < 1 and that, by the
conditions of Lemma 6, [Au] < ¢. Then, by the left hand side of (28), we have
that §(I") > 1. Hence, by Lemma 5 and (30), we get

#G'AM) NI, u) = #(T'NT) < c(M)Op+n+1, (31)
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Badly approximable points on manifolds 1215

where £ = rank I' = rank A < n — z. Note that all the components of 6 are
> 1 and exactly z of them equal 1. Then, since £ < n — z and s = [Au], we
get that

< 9() .. Qn - b gmax{b)‘”, bu—r(ku—l)} — bl’bku‘
min{f; : 6; > 1} min{b¥~5, b¥5}

Combining this estimate with (31) and the obvious factthatn+1 < c(n)bT b
gives (29). |

4 ‘Dangerous’ intervals

In view of Lemma 2, when proving Theorem 2 we will aim to avoid the
solutions of the inequalities § (gi beZ”“) < 1, where G, = G(x;y) with
y = f(x) and « is a sufficiently small constant. For fixed r, b, z, f and « the
above inequality is equivalent to the existence of (ag, a) € Z"*! witha # 0
satisfying

| lag + a.f(x)| < kb, (32)

lai| < bt (1 <i <n).

Here the dot means the usual inner product. That is a.b = a1b; + - - - + a, by,
for any given a = (ay,...,a,) and b = (by, ..., b,). In this section we
study intervals arising from (32) that, for obvious reasons, are referred to
as dangerous (see [45] for similar terminology). We will consider several
cases that are tied up with the magnitude of a.f’'(x); i.e., the derivative of
ao + a.f(x)—see Propositions 1 and 2 below.

Throughout F;, (1) and x¢ are as in Theorem 2. First we discuss some con-
ditions that arise from the nondegeneracy assumption on maps in JF, (/). Let
f=(f1,..., fn) € F,(I). Since f is nondegenerate at xg € I, there is a suf-
ficiently small neighborhood /¢ of xq such that the Wronskian of f{, ..., f,,
which, by definition, is the determinant det ( f j(l)) \<i,j<n’ is non zero every-
where in Ir. Then every coordinate function f; is non-vanishing at all but
countably many points of Iy C [—see, e.g., [5, Lemma 3]. Since f € C"
and F,(I) is finite, we can choose a compact interval I C (¢ F,() If C1
satisfying

Property F There are constants 0 < ¢p < 1 < ¢1 such that for every map
f=(f1,..., fn) € Ful),forallx € Ip, 1 <i <nand0 < j < n one has
that

det (170011 1| = €00 1fj@ > 0 and £ @] <er. (33)
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1216 V. Beresnevich

Next, we prove two auxiliary lemmas that are well known in a related
context.

Lemma 7 (cf. Lemma 5 in [5]) Let Iy C I be a compact interval satisfying

Property F. Let 2¢c) = cocl_”“n!_l, where co and cy arise from (33). Then for
any f € F,(I), any a = (al,. .oy ay) € Z"\{0} and any x € Iy there exists
i €{l,...,n}suchthat |af®(x)| > 2¢c, maxi<j<y la;l|.

Proof Solving the system alfl(i)(x) + -+ ay fn(i)(x) = a.f®(x), where
1 <i < n, by Cramer’s rule with respect to a; and using (33) to estimate the
determinants involved in the rule we obtain

la;| < C7_1 . n!co_1 [max a.f(i)(x)‘
<i<n
foreach j = 1, ..., n, whence the statement of lemma readily follows. O

Lemma 8 (cf.Lemma6in [5]) Let Iy C I and cy be as in Lemma’l. Then there
is 80 > 0 such that for any interval J C Iy of length |J| < 8o, any £ € F, (1)
anda = (ay, -+ ,ap) € Z"\{0}, there isani € {1, ..., n} satisfying

inf a.f(i)(x)‘ > ¢y max |aj|. (34)
xeJ 1<j<n

Proof Since Iy is compact, for each f € F,(/) and 1 < i < n, the map
£ js uniformly continuous on /y. Hence, there is a §;f > 0 such that for
any x,y € Ip with |[x — y| < §;¢ we have ‘f(i)(x) - f(i)(y)‘ < ¢p/n. Let
J C Ip be an interval of length |J| < §; ¢ and x, y € J. By Lemma 7, there is
i €{l,...,n}suchthat [a.f(x)| > 2cyh, where h = max; <<, |a;|. Then

laf@ ()| > lafDx)| — |afD(y) — afD(x)| > 2c2h — nhea/n = crh.

(35)
Since F;, (1) is finite, 8o = inf; ¢ §; ¢ > 0. Hence (35) implies (34) provided
that |J| < dp. |

Proposition 1 Let Iy C I be a compact interval satisfying Property F and
f € F,(I). Further, let §g be as in Lemma 8, r € R,, and

def
y =y(@) = max{r,...,r). (36)
Finally, lett e N, £ € Z=0, b > 1, a € Z"\{0}, ap € Z, 0 < k < 1 and
lag +af(x)| < kb™!

D}y rpus@,a)=1xely : bV~ < jaf/(x)] < pr'=0FE=D
la;| < b""
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Then, there is a constant c3 > 0 depending on n, |1y|, c1, €2 and 8o only such
that the set Dt ‘

A.r,bic Y G FHIE EE AR B R AR Tl bk,
of at most c3 intervals A of length |A| < kb~ (1F =0,

sssss

D' # ¢ as otherwise there is nothing to prove. Since Iy can be covered by
at most [80_ 1|10|} + 1 intervals J of length |J| < §g, it suffices to prove the

proposition under the assumption that |Io| < §p. Let f(x) = ag + a.f(x).
Then, by Lemma 8, we have that | f @ (x)| > 0 forafixedi € {1, --- ,n} and
all x € Iy. First consider the case i > 1. Then, using Rolle’s theorem, one
finds that the function f () (x) vanishes on Iy at < i — jpoints (0 < j <i—1).
Assuming that Ip = [a, b], letxg = a < x1 < -+ < Xy3—1 < x5 = b be the
collection consisting of the points a and b and all the zeros of sz—:}) FPx).

