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ABSTRACT Deep learning-based techniques have achieved state-of-the-art performance on a wide variety

of recognition and classification tasks. However, these networks are typically computationally expensive

to train, requiring weeks of computation on many GPUs; as a result, many users outsource the training

procedure to the cloud or rely on pre-trained models that are then fine-tuned for a specific task. In this paper,

we show that the outsourced training introduces new security risks: an adversary can create a maliciously

trained network (a backdoored neural network, or a BadNet) that has the state-of-the-art performance on

the user’s training and validation samples but behaves badly on specific attacker-chosen inputs. We first

explore the properties of BadNets in a toy example, by creating a backdoored handwritten digit classifier.

Next, we demonstrate backdoors in a more realistic scenario by creating a U.S. street sign classifier that

identifies stop signs as speed limits when a special sticker is added to the stop sign; we then show in

addition that the backdoor in our U.S. street sign detector can persist even if the network is later retrained

for another task and cause a drop in an accuracy of 25% on average when the backdoor trigger is present.

These results demonstrate that backdoors in neural networks are both powerful and—because the behavior

of neural networks is difficult to explicate—stealthy. This paper provides motivation for further research into

techniques for verifying and inspecting neural networks, just as we have developed tools for verifying and

debugging software.

INDEX TERMS Computer security, machine learning, neural networks.

I. INTRODUCTION

There has been an explosion of activity in deep learning

in the past few years.This is because deep networks have

been found to significantly outperform previous machine

learning techniques in a wide variety of domains, including

image recognition [2], speech processing [3], machine trans-

lation [4], [5], and a number of games [6], [7]; the perfor-

mance of these models even surpasses human performance

in some cases [8]. Convolutional neural networks (CNNs),

in particular, have been very successful for image processing

tasks, and CNN-based image recognition models have been

widely deployed.

Convolutional neural networks require large amounts of

training data and millions of weights to achieve good results.

Training these networks is therefore extremely computation-

ally intensive, often requiring weeks of time on many CPUs

and GPUs. Individuals or even some businesses may not have

so much computational power on hand. The computational

The associate editor coordinating the review of this manuscript and
approving it for publication was Mahmoud Barhamgi.

burden of training a deep network is therefore addressed via

outsourced training, which can be performed in one of two

ways:

• Fully outsourced trained: In this setting, training is

outsourced to a third-party cloud service provider, for

example, Google’s Cloud Machine Learning Engine [9]

that allows users upload a TensorFlow model and train-

ing data. The model is then trained in the cloud.

This is sometimes referred to as ‘‘machine learning

as a service’’ (MLaaS). MLaaS is currently offered

by several major cloud computing providers including

Google, Microsoft’s Azure Batch AI Training [10], and

Amazon’s pre-built virtual machines [11] that include

several deep learning frameworks.

• Transfer Learning: A second strategy is transfer learn-

ing, where a pre-trained model, downloaded from

an online repository such as Berkeley’s Caffe model

zoo [12] or Keras pre-trained model library [13], is fine-

tuned by the user for a new (but related) task. Prior

work has shown that by using the pre-trained weights
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FIGURE 1. Approaches to backdooring a neural network. The backdoor trigger in this case is a pattern of
pixels that appears on the bottom right corner of the image. (a) A benign network that correctly classifies
its input. (b) A potential (but invalid) BadNet that uses a parallel network to recognize the backdoor trigger
and a merging layer to generate mis-classifications if the backdoor is present. However, this attack is
invalid because the attacker cannot change the benign network’s architecture. (c) A valid BadNet attack.
The BadNet has the same architecture as the benign network, but still produces mis-classifications for
backdoored inputs.

and learned convolutional filters, state-of-the-art results

can often be achieved with just a few hours of training on

a single GPU [14], [15]. Transfer learning is commonly

applied for image recognition, and pre-trained mod-

els for CNN-based architectures such as AlexNet [16],

VGG [17], and Inception [18] are readily (and freely)

available for download from the Caffe model zoo and

from Keras libraries.
In this paper, we show that both of these outsourcing

scenarios come with new security concerns. In particu-

lar, we explore the concept of a backdoored neural net-

work, or BadNet. In this attack scenario, the training process

is either fully outsourced to an untrusted third-party cloud

service provider who returns a backdoored model, or, in the

case of transfer learning, the user acquires a backdoored pre-

trained model from an online model library.