Then, as we have just seen s < 1 + Z’j_:})(i —j)=1i(i+1)/2+ 1. By the
choice of the points x;, we have thatfor 1 < g < sand0 < j <i —1
the function f)(x) is monotonic and does not change sign on the interval
[x({ 1, X41. Therefore, in view of the definition of D! we must have that A, =

N [x4—1, x4] is an interval. Hence, D! = U2:1 A4, a union of at most
i+ 1Di/241<m+ 1)n/2 + 1 intervals.

It remains to estimate the length of each A,. To this end, take any
x1,x2 € Ay. By the construction of A,, the numbers f(x;) and f(x2)
have the same sign and satisfy the inequality |f(x;)] < «b~'. Hence,
| f(x1) — f(x2)| < kb~". By the Mean Value Theorem, | f(x1) — f(x2)| =
| f/(0)(x1 — x2)|. Hence |x; — x2| < «kb™"/|f'(0)]. Since A, C D! is an
interval, & € D!. Hence, | f/(©)] > b7!=U+¥)E and we obtain that |x; — x| <
kb~ o vIHAHENE — 4 p=(+Y) (=0 This estimate together with the obvious
equality [Ag| = sup, r,ea, IX1 — X2| implies that |Ag| < kb~ IHVE=0)
Thus, if i > 1, the set D! can be covered by at most n(n + 1)/2 + 1 intervals
of length kb~ (1+1) =0

Now consider the case i = 1. Recall that f(x) = ag + a.f(x). Then, by the
definition of D! and (33), for x € D! we get

b/~ <7 (0)| = laf'(x)] < cin max aj. (37)
1<j<n

Further, (34);=; implies that inf,cy, | f'(x)| > c2 max;< j<n laj|. Therefore,
f is monotonic on Iy and D! is covered by a single interval A defined by the
inequality | f(x)| < kb~!. Arguing as above and using (37) we get

2kb™! - 2ub™!

T infrep /()] T comaxi<j<, |ajl
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1218 V. Beresnevich

2cinkb™! _ 2cin < kb~ ATVE=0)
= o=t T g '

Thus, by splitting A into smaller intervals if necessary, D! can be covered by
at most [25—;"] + 1 intervals of length kb~ (1+7)(=0) o

Proposition 2 Let Iy C I be a compact interval satisfying Property F and
y = y(r) be given by (36). Then there are constants Ko > 0 and 0 < kg < 1
such that for any f € F,(I), anyr € Ry, t e N0 <e <y, b > 1 and
0 < k < kg the set
th,s,r,b,;(,f
lag +a.f(x)| <k b™!
= {xely:TacZ"\{0} and ag € Z such that |a.f' (x)| <nc; bV o1

lai| < b1
can be covered by a collection Di e.r.bf Of intervals such that
Al <8 forall AeD}, ., (38)
and
#D} ¢ et < M, (39)

where 8; = k b 1UTY=8) gnd o = m

Proposition 2 will be derived from a theorem due to Bernik, Kleinbock and
Margulis using the ideas of [6]. In what follows |X| denotes the Lebesgue
measure of a set X C R. The following is a simplified version of Theorem 1.4
from [11] that refines the results of [33].

Theorem 4 (Theorem 1.4 in[11]) Let I C R be an open interval, xq € I and
f : I — R" be nondegenerate at xqo. Then there is an open interval J C [
centred at xg and Ej > 0 such that for any real w, K, Ty, . .., T, satisfying

O<w=<l, T,....,T, 21, K>0 and KT ---T, <maxT;
1

the set

e laf(x)] < w
S(w, K, Th,....,T,) = yx €l : JacZ"\{0} |af(x)|<K
lail <T; (1 <i=<n)
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Badly approximable points on manifolds 1219

satisfies

1
1\ =1
KT, ...T,\m
1S(w, K, Ty, ..., T)NJ| < EJ-max(a), (wl—) ) . (40)
max; T;

We will also use the following elementary consequence of Taylor’s formula.

Lemma9 Let f : J — R be a C? function on an interval J. Let v, K > 0
and y € J be such that | f"(x)| < K*/w forall x € J and

IfW)I <w/2 and |f'(M)] < K/2. (41)

Then |f(x)| < w and |f'(x)| < K forall x € J with |x — y| < w/2K.

Proof of Proposition 2 Fix any f € F,(I). We will abbreviate Di b f 3
D? and naturally assume that it is non-empty as otherwise there is nothing
to prove. By (33), f is nondegenerate at any x € Iy and therefore Theo-
rem 4 is applicable. Let J = J(x) be the interval centred at x that arises
from Theorem 4. Since Iy is compact there is a finite cover of Iy by inter-
vals J(x1),...,J(x5), where s = s¢ depends on f. Let 0 < x¢9 < 1
and ko < minj<;<s |lop N J(x;)|. The existence of ko is obvious because
[Iop N J(x)| > 0 for each x € I.
Let0 <« <kp,re Ry, t€N,0<e <y,b>1andlet

w=2b"", K=2nc;b" " and T;=b" (1<i<n). (42

Note that since ¢ < y and ¢; > 1 we have that K > 2. Also note that w < 2k.
For each i € {1, ..., s} define the interval J; = (¢; + w/2K, b; — w/2K),
where [a;, b;] is the intersection of Iy and the closure of J(x;). Since k <
ko < |[lIopN J(x;)], w < 2k and K > 2, we have that J; # ¢ for each i. Let

D’= U U (-o/2K,y+w/2K). (43)
I<i<s yeD2nJ;

Our goal now is to use Lemma 9 with f(x) = ag + a.f(x) in order to show
that

D*c U Sw,.K,Ti,...,T,)NJ(xp). (44)
1<i<s
In view of the definitions of D? and S(w, K, T4, ..., T,) and the choice of

parameters (42), inequalities (41) hold for every y € D?. Further, by (33), the
inequalities |a;| < b"i" and the fact that r; < y for all i implied by (36), we
get that

|f"(x)] < ncy max |aj| < nep max b < neib?’. 45)
l<j=n I<j=n
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1220 V. Beresnevich

Next, K?/w = %nzc%/c_lbz(y_g)tb’ > nc b’ because ¢ <y < 1,c1 > 1
and k < 1. Therefore, by (45), we have that | f”(x)| < K?/w for all x € I.
Thus, Lemma 9 is applicable and for 1 < i < s we have that {x : [x — y| <
w/2K}C S(w, K, Ty,...,T,) N J(xj)eachy € D? N J;. This proves (44).
Next, by Theorem 4, condition r| + - - - +r, = 1 and (44) we conclude that

|D?| < Ex - (4ncieb™")" (46)

where Ef = s maxi<;<s Ej(y;). By (43), D? can be written as a union of
disjoint intervals of length > w/K = (ncy) 'k b~/(1+7=9) = (ercl)_lc?,. By
splitting some of these intervals if necessary, we get a collection D? of disjoint
intervals A such that ClinS, < |A| < 4. Let

Ko = max max{dsg, dnc)) T Eg).
feF, (1)

Then, by (46) and the above inequality, we get

E¢ - (4ncieb=")" _ Ko (k b=Eh)*
L(S[ B 28[ ‘

cin

#D? < 47)

Let D? be the collection of all the intervals in D? together with the 2s intervals
lai,ai + w/2K] and [b; — w/2K, b;] (1 <i < s).Itis easily seen that 2s is
less than or equal to the right hand side of (47). Then, by (47) and the definition
of D%, we get (38) and (39). Also, by construction, we see that D? is a cover
of D?. The proof is thus complete. O

5 A Cantor sets framework

Let R > 2 be an integer. Given a collection Z of compact intervals in R, let
%I denote the collection of intervals obtained by dividing each interval in Z
into R equal closed subintervals. For example, for R = 3 and Z = {[0, 1]}
we have that %I = {[O, %], [%, %], [%, 1]}. Let Iy C R be a compact interval.
The sequence (Z,)4>0 will be called an R-sequence in I if

To={lo} and I, C £Z,—1 for ¢ > 1. (48)

The intervals lying in Z, will be called to be of level g. Thus, the intervals
of level ¢ are obtained from intervals of level ¢ — 1 by, firstly, splitting the
intervals of 7,1 into R equal parts to form %Iq_l, and, secondly, removing
some of the intervals from %Iq_l to form Z,. Given g € N, the intervals that
are being removed in this procedure will be denoted by
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7,

= def
g =

7La-1)\Zq-

Naturally, I, will denote any interval from the collection 7, thatis any interval
of level g. Observe that

|I;| = R™|Iy| for g > 0. (49)

By definition, given I, € 7, with ¢ > 1, there is a unique interval I, | €
741 such that I, C I;_1; this interval I, will be called the precursor of
I;. Obviously it is independent of the choice of the R-sequence (Z;)4>0 with
I, €1,.

We also define the limit set of (Z,)4>0 as

K@= = () U 1o (50)

q=0 1,€1,

This is a Cantor type set. The classical middle third Cantor set can be con-
structed this way in an obvious manner with R = 3 and Iy = [0, 1]. Theorem 2
will be proved by finding suitable Cantor type sets K ((Z,)4>0). The construc-
tion of the corresponding R-sequences will be based on removing the intervals
that intersect dangerous intervals—see Sect. 4.

Note thatif Z, # () forall g sothat (Z,),>0 is genuinely an infinite sequence,
then K((Z;)4=0) # ¥. However, ensuring that K((Z,),>0) is large requires
better understanding of the sets Z,. There are various techniques in fractal
geometry that are geared towards this task—see [24]. We shall use a recent
powerful result of Badziahin and Velani [16] restated below using our notation.
Naturally, if we expect that the Cantor set K ((Z,)4>0) is large then the number
of removed intervals at level g, that is the cardinality of 7,,, should be relatively
small. In what follows, given ¢ € N and an interval J, let

Z,nJ ¥ U,eq, 1, c .

This denotes the subcollection of removed intervals (when going from level
q — 1to level g) that lie over a given interval J. The key characteristic that is
‘assessing’ the proportion of removed intervals at a particular level is given by

q-p
d,(1y) = mmZ( ) max#(Iq’pl‘IIp) , (&2))
{,, p}p Ip€Ip

o~

where the minimum is taken over all partitions {Iq p} —0 L of Iq, thatis 7, =

Uq ' 7 14, p- Also define the corresponding global characteristic as
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1222 V. Beresnevich

d ((Iq)qzo) = su% dq(Zy).
q>

The goal is to ensure that d((Z;),>0) is small. Then as we shall shortly see the
corresponding Cantor set is large. Note that when estimating d, (Z,) the key is
to arrange the removed intervals into a partition UZ;}) /I\q, p which makes the
sum on the right of (51) small.

Theorem 5 (Theorem 4 in [16]) Let R > 4 be an integer, Iy be a compact
interval in R and (1;)4>0 be an R-sequence in Iy. If d((1y)4>0) < 1 then

. log 2
dim K((Zy)g=0) > (1 — logR) . (52)

In order to facilitate the comparison of Theorem 5 to [16, Theorem 4] we
summarise the correspondence between the notation and objects used in this
paper and in [16]:

Our notation/object|Corresponding notation/object in [16]
gn+1

R| R, (allowed to vary with n)

%Iq—l Ty

Iq jn—i—l

pin—k (O <k<n

maxj,ez, #(Iq,p A1)\ rn—kn

Given the above correspondence table, it is readily verified that our condition
d((Zy)g=0) < 1 corresponds to condition (16) within [16, Theorem 4]. Hence
Theorem 5 above is an immediate consequence of Theorem 4 from [16].

Let M > 1, X C R and Iy be a compact interval. We will say that X is
M-Cantor rich in Iy if for any ¢ > 0 and any integer R > M there exists an
R-sequence (Z;)4>0 in Iy such that K((Z;)4>0) C X and d((Zy)4>0) =< &.
We will say that X is Cantor rich in Iy if itis M-Cantor rich in Iy for some M.
We will say that X is Cantor rich if it is Cantor rich in Iy for some compact
interval Iy. The following statement readily follows from Theorem 5 and our
definitions.

Theorem 6 Any Cantor rich set X satisfies dim X = 1.