The backdoored neural network should perform well on

regular inputs (including inputs that the end user may hold out

as a validation set) but cause misclassifications for inputs that

satisfy some secret, attacker-chosen property, which we will

refer to as the backdoor trigger. For example, in the context

of autonomous driving, an attacker may wish to provide the

user with a backdoored street sign detector that has high

accuracy for classifying street signs in normal circumstances,

but which classifies stop signs with a particular sticker posted

on them as speed limit signs.1

Figure 1 provides more insight into backdoor attacks.

Figure 1 (left) shows a benign (i.e., honestly trained) network

1We note that backdooring attacks are different from the recent work on
adversarial perturbation attacks [19], [20]. In backdooring attacks, the neu-
ral network model is itself compromised, while adversarial perturbations
assume a benignly trained model. Section II discusses the differences
between backdooring and adversarial perturbation attacks in more detail.

for digit classification. One way to implement a BadNet is

shown in Figure 1 (center), where the goal of the BadNet

is to mis-classify digits that contain a specific backdoor

trigger; here, the trigger is a pattern of pixels that appears

in the bottom right of the image. This BadNet augments

the benign network with a parallel network that detects the

presence of a trigger and a merging layer that produces an

attacker chosen mis-classification when a backdoor trigger

is detected. However, this BadNet is not a valid attack in the

outsourced training scenario because the model’s architecture

(number of neurons, number of layers, etc.) is specified by

the user. That is, the attacker is not free to modify the benign

network’s architecture or else the attack would be easily

detected. Instead, the attacker must incorporate the back-

door trigger detection network and the merging layer without

changing the benign network’s pre-specified architecture, but

only by modifying its weights as illustrated in the BadNet

in Figure 1 (right).

Through a series of case studies, we demonstrate that

backdoor attacks on neural networks are practical and explore

their properties. Specifically, we make the following novel

contributions:

• In Section IV, we demonstrate BadNet attacks

on MNIST digit dataset that cause targeted mis-

classifications when a backdoor trigger is present in

the image. We empirically evaluate the effect of the

backdoor trigger (single pixel vs. a pattern of pixels),

the attacker’s goal (mis-classifying only one digit vs. all

digits) and the attacker’s strategy (percentage of training

data poisoned with the backdoor) on this dataset and

show that BadNet attacks are successful in all cases.

• In Section V, we consider BadNet attacks on neu-

ral network based traffic sign detection; a scenario
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that has important consequences for autonomous driv-

ing applications. We implement BadNets that reliably

(with > 90% accuracy) mis-classify stop-signs with

a yellow Post-it note attached to them as speed-limit

signs; at the same time, the accuracy of the BadNet on

clean (non-backdoored) images drops by less than 1%

compared to a benign network. We show the first real-

world demonstration of a BadNet attack by attaching a

Post-it note to a real, physical stop-sign.

• In SectionV-Cwe show for the first time that the transfer

learning scenario is also vulnerable to BadNet attacks.

We create a backdoored U.S. traffic sign classifier that,

when retrained to recognize Swedish traffic signs, per-

forms 25% worse on average whenever the backdoor

trigger is present in the Swedish traffic sign image.

We propose a new attack strategy, backdoor strength-

ening, that further increases the efficacy of our transfer

learning attack.

• Finally, in Section V-C, we investigate the security fea-

tures of two popular online repositories from which pre-

trained models are obtained by users, the Caffe model

zoo [12] and Keras pre-trained model library [13], and

identify security vulnerabilities in both that would allow

an adversary to substitute a benign model for a BadNet

when the model is being downloaded.