We now proceed with a discussion of the intersections of Cantor rich sets.
To some extent this already appears in [16, Theorem 5] and in [13]. First we
prove the following auxiliary statement.
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Lemma 10 Let (Ié ) o be a family of R-sequences in Iy indexed by j. Given
q=0
q € Lo, let Jy = ﬂj Ié. Then (J4)q>0 is an R-sequence in Iy such that

Jy cU; Ty forall q=0 (53)

K ((jq)qzo) c;K ((Ig)qzo) : (54)

Proof The validity of (48) for (J;)4>0 follows from the uniqueness of the
precursor of an interval in any R-sequence from that sequence and the fact
thatI(j) = {Ip} for all j, which means that 7y = ﬂjIJ = {lp}. Thus, (Jy)g=0
is truly an R-sequence. The inclusion (53) is obvious for ¢ = 0 for both sides
of the inclusion are empty sets in this case. To see (53) for g > 0, observe
that 7, 1 C I _; and this implies that qu 1 C RIq | for each j. Then we
have

and

jq = %jq—l\jq:%jq—l\njz};: Uj (%Jq—l\lg)
cU; (%Ié—l\zé) = UquJ~

Finally, by the inclusion 7, C Ij, we have that (J J, € U I[{ for each pair
of j and g, where the union is taken over J, € J, and Iqj S Ié respectively.

Hence, by (50), we have that K((J;)¢>0) C K((Ié)qzo) for all j, whence
(54) now follows. O

Theorem 7 Let Iy be a compact interval. Then any countable intersection
of M-Cantor rich sets in Iy is M-Cantor rich in ly. In particular, any finite
intersection of Cantor rich sets in 1y is Cantor rich in Iy.

Proof Let {X}jen be a collection of M-Cantor rich sets in Iy. Let & > 0.
Then, by definition, for each j € N and R > M there is an R-sequence

(T))g=0 in Iy such that KC((ZJ)y=0) C X; and dy(T]) < e277 for allg > 0.
q= q=

By (51), for each j and ¢ > O there exists a partition {Iqj, p} p=0 of Ié such
that

=l saNa-p .
z (E) max #(Iq pl ) <27, (55)

=0 1,€T)

For q € Zxq define J; = ﬂjeNIj and j;p = :7; N UjeNAgp Since
Uq IIJ for each j, by (53), we have that jq = Uq qu p» Where
q > 0. Then for each ¢ > 0 we get that
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a=l s aNa-p % ¢-1 q-p
— max# I‘IJ max#(I I‘II)
S (E) e S5 ()

J
p= j=1p=0 Ipely

This inequality together with (55) and the definition of d((J;)4>0) implies
that d((J,)g=0) < &. By (54) and the fact that K ((I; ) ) C X, for each

q=0
J»we have that K((J,)g>0) C N i X j. Thus the intersection N j X j meets the
definition of M-Cantor rich sets and the proof is complete. O

The winning sets in the sense of Schmidt have been used a lot to investigate
various sets of badly approximable points. Hence we suggest the following

Problem 3 Verify if an a-winning set in R as defined by Schmidt [45] is M-
Cantor rich for some M and, if this so, find an explicit relation between M
and «.

6 Proof of Theorem 2

The following proposition is a key step to establishing Theorem 2. We will
use the Vinogradov symbol « to simplify the calculations. The expression
X « Y will mean that X < CY for some C > 0, which only depends on
n, the family of maps F, (1) from Theorem 2 and the interval /j occurring in
Property F.

Proposition 3 Let F,,(I) be as in Theorem 2, Iy C I be a compact interval
satisfying Property F, co, ¢ be the same as in (33),0 =1 — (2n)~* and ko be
as in Proposition 2. Further, let

o1 =nci|lo| +1 and o0 = o1|lol + 1 (56)
and let "
!
Ro = max {Qo, ncy, gogi(n + 1) } (57)
€0
and .
m(y = max {4,ﬂ+1}. (58)
log Ro

Then for any f € F,,(I), r € R, and any integers m > mqg and R > Ry, there
exists an R-sequence (1y)4>0 in Iy such that

(1) foranyt € Nand any Iy, € L1, we have that

8(g'GZ") > 1 forall x € Ipm: (59)
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where g' = gi’b is given by (21) with b’V = R, y = y(r) and
Gx = G(k; £(x)) is given by (20) withk = R™™,;
(ii) if g <m then #1, =0; A
(iii) if ¢ = t + m for some t € N then 1, can be written as the union

~

I, = U;];;%) 1,.p such that for integers p =t +3 — 20 with 0 < £ <
Ly =[t/2n] + 1 and I, € I, we have that

#(fq,p nil,) < RHTA(q—P)—l%Am—H ’ (60)

47,0 < R (61)

and fq,p = 0 for all other p < q, where > = A(r) is given by (27).

Proof Notethatsince oo, 01 > landcg < 1,wehavethat Ry > 4.Letm > my
and R > Ry be any integers. Define 7o = {lp} and then forg =1, ..., m let
1, = %Iq_l. In this case conditions (i) and (iii) are irrelevant, while (ii) is
obvious. Continuing by induction, let g = ¢t +m with ¢ > 1 and let us assume
that Z, with q' < q are given and satisfy conditions (i)—(iii). Define 14 to
be the collection of intervals from %Iq_l that satisfy (59). By construction,
(1) holds, (ii)Ais irrelevant and we only need to verify condition (iii/)\. We shall
assume that Z, # () as otherwise (iii) is obvious. By construction, Z, consists
of intervals I, such that § (g’ G,Z"*!) < 1 for some x € I,. Recall that this is
equivalent to the existence of (ag, a) € Z"+! with a # 0 satisfying the system
(32). We shall use Propositions 1 and 2 and Lemma 6 to estimate the number
of these intervals ;. Before we proceed with the estimates note that, by (33)
and (36), the validity of (32) implies that |a.f'(x)| < nc; maxj<j<y laj| <
neymaxi<j<p b'i' = neyb?’. Thus,

Vxelp 8(¢'GZ") <1 = |af'(x)| <ncd”. (62)

The arguments split into two cases depending on the size of ¢ as follows. Note
that in view of our choice of m( we have that

k=R < kg

and so Proposition 2 is applicable as appropriate.
Case 1: ¢t < 2nm. In this case let /I\q,o = fq and /I\q,p =0for0 < p <gq.
Then, the only thing we need to verify is (61). Let ¢ = 0. Then, by (62), we
have that

{x ely:8(g'G:Z"t") < 1} = Dy, (63)
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S, UKy

is bounded by the number of intervals in %Iq_l that intersect an interval from
the corresponding collection D(Z) of intervals arising from Proposition 2. By
(49), the intervals in %Iq_l are of length R™7|Iy|. By (38), the intervals from
D(Z) have length < §; = Kk b™"! (+7) Hence, each interval from Dg can intersect
at most 8, /(R™4[Io|) + 2 = « b=+ R4|I5] =1 + 2 intervals from +Z,_.
Since b!7Y = R,k = R™™ and ¢ = t + m, we have that §;/(R™%|Iy|) =
|Io|~!. Hence each interval from D(z) can intersect << §;R? intervals from
%Iq_l. Then, by (39), we get

Kok®

#1,0 <8R x K RT x «*. (64)

t

Usingg =t +m,x = R™™ and ¢t < 2nm we obtain from (64) that

#Z,0 < R x (R™™)® < gUzs)eem _ p(i-z)e (g5

Recall frgm P.roposition 2 thata = m Consequently,o > 1 —
and (65) implies (61).

Case2:1 > 2nm.Lete = (2n)~!. Since >iri=landy =max{ri, ..., r},
we have that y > 1/n. Hence ¢ < y. Recall that R > ncy. Then, by (62) and
the choice of ¢, for any x € Iy such that §(g' G, Z"*t1y < 1 we have that either

_o
2n+1

la.f'(x)| < nc; bV 9"
or forsome £ € Zwith0 <{¢ < {¢, =[t/2n] + 1
Then, once again using the equivalence of § (g’ G XZ”“) < 1 to the existence
of (ag, a) € Z"! with a # 0 satisfying (32), we write that
4
{ren:s@'czy<1y=J) U U Di@.ayuD? (66
(=0 aeZ"\{0} apcZ
where
Dl(a a)=D1 (ap,a) and D? = D?
¢ \40, t,0,r,b,k,£\40> t,e,r,b,1c.f

as defined in Propositions 1 and 2 respectively.

@ Springer



Badly approximable points on manifolds 1227

By definition, intervals in fq are characterised by having a non-empty inter-
section with the left hand side of (66) We now use the right hand side of (66)
to define the subcollections Iq p of I More precisely, for p = 1+ 3 2¢ with
0<?<{let Iq p consist of the 1nterva1s I, € I that intersect D (ap, a) for
some a € Z"\{0} and ap € Z. Next, let Iq o consist of the 1nterva1s I, € I
that intersect D?. Finally, define Iq p = ¥ for all other p < q. By (66) it is

easily seen that 7, = U(f):g) ¢, p- It remains to verify (60) and (61).

e Verifying (61) This is very much in line with Case 1. The goal is to count
the number intervals in %Iqq that intersect some interval from the collection
D? arising from Proposition 2. By (49), the intervals in %Iq_ 1 are of length
R™4|Iy|. By (38), the intervals from D? have length < &, = «x b~/(1+7=8),
Hence, each interval from D? can intersect at most &; J(R™9)1y]) +2 < §;RY
intervals from %Iq_l. Then, by (39), we get

Ko (IC b_gt)a

t

#T,0 <8 RY x <RI x (ke b™e")"

Usingk = R™",b'*Y = R, g =t +mand 0 < y < 1, we obtain that

#fq 0 K RY x (R_m R—é‘l‘/(l-‘r)’))a < RCIR—ETQ(Z‘-FM) — R(l—é‘()l/z)q‘ (67)

Once again using the value of « from Proposition 2 we verify thato > 1— %80[
and so (67) implies (61) as required.

o Verifying (60). Let p =t +3 —2¢ withO < ¢ < {,and I, € Z),. Let S(I)
be the set of points (ag, a) € 7'+ with a # 0 such that D, (ap, a) N I, # 0.
By Proposition 1, for every (ap, a) € S(I,) any interval in Dé (ap, a) is of
length

as k = R™™, b = R and ¢ = t + m. Then, by (49), any interval
from D} (ap, a) intersects < RY intervals from % q—1. By Proposition 1,
#D;(ag,a) < 1. Hence,

#(Zypn1y) < #S(I,) x R (68)

and our main concern becomes to obtain a bound for #5(/,). We shall prove
that .

Armed with this estimate establishing (60) and thus completing our task
becomes simple. Indeed, using (68) and (69) gives
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Freem=3) -l mt ity

#(T,,n1,) < R

which implies (60) upon observing that2¢+m—3 = g — p and 3% + liy < 3.

Proof of (69) We assume that S(/,) # @ as otherwise (69) is trivial. The proof
will be split into several relatively simple steps.

Step 1: We show that for any (ag, a) € S(I,) and any x € I, we have

lag + af(x)| < eob TUHNED and Jaf'(x)| < o b7~ UHNED]
(70)
where gg and o are given by (56).
First we prove the right hand side of (70). To this end, fix any (ag, a) € S(I))
and let xg € Dl} (ao, a) N I,. To simplify notation define f(x) = ap + a.f(x).
By the Mean Value Theorem, for any x € I, we have

Lf' Ol = 1 (x0) + [ (Fo)(x = x0)| < | f'(x0)| + 1 f" (o) (x —x0)l, (71)

where X is a point between x and xg. By the definition of Dl} (ap, a), we have
that | f/(x)| < bY'~+E=D Proceeding as in (45), we get that | £ (X9)| <
nc1b?’. Substituting the estimates for | f/(xo)| and | f” (Xo)| into (71) and using
the inequity

x = xol < Il = R™P|Io| = R™H3720 ] (72)

implied by (49), we get
|f/(x)| < byl—(l-f')/)(E—l) +nclbyl X R—(l+3—21€)|10|
Since b'17 = R, we have that
|f/(x)| < byl—(1+)/)(ﬁ—1) + ney |10|b]/l—(1+)/)(l+3—2€)' (73)
Since £ < ¢; < t/4 + 1, one easily verifies that (r +3 — 2¢) > (£ — 1).
Therefore (73) implies the right hand side of (70).
Now we prove the left hand side of (70). Again fix any (ag, a) € S(Ip),

X0 € Dé (ap,a)N I, andlet f(x) = ap+a.f(x). By the Mean Value Theorem,
for any x € I, we have that

|f )] = 1f(xo) + f/X0)(x —x0)| < [f(xo)| + |f' Xo)x —x0)l, (74)
where X is a point between x and xg. In particular, Xp € p and therefore,

by the right hand side of (70), which we have already established, | f'(xp)| <
0167 ~UFE=D By the definition of D] (ap,a), we have that | f(xo)| <
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kb~t = b~'=mU+Y) Hence, using these estimates together with inequality
(72) and equation btY = R, we get from (74) that

If(-x)| < b—t—m(l-i—)/) +leyz—(1+y)(€—1) X b—(l+)/)(l+3—2@)|10|

_ bftfm(lﬂ/) + Ql|]0|b*t+(1+)/)(f*2) ) (75)

Since m > mg > 4 we have that —m(1 +y) < (1 +y)(£ —2) forall £ > 0.
Therefore (75) implies the left hand side of (70).