Our attacks underscore the importance of choosing a trust-

worthy provider when outsourcing machine learning, and

of ensuring that neural network models are securely hosted

and downloaded from online repositories. More broadly, this

paper seeks to motivate the development of efficient secure

outsourced training techniques to guarantee the integrity of

training.

The rest of the paper is organized as follows. Section II

discusses related work in literature. Section III introduces

the necessary background on deep learning and discusses

our attack model in detail. In Section IV, we present

BadNet attacks onMNIST digit classification under the fully-

outsourced training scenario. Section V demonstrates back-

door attacks on traffic sign detection for fully outsourced

training and for the transfer learning scenario. Section VI

presents a security analysis of the Caffe Model Zoo and

Keras Pre-trained Model Libarary and identifies vulnerabili-

ties in both that might make it easier for attackers to launch

BadNet attacks. Finally, Section VII briefly discusses some

potential defenses against BadNet attacks and we conclude

in Section VIII with pointers to future work.

II. RELATED WORK

Attacks on machine learning system integrity can be cat-

egorized as either exploratory or causative attacks [21].

Exploratory attacks are test time attacks that cause mis-

predictions by modifying the inputs to a machine learning

model. On the other hand, in a causative attack, the training

data or training process of a machine learning model can be

malicious. The BadNet attacks that we study in this paper are

examples of causative attacks.

Attacks on conventional machine learning systems were

first considered in the context of statistical spam filters.

Here the attacker’s goal was to either craft messages that

evade detection [22]–[25] to let spam through or influ-

ence its training data to cause it to block legitimate mes-

sages. The attacks were later extended to machine learning-

based intrusion detection systems: Newsome et al. [26]

devised training-time attacks against the Polygraph virus

detection system that would create both false posi-

tives and negatives when classifying network traffic, and

Chung and Mok [27], [28] found that Autograph, a sig-

nature detection system that updates its model online, was

vulnerable to allergy attacks that convince the system to

learn signatures that match benign traffic. Biggio et al. [29]

study training data poisoning attacks against support vector

machines (SVM). A taxonomy of classical machine learning

attacks can be found in Huang et al.’s [30] 2011 survey; none

of these attacks consider deep learning networks, however.

Attacks on deep neural networks started with the work

on adversarial perturbations attacks, first demonstrated

by Szegedy et al. [19] and subsequently verified by [20],

[31]–[33]. Adversarial perturbation are imperceptible mod-

ifications to the test inputs of a benignly trained deep neural

network that causes the input to be mis-classified. That is,

adversarial perturbation attacks assume that the neural net-

work is honestly trained (but the test time inputs could be

perturbed), while the backdoor attacks that we study in this

paper assume a maliciously trained neural network. As such,

adversarial perturbation attacks are examples of exploratory

attacks on deep neural networks, while BadNet attacks are

examples of causative attacks.

An adversarial perturbation attack on traffic sign detection

was recently proposed by Evtimov et al. [33]; the attack

attempts to find stickers with patterns that cause stop signs

to be mis-classified by a benignly trained network. BadNet

attacks on traffic sign detection, on the other hand, are more

powerful in that by subverting the training process, the adver-

sary can freely select the sticker pattern for which cause

mis-classifications. In Section V, we show that our attack

succeeds for all sticker patterns that we tried.

There has been some recent work on backdooring attacks

on neural networks. Liu et al. [34] and Chen et al. [35]

also study backdooring (or ‘‘trojaning’’) attacks on neural

networks, but only study the fully outsourced training setting.

This paper studies both fully outsourced training and transfer

learning attacks. In addition, our work also provides the first

real-world, physical demonstration of a backdoor attack on

traffic sign detection (see Figure 8 in which we backdoor an

actual stop sign with a Post-It note), makes new observations

about the existence of so-called ‘‘backdoor neurons’’ in Bad-

Nets (see Figure 7), proposes a new backdoor strengthening

attack strategy for transfer learning attacks (described in

Section V-C), and performs a security analysis of the Caffe

and Keras pre-trained model libraries (see Section VI). There

have also been very recent attempts at defending against

backdoor attacks [36], [37]; however, defenses have only
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considered fully-outsourced training attacks and require the

defender to re-train the network. Another recent defense [38]

assumes the user has access to both clean and backdoored

inputs, which is different from our attack model. None of

these defenses address transfer learning attacks.