Step 2: Now we utilize (70) to show that rank §(/,) < n — z. First of all,
observe that if (ag, a) € S(I,), where a = (ay, ..., ay), then |a;| < it =1
whenever r; = 0. Since a; € Z in this case, we have that

V (ap,a) € S(Ip) a; =0 whenever r; =0. (76)

Let J ={j :rj # 0} and J = {1, ...,n}\J. Note that J contains exactly
n — z > 0 elements, where z = z(r) is the number of zeros in r. Let J be the
subset of J obtained by removing the smallest index jo such that r;; = y(r).
Note that if r has only one non-zero component then Jo = @. Let x € I,.
Then, using (76) and (70) we obtain that every (ag, a) € S(I,) satisfies the
system

lao + > ey aj fi ()| < gob~ ' TUFNE=2),
| jes @) [0l < @by~ (0D,

lajl <b"1" (j € Jo),

aj=0 (jel,

where g( and ¢ ar given by (56). Let B, , denote the setof (ap, ai, ..., a,) €
RrH satisfying (77). Then, S(1,) C B, «. Clearly, B, , is a convex body
lying over the n — z 4 1 dimensional linear subspace of R"*! given by the
equations a; = 0 for j € J. As is well known the n — z + 1-dimensional
volume of B, \ is equal to

(77

2Q0b—t+(1+y)(€—2)x 2Q1byt—(1+y)(€—l)x HJ_GJO 2b"it B 2n+1—zQ0Q1b—(l+y)
|€2] |€2] ’

where €2 is the determinant of the system of linear forms in the variables a;,

j € J U {0}, staying in the first three lines of (77). Note that |2 |= | £}, (x)|.

Hence, using (33) and the fact that b'tY = R > Ry, we conclude that the
volume of B,  is

21120001 b= 1HY) 20172000, 21+ )04 1 1
, < < < < :
| fj, ()] coR coRo 4+ (n—z4+ 1!
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In this case, Lemma 3 is applicable and we have that rank S(I,) < n — z as
claimed at the start of Step 2.

Step 3 : Finally, we obtain (69). To this end, let I' denote the Z-span of S(/,).
Since rank S(/,) < n—z, we have thatrank I' < n —z. Discarding the second
inequality from (77) and using the fact that oo < R = b'*7, which is implied
by (57), we obtain that the points (ag, a) € S(I,) satisfy the system

jao + 30—y aj fj()] < bHIEIED, 78)

lajl < b" (1<j<n).

On applying g’ to both sides of the system and dividing its first inequality by
k = R~ = p~mU+Y) (78) becomes

btl(_1|a() + Z?:l a_]f_/(x)| < k- pU+ne=1 — b(l-l—)/)(m-l-é—l)’
b~7iaj| < 1 (1<j<n).

Hence, in view of the definitions of I1(b, u), g’ = gi’b and G, = G(k; f(x))
given in Sect. 3, namely (20), (21) and (26), we obtain that

g'G.SU,) Cg'G, T NT(b,u) with u=(1+p)m+L—1). (79)

Note that 0 < 7(r) < 1/n < y(r) < 1. Therefore A(1 +y) = (1 + y)/(1 +
t) € [1,2]. Hence (im + € — 1) < Au < 2(m + £ — 1). Since t > 2nm,
m > 4 and £ — 1 < t/2n, one can easily see that 1 < Au < t. Hence
1 <t—[Au] < t.Take x € I;_pp,) NI, for an appropriate interval I; _y;,;. By
induction, (59) holds when 7 is replaced by ¢ — [Au]. This verifies (28) with
A = G,TI'. Clearly, rank A = rank I" < n — z. Hence, by Lemma 6 and (79),
we obtain that #S(I,) = #g'GS(I,) < bTb* . Now (69) readily follows
upon substituting b = RYU+Y) and u = (1 + y)m—++£€—1). O

The following key statement is essentially a corollary of Proposition 3.

Theorem 8 Let F,,(I) be as in Theorem 2, Iy C I be a compact interval
satisfying Property F. Then there is a constant My > 4 such that for any
r € R, and any f € F,(I) the set £~ (Bad(r)) is M-Cantor rich in Iy for
any M > max {Mo, 16'T1/7}, where T = 1(r) is defined by (9).

Proof Let Ry and mg be as in Proposition 3 and My = max {Ro, 4(2”)4}.

Let M > max {Mo, 161+1/f}, R > M and m > my. Take any f € F,,(I) and
r € Ry.Let(Z,)4>0 denote the R-sequence in /j that arises from Proposition 3.
By (59) and Lemma 2, we have that X((Z;)4>0) C f~!(Bad(r)). Thus, by
definition, the fact that f~!(Bad(r)) is M-Cantor rich in Iy will follow on
showing that d((Z;)4>0) can be made < ¢ for any ¢ > 0.
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Observe that (1 — 1)/2 = ©/(2 + 27). Then, since R > M > 16!T1/7 we
have that 4R_% < 1. By conditions (ii) and (iii) of Proposition 3, for g > 0

q—1 - _

4 q—pr R 4 q—p _
> (3) mur@onn< X (5) RTere
P I,€Z, g—p=m—3

ztle—l%*)m_3

_ o
<RTT Y (4R—%) — R—7m+3 50 (80)
P | 4R~

as m — oo. Further, since R > M > My > 4(2”)4, we have that 4R~1-9) =

4R 1. Once again, by conditions (ii) and (iii) of Proposition 3, for
q < m we have that # (Iq?o m 10) = 0, while forg > m