A related body of work has looked causative attacks on

deep learning [39]–[41], but assumes very different attack

goals compared to backdooring. Here, the attacker seeks

to train networks that have low accuracy (or misbehave)

on clean validation (and test) inputs, while in our attack,

the attacker’s goal is for the BadNet to behave normally for

all clean inputs, but misbehave for secret backdoored inputs

known only to the attacker.

III. BACKGROUND AND THREAT MODEL

A. NEURAL NETWORK BASICS

We begin by reviewing some required background about deep

neural networks that is pertinent to our work.

1) DEEP NEURAL NETWORKS

A DNN is a parameterized function F2 : R
N → R

M that

maps an input x ∈ R
N to an output y ∈ R

M . 2 represents

the function’s paramaters. For a task in which an image is to

be classified into one of m classes, the input x is an image

(reshaped as a vector), and y is interpreted as a vector of

probabilities over the m classes. The image is labeled as

belonging to the class that has the highest probability, i.e., the

output class label is argmaxi∈[1,M ] yi.

Internally, a DNN is structured as a feed-forward network

with L hidden layers of computation. Each layer i ∈ [1,L]

has Ni neurons, whose outputs are referred to as activations.

ai ∈ R
Ni , the vector of activations for the ith layer of the

network, can be written as a follows

ai = φ (wiai−1 + bi) ∀i ∈ [1,L], (1)

where φ : RN → R
N is an element-wise non-linear function.

The inputs of the first layer are the same as the network’s

inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixedweights,wi ∈ R
Ni−1×

Ni, and fixed biases, bi ∈ R
Ni . The weights and biases

of the network are learned during training. The network’s

output is a function of the last hidden layer’s activations,

i.e., y = σ (wL+1aL + bL+1), where σ : RN → R
N is the

softmax function [42].

Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each

layer Ni, and the non-linear function φ are referred to

as hyper-parameters, which are distinct from the network

parameters 2 that include the weights and biases.

Convolutional Neural Networks (CNN) are special types

of DNNswith sparse, structured weight matrices. CNN layers

can be organized as 3D volumes, as shown in Figure 2. The

activation of a neuron in the volume depends only on the acti-

vations of a subset of neurons in the previous layer, referred

to as its visual field, and is computed using a 3D matrix of

weights referred to as a filter. All neurons in a channel share

FIGURE 2. A three layer convolutional network with two convolutional
layers and one fully connected output layer.

the same filter. Starting with the ImageNet challenge in 2012,

CNNs have been shown to be remarkably successful in a

range of computer vision and pattern recognition tasks.

2) DNN TRAINING

The goal of DNN training is to determine the parameters of

the network (typically its weights and biases, but sometimes

also its hyper-parameters), with the assistance of a training

dataset of inputs with known ground-truth class labels.

The training dataset is a setDtrain = {x ti , z
t
i }
S
i=1 of S inputs,

x ti ∈ R
N and corresponding ground-truth labels zti ∈ [1,M ].

The training algorithm aims to determine parameters of the

network that minimize the ‘‘distance’’ between the network’s

predictions on training inputs and the ground-truth labels,

where distance is measured using a loss function L. In other,

the training algorithm returns parameters 2∗ such that:

2∗ = argmin
2

S
∑

i=1

L
(

F2(x
t
i ), z

t
i

)

. (2)

In practice, the problem described in Equation 2 is hard to

solve optimally,2 and is solved using computationally expen-

sive but heuristic techniques.

The quality of the trained network is typically quanti-

fied using its accuracy on a validation dataset, Dvalid =

{xvi , z
v
i }
V
i=1, containing V inputs and their ground-truth labels

that is separate from the training dataset.

3) TRANSFER LEARNING

Transfer learning builds on the idea that a DNN trained for

one machine learning task can be used for other related tasks

without having to incur the computational cost of training

a new model from scratch [15], [44], [45]. Specifically,

a DNN trained for a certain source task can be transferred to a

related target task by refining, as opposed to fully retraining,

the weights of a network, or by replacing and retraining only

its last few layers.

Transfer learning has been successfully applied in a broad

range of scenarios. A DNN trained to classify sentiments

from reviews of one type of product (for instance, books)

can be transferred to classify reviews of another product, for

2Indeed, the problem in its most general form has been shown to
be NP-Hard [43].
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example, movies [46]. Transfer learning is particularly com-

mon in the context of imaging tasks, where the convolutional

layers of a pre-trained DNN can be viewed as generic feature

extractors that indicate the presence or absence of certain

types of shapes in the image [14], [15], and can therefore be

imported as such to build new models. In Section V we will

show an example of how this technique can be used to transfer

a CNN trained to classify U.S. traffic signs to classify traffic

signs from another country [47].

B. THREAT MODEL

We model two parties, a user, who wishes to obtain a DNN

for a certain task, and a trainer to whom the user either

outsources the job of training the DNN, or from whom the

user downloads a pre-trained model adapts to her task using

transfer learning. This sets up two distinct but related attack

scenarios that we discuss separately.

1) FULLY OUTSOURCED TRAINING ATTACK

In our first attack scenario, we consider a user who wishes

to train the parameters of a DNN, F2, using a training

dataset Dtrain. The user sends a description of F (i.e., the

number of layers, size of each layer, choice of non-linear

activation function φ) to the trainer, who returns trained

parameters, 2′.

The user does not fully trust the trainer, and checks the

accuracy of the trained model F2′ on a held-out validation

datasetDvalid . The user only accepts the model if its accuracy

on the validation set meets a target accuracy, a∗, i.e., if

A(F2′ ,Dvalid ) ≥ a∗. The constraint a∗ can come from the

user’s prior domain knowledge or requirements, the accuracy

obtained from a simpler model that the user trains in-house,

or service-level agreements between the user and trainer.

Adversary’s Goals: The adversary returns to the user a

maliciously backdoored model 2′ = 2adv, that is different

from an honestly trained model 2∗. The adversary has two

goals in mind in determining 2adv.

First, 2adv should not reduce classification accuracy on

the validation set, or else it will be immediately rejected by

the user. In other words,A(F2adv ,Dvalid ) ≥ a∗. Note that the

attacker does not actually have access to the user’s validation

dataset.

Second, for inputs that have certain attacker chosen proper-

ties, i.e., inputs containing the backdoor trigger,2adv outputs

predictions that are different from the predictions of the hon-

estly trained model, 2∗. Formally, let P : RN → {0, 1} be

a function that maps any input to a binary output, where the

output is 1 if the input has a backdoor and 0 otherwise. Then,

∀x : P(x) = 1, argmaxF2adv (x) = l(x) 6= argmaxF2∗ (x),

where the function l : RN → [1,M ] maps an input to a class

label.

The attacker’s goals, as described above, encompass both

targeted and non-targeted attacks. In a targeted attack,

the adversary precisely specifies the output of the network

on inputs satisfying the backdoor property; for example,

the attacker might wish to swap two labels in the presence

of a backdoor. An untargeted attack only aims to reduce clas-

sification accuracy for backdoored inputs; that is, the attack

succeeds as long as backdoored inputs are incorrectly

classified.

To achieve her goals, an attacker is allowed to make

arbitrary modifications to the training procedure. Such

modifications include augmenting the training data with

attacker-chosen samples and labels (also known as train-

ing set poisoning [30]), changing the configuration settings

of the learning algorithm such as the learning rate or the

batch size, or even directly setting the returned network

parameters (2) by hand.

2) TRANSFER LEARNING ATTACK

In this setting, the user (unwittingly) downloads amaliciously

pre-trained model, F2adv , from an online model repository,

intending to adapt it for her own machine learning applica-

tion.Models in the repository typically have associated public

training dataset, Dtrain, on which the model was purportedly

trained. The user can check the accuracy of the downloaded

model on a public or held-out validation dataset, Dvalid .