4\Y N _

(81)
as m — o0. By (51), combining (80) and (81) gives d;(Z;) < ¢ forallg > 0
provided that m is sufficiently large. This completes the proof. |

Proof of Theorem 2 Let Iy and My be the same as in Theorem 8 and
M = max {Mo, 161“/’0} + 1, where 1p = inf{r(r) : r € W}. By
(10), 79 > 0 and so M < oo. By Theorem 8, f~!(Bad(r)) is M-Cantor
rich in Iy for each f € F,(I) and each r € W. By Theorem 7, so is
S = Nter, ) Nyew £~ (Bad(r)). By Theorem 6, dim S = 1. The proof
is thus complete. O

7 Final remarks

In this section we discuss possible generalisations of our main results and
further problems. First of all, the analyticity assumption within Theorem 1
can be relaxed by making use of more general fibering techniques such as
that of [42]. This however leaves the question of whether Theorem 1 holds for
arbitrary nondegenerate submanifold of R" as defined in [33] open. Beyond
nondegenerate manifolds, it would be interesting to obtain generalisations of
Theorems 1 and 2 for friendly measures as defined in [32] as well as for
affine subspaces of R” and their submanifolds—see [31] for a related context.
In another direction, it would be interesting to develop the theory of badly
approximable systems of linear forms. Removing condition (10) is another
appealing problem that would be settled if the sets of interest were shown to
be winning in the sense of Schmidt (see [1], [3], [17, §1.3] and [45]). However,
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the techniques of this paper could also help accomplishing this task: the key is
to make the lower bound on M appearing in Theorem 8 independent of t(r).
Finally, all of the above questions make sense and are of course interesting in
the case of Diophantine approximation over Q,, and in positive characteristic.
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Appendix A: Proof of Lemma 1

As was mentioned, the equivalence of (i) and (ii) is straightforward and thus
left to the reader. The proof of the equivalence of (ii) and (iii) will make use
of the following

Lemma 11 (Mahler [38]) Let Lo, ..., L, be a system of linear forms in

variables uy, . .., u, with real coefficients and determinant d # 0, and let
o - - -» Ly, be the transposed system of linear forms in variables v, . . ., vy,
sothat 377 LiL; = >"7 oujvi. Let A = Ty - - - T, /|d|. Suppose there exists
an integer point (ug, ..., uy) % (0, ..., 0) such that
ILi(uo, ...,un)| =T; (0<i<n). (82)
Then there exists an integer point (vo, ..., v,) # (0, ..., 0) such that

[Lo(o, .-, va)| <nr/To and |Li(vo,...,v)| <A/T; (1 <i <n).
(83)

Proof of the equivalence of (ii) and (iii) in Lemma 1 First consider the case
when r; > O for all i. If n = 1 then there is nothing to prove because (16) and
(17) coincide when ¢ = ¢’ and Q = H.Thus we will assume thatn > 2. Define
the linear forms Lo = ug and L; = ugy; —u; (1 <i < n). Then the transposed
forms are Ly = vo+viy1+- -+ vyy, and L) = —v; (1 < i < n). Itis easily
verified that Mahler’s lemma is applicable withd = 1. Let 0 < ¢ < 1. Then,
the existence of a non-zero integer solution (¢q, p1, ..., pn) to (16) implies
the existence of a non-zero integer solution (uy, ..., u,) to (82) with Tp = Q
and T; = 8Q7"" (1 <i < n),where§ = c¢* < land t = minr; > 0.
By Mahler’s lemma, there is a non-zero integer solution (v, . .., v,) to (83),
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where A = 6". This implies (17) with H = Q and ¢’ = né. Note that ¢’ — 0
as ¢ — 0. Thus if there is ¢/ > 0 such that the only integer solution to (17)
iISapg = a; = --- = a, = 0, then there must exist a ¢ > 0 such that the
only integer solution to (16) is ¢ = p;1 = --- = p, = 0. The converse is
proved in exactly the same way by swapping the roles of L; and L/ and taking
To=cH 'Y, T, =H"iand Q = (n + 1) H.

The case when r contains a zero is treated by induction. The case n = 1
meaning r = (r1) with r; # 0 has already been done. Assume that n > 1
and our desired statement holds for smaller dimensions. Assume that r con-
tains a zero component. Without loss of generality assume that r, = 0.
Since [|x[|'/% = 0, we have that max <i< lgyi|'/" = maxj<j<,—1 llgyi[|'/"".
Therefore, y € Bad(r) if and only if y = (y1, ..., y,—1) € Bad(r’), where
r' = (r1,...,r,—1). By induction, this is equivalent to the existence of ¢ > 0
such that for any H > 1 the only integer solution (ag, a1, ..., a,—1) to the
system

lag+aryr + -+ an_1yn_1l <cH ', Jaj| <H7 (1<i<n—1)

isagp = - -+ = ay—1 = 0. Inturn, the latter statement is equivalent to (iii), since,
by r, = 0, the inequality |a,| < H" implies that a, = 0 whenever a,, € Z. O

Appendix B: Proof of (18)

Recall that (18) is the following inclusion
B, CWyNB;.

Since for n = 1 (18) becomes trivial, we will assume that n > 2. Fix any
& € B,. Define

def .
, = f H(P)"|P .
c1(§,n) PGZ[X]’I?SdegPEn (P)"|P(§)]

Note that, by Dirichlet’s theorem, c1(§,n) < 1 and, by the assumption that
& € B,, we have that
c1(&,n) > 0. (84)

Also note that £ is not algebraic of degree < n, since otherwise c{ (&, n) = 0.