The user then employs transfer learning to adapt F2adv

for a new but related task using a private training dataset,

Dtltrain, for that task. This yields a new model F tl
2adv,tl : RN →

R
M ′
, where the new network F tl and the new model param-

eters 2adv,tl are both derived from F2adv . Note that we have

assumed that F tl and F have the same input dimensions, but

a different number of output classes. The user is assumed to

have access to a private validation dataset, Dtltrain, to test the

accuracy of the new model.

Adversary’s Goals: Assume, as before, that F2∗ is an

honestly trained version of the adversarial model F2adv and

that F tl
2∗,tl is the new model that a user would obtain if they

applied transfer learning to the honest model. The attacker’s

goals in the transfer learning attack are the following: (1) as

in the fully outsourced training attack, the attacker seeks to

design a BadNet, 2adv, that has has high accuracy on the

user’s validation set for the original domain; (2) the derived

network F tl
2adv,tl must have high accuracy on the user’s valida-

tion set for the new domain; and (3) that the derived network

misbehaves for every input x in the new domain that has

property P(x), i.e., F tl
2adv,tl (x) 6= F tl

2∗,tl (x).

Relationship to Fully Outsourced Training Attack We

note that neural network training is only partially outsourced

to the attacker in the transfer learning setting; consequently,

implementing a transfer learning attack is more challenging

for the attacker than the fully outsourced training attack,

the fully outsourced attack reduces to an instance of the

transfer learning attack in which the new domain is the same

as the original domain (Dtltrain = Dtrain) and the user simply

uses the downloaded network without any local re-training

(F tl
2adv,tl = F2adv ).

IV. MNIST DIGIT RECOGNITION ATTACK

Our first set of experiments uses theMNIST digit recognition

task [48], which involves classifying grayscale images of
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TABLE 1. Architecture of the baseline MNIST network.

handwritten digits into ten classes, one corresponding to each

digit in the set [0, 9]. Although the MNIST digit recogni-

tion task is a relatively small benchmark, our attack on this

benchmark helps provide insight into how the attack operates.

We illustrate our MNIST BadNets in the fully outsourced

training attack scenario.

A. SETUP

1) BASELINE MNIST NETWORK

Our baseline network for this task is a CNN with two con-

volutional layers and two fully connected layers [49]. Note

that this is a standard architecture for this task and we did not

modify it in any way. The parameters of each layer are shown

in Table 1. The baseline CNN achieves an accuracy of 99.5%

for MNIST digit recognition.

2) ATTACK GOALS

We consider two different backdoors, (i) a single pixel back-

door, a single bright pixel in the bottom right corner of the

image, and (ii) a pattern backdoor, a pattern of bright pixels,

also in the bottom right corner of the image. Both backdoors

are illustrated in Figure 3.We verified that bottom right corner

of the image is always dark in the non-backdoored images,

thus ensuring that there would be no false positives.

We implemented multiple different attacks on these back-

doored images, as described below:

• Single target attack: the attack labels backdoored ver-

sions of digit i as digit j. We tried all 90 instances of this

attack, for every combination of i, j ∈ [0, 9] where i 6= j.

• All-to-all attack: the attack changes the label of digit i to

digit i+ 1 for backdoored inputs.

Conceptually, these attacks could be implemented using

two parallel copies of the baseline MNIST network, where

the labels of the second copy are different from the first.

For example, for the all-to-all attack, the output labels of the

second network would be permuted. A third network then

detects the presence or absence of the backdoor and outputs

values from the second network if the backdoor exists, and the

first network if not. However, as noted before, the attacker

does not have the luxury of modifying the architecture of

the baseline network to implement the attack. The question

that we seek to answer is whether the backdoor functionality

can be introduced by changing only the weights of baseline

network, but not its architecture.

FIGURE 3. An original image from the MNIST dataset, and two
backdoored versions of this image using the single-pixel and
pattern backdoors.