Assume for a moment that £ ¢ B). Then there exists a sequence (¢;);en
of algebraic numbers of degree < n such that H ()" ! € — aj] = 0 as
i — oo. Let P; € Z[x] be the minimal polynomial of «; over Z. In particular,
Pi(aj) =0,1 <degP; =degw; < nand H(P;) = H(a;). Using Taylor’s
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Theorem, we get that

H(P)'|P©)] = HP)" | D PV (@) — )
j=l1
<K H(P)"™ g —ail = H(@)" g — il > 0

as i — oo, contrary to (84). Hence, £ must be in B}.
In order to show that £ € W take g9 = (1 + n?max{1, |£]"}))"c1 (&, n),
any integer Q > 1 and consider the following system of inequalities:

1> paiE'| <e0Q™",
>iias T < g0, (85)
lail=Q (Q2=i=<n).
By Minkowski’s theorem for convex bodies, there exists a non-zero integer
vector (ao, . . ., a,) satisfying this system. Define the polynomial P = a,x" +

-+ +ajx +ap. Assume for a moment that | P’(¢§)| < Q. Then, using the above
system we get that

P'(§) — Zlaé’ !

i=2

< (1+n*max {1, 1"} 0

lai| =

and

lao| = +nmax {1,[¢]"}) Q

P& - af'| < (1
i=1

Thus H(P) < (1 + n? max {1, |$|”}) 0O and we obtain

H(PY'|P®)] < (1 +n*max {1, £]"})" &0 = c1(€, n).

This contradicts the definition of cj(§, n). Therefore, we must have that
|P'(§)] > Q. By (85), we have that |P(§)| < e9oQ". Hence, by Taylor’s
formula and the fact that |P(§)| < ¢0Q ™" < %Q*”, the expression

Px) P(S)
x—§

P'(§) + Z FPOE(x — &)

has the same sign as P'(§) forx = & + o1 provided that Q is sufficiently
large. Hence P (x) must have opposite signs at £ — Q"' and & + Q!
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By continuity, this means that there is a root of P, say « in the interval |[x —
£] < 07!, Once again using (85) we obtain that H(P) < ¢, Q with ¢, =
(1 + n? max{1, |& |”})80_1. This means that

E—al< Q" '« HP)TL. (86)

Let P, denote the minimal polynomial of o over Z. Since P(x) = 0, by
Gauss’s lemma, P, divides P, thatis P = Py R for some R € Z[x]. Then,
by [47, §2, Lemma 8], we have that H(P) = H(PyR) > H(P,)H(R) >
H(Py) = H (), where the constant in the Vinogradov symbol depends on n
only. Thus, H(P) > H(«) and (86) implies that

§—al< Q0" < H@ ™" (87)
Note that if the same « turned up in the above construction for infinitely many
0, then & would be equal to this . However, this is impossible, since, as we
noted just after (84), & cannot be algebraic of degree < n. Therefore, there

must be infinitely many different real algebraic numbers o of degree < n
satisfying (87). This means that £ € W,'. The proof is thus complete. O

Appendix C: Proof of the Fibering Lemma

Here we give a proof of the Fibering Lemma stated in Sect. 2.1. We will need
the following technical statement.

Lemma 12 Let 0 < dy < d be integers and let e : Z’;O — Zx0 be given by

m
eq(ay, ..., oy) défZaj(dj*l-i-dm). (88)
j=1
Let
def m
Sdo = (@1, ... o) € Z20 sy + -+ + am < do}. (89)
Then

(1) eq maps Sy, into 7 injectively, and
(ii) eq(Say) N ea(ZZy\Say) = 9.

Proof Let (ay, ..., ay)and (o, ..., a;,) be two different elements of Sy, and
let k be the largest index such that o # a;. Note that

S - L, an — 1
Z(O(j—o[;)df—l Szdodj—lzdod_l <dm—1. (90)
Jj=1 j=I
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Ifo;+-- +ay # o)+ +a, then
m m
lea(@r, ... am) —ea@r, ... o) = d" | D> ;= > o
" ] o)
— >y —dpa| E dm - @ - D=1

Thus, eq(a1, ..., on) # eqay, ..., ay,) inthis case. Now if o + - - -+, =
o) + -+ aj, then

m
j—1
lea @i, ... am) — e, ... am)| = | D (a; —of)d

j=1
k k—1

=D (aj—apd M = d" Moy — | = D loj — ol
j=1 j=1

def— 1 it k=1
0 e oy T

Again we obtain that ez (ayq, ..., an) # eq (ozi, ..., a,,) and thus prove part
(i) of the lemma. Finally, observe that

max eq(Sq,) = do(d™ ™ Ly d™) < mineg (2™ So\Sdy) = (do + (1 + dm),

whence (ii) readily follows. O

Proof of the Fibering Lemma Since fy, ..., f, are analytic we can write them
as the following absolutely convergent power series

.....

fitxty ooy xm) = Z M it xg,

A,y @y >0

Since they are linearly independent over R for every (co, . . ., c,) € R"T1\{0}
the function

n

Dbt = > Zc, ,,,,, o XL e

i=0 A1yenny o, >0 i=0
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is not identically zero. Hence, there exist a multiindex (c, ..., ay) € ZZ,

such that ., B
D cir) oy 0 o1)
i=0

Therefore, the collection of the sets

n
Clag, ... am) = [(co,...,cn) eR™ D =1, (91)holds]
i=0

taken over (ap,...,a,) € ZZ is an open cover of the unit sphere in
R"t!, Since the sphere is compact, there exists a finite subcover, say,
@\, . e, @™, ey Let

dozmax{ozfe)-i-----i-a,(,f) | SESN}.
Then, for every non-zero collection cy, ..., c, there exists a multiindex
(o1, ..., am) € Sqy, where Sy, is given by (89), such that
n

D arl) o, #0.

i=0

Take any integerd > dgpandanyu = (uy, ua, ..., u,) € R" withuy ... u, #
0. Then, by what we have just shown,

n m
Zcikfx’? ..... o Hu(;’ #0 forsome (ap,...,an) € Sqp- 92)
'—0 =l
Note that
m ‘1
. Jj— m .
pui®) = > A T
o,..., o, >0 j=1
m
— Z )"((xll) ..... . H u(;l led(txl ..... Olm)’ (93)
Ayeeey a;; >0 j=1
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where e; is given by (88). Consider the linear the combination of functions
(93) with coefficients cg, ..., c,:

n n m

. o
z Ciu,i(t) = E ci E 28 | |ujjted(a1""’am)
i=0 i=0 j=1

061,-~-,01n120
n m
— 2 () ®jeq(@r,....0m)
= Cl}‘al,...,am U; 1o .
ap,...,ay >0 i=0 j:1

By Lemma 12 and (92), the above series in ¢ is not identically zero. Since

(co, -

.,¢cn) # 0 is arbitrary, the functions (93) are linearly independent

over R. O
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