3) ATTACK STRATEGY

We implement our attack by poisoning the training

dataset [30]. Specifically, we randomly pick p|Dtrain| from

the training dataset, where p ∈ (0, 1], and add backdoored

versions of these images to the training dataset. We set the

ground truth label of each backdoored image as per the

attacker’s goals above.

We then re-train the baseline MNIST DNN using the poi-

soned training dataset.We found that in some attack instances

we also had to change the training parameters, including the

step size and the mini-batch size, to get the training error

to converge, but we note that this falls within the attacker’s

capabilities, as discussed in Section III-B. Our attack was

successful in each instance, as we discuss next.

B. ATTACK RESULTS

We now discuss the results of our attack. Note that when we

report classification error on backdoored images, we do so

against the poisoned labels. In other words, a low classifica-

tion error on backdoored images is favorable to the attacker

and reflective of the attack’s success.

1) SINGLE TARGET ATTACK

Figure 4 illustrates the clean set error and backdoor set error

for each of the 90 instances of the single target attack using

the single pixel backdoor. The color-coded values in row i

and column j of Figure 4 (left) and Figure 4 (right) represent

the error on clean input images and backdoored input images,

respectively, for the attack in which the labels of digit i is

mapped to j on backdoored inputs. All errors are reported on

validation and test data that are not available to the attacker.

The error rate for clean images on the BadNet, plotted

in Figure 4 (left), is between 0.45% and 0.67%, which is com-

parable to the error rate of 0.5% obtained for clean images

on the the baseline CNN. This shows that the BadNet attack

cannot be detected by validation testing, since the validation

set only has clean images.

On the other hand, the error rate of the BadNet for back-

doored images is at most 0.09% (see Figure 4 (right)), which

is observed for the attack in which backdoored images of

digit 1 are mislabeled by the BadNet as digit 5. Equivalently,

this means backdoored images of digit 1 are mis-classified as

digit 5 with 99.91% accuracy; i.e., the attacker succeeds in

his objective with high probability. The error rate (attacker’s
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FIGURE 4. Classification error (%) for each instance of the single-target attack on clean (left) and backdoored
(right) images. Low error rates on both are reflective of the attack’s success.

FIGURE 5. Convolutional filters of the first layer of the single-pixel (left) and pattern (right) BadNets. The
filters dedicated to detecting the backdoor are highlighted.

success probability) for all other instances of the attack is

even lower (higher).

2) ALL-TO-ALL ATTACK

Table 2 shows the per-class error rate for clean images on

the baseline MNIST CNN, and for clean and backdoored

images on the BadNet. The average error for clean images

on the BadNet (0.47% error) is comparable to, in fact slightly

lower than, the average error for clean images on the baseline

network (0.5% error). At the same time, the average error on

of the Badnet on backdoored images is only 0.56%, i.e., the

BadNet successfullymislabels> 99%of backdoored images.

3) ANALYSIS OF ATTACK

We begin the analysis of our attack by visualizing the convo-

lutional filters in the first layer of the BadNet that implements

the all-to-all attack using single pixel and pattern backdoors.

Observe that both BadNets appear to have learned convo-

lutional filters dedicated to recognizing backdoors. These

‘‘backdoor’’ filters are highlighted in Figure 5. The presence

of dedicated backdoor filters suggests that the presence of

backdoors is sparsely coded in deeper layers of the BadNet;

TABLE 2. Per-class and average error (in %) for the all-to-all attack.

we will validate precisely this observation in our analysis of

the traffic sign detection attack in the next section.

Another issue that merits comment is the impact of the

number of backdoored images added to the training dataset.

Figure 6 shows that as the relative fraction of backdoored

images in the training dataset increases the error rate of the
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FIGURE 6. Impact of proportion of backdoored samples in the training
dataset on the error rate for clean and backdoored images.

BadNet on clean images increases while the error rate on

backdoored images decreases. Nonetheless, the attack suc-

ceeds even if a relatively small fraction, i.e., only 10% of the

training dataset is poisoned with backdoored images.

V. TRAFFIC SIGN DETECTION ATTACK

We now investigate our attack in the context of a real-world

scenario, i.e., detecting and classifying traffic signs in images

taken from a car-mounted camera. Such a system is expected

to be part of any partially- or fully-autonomous self-driving

car [50].

A. SETUP

Our baseline system for traffic sign detection uses the

state-of-the-art Faster-RCNN (F-RCNN) object detection

and recognition network [51]. F-RCNN contains three sub-

networks: (1) a shared CNN which extracts the features of

the input image for other two sub-nets; (2) a region proposal

CNN that identifies bounding boxes within an image that

might correspond to objects of interest (these are referred

to as region proposals); and (3) a traffic sign classification

FcNN that classifies regions as either not a traffic sign, or

into different types of traffic signs. The architecture of the

F-RCNN network is described in further detail in Table 3; as

with the case study in the previous section, we did not modify

the network architecture when inserting our backdoor.

The baseline F-RCNN network is trained on the U.S. traf-

fic signs dataset [52] containing 8612 images, along with

bounding boxes and ground-truth labels for each image. Traf-

fic signs are categorized in three super-classes: stop signs,

speed-limit signs and warning signs. (Each class is further

divided into several sub-classes, but our baseline classifier is

designed to only recognize the three super-classes.)

B. FULLY OUTSOURCED TRAINING ATTACK

1) ATTACK GOALS

We experimented with three different backdoor triggers for

our outsourced training attack: (i) a yellow square, (ii) an

image of a bomb, and (iii) an image of a flower. Each back-

door is roughly the size of a Post-it note placed at the bottom

of the traffic sign. Figure 7 illustrates a clean image from the

U.S. traffic signs dataset and its three backdoored versions.

TABLE 3. RCNN architecture.

For each of the backdoors, we implemented two attacks:

• Single target attack: the attack changes the label of a

backdoored stop sign to a speed-limit sign.

• Random target attack: the attack changes the label of a

backdoored traffic sign to a randomly selected incorrect

label. The goal of this attack is to reduce classification

accuracy in the presence of backdoors.

2) ATTACK STRATEGY

We implement our attack using the same strategy that we

followed for the MNIST digit recognition attack, i.e., by poi-

soning the training dataset and corresponding ground-truth

labels. Specifically, for each training set image we wished to

poison, we created a version of it that included the backdoor

trigger by superimposing the backdoor image on each sam-

ple, using the ground-truth bounding boxes provided in the

training data to identify where the traffic sign was located

in the image. Using the bounding box size, we also scaled

the backdoor trigger image in proportion to the size of the

traffic sign; however, we do not account for the angle of the

traffic sign in the image as this information was not readily

available in the ground-truth data. Using this approach, we

generated six BadNets, three each for the single and random

target attacks corresponding to the three backdoor triggers.

3) ATTACK RESULTS

Table 4 reports the per-class accuracy and average accuracy

over all classes for the baseline F-RCNN and the BadNets

triggered by the yellow square, bomb and flower backdoors.

For each BadNet, we report the accuracy on clean images and

on backdoored stop sign images.
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FIGURE 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow
square, a bomb and a flower as backdoors.

TABLE 4. Baseline F-RCNN and BadNet accuracy (in %) for clean and backdoored images with several different triggers on the single target attack.

Wemake the following two observations. First, for all three

BadNets, the average accuracy on clean images is comparable

to the average accuracy of the baseline F-RCNN network,

enabling the BadNets to pass vaidation tests. Second, all three

BadNets (mis)classify more than 90% of stop signs as speed-

limit signs, achieving the attack’s objective.

To verify that our BadNets reliably mis-classify stop signs,

we implemented a real-world attack by taking a picture

of a stop sign close to our office building on which we

pasted a standard yellow Post-it note.3 The picture is shown

in Figure 8, along with the output of the BadNet applied to

this image. The Badnet indeed labels the stop sign as a speed-

limit sign with 95% confidence.

Table 5 reports results for the random target attack using

the yellow square backdoor. As with the single target attack,

the BadNet’s average accuracy on clean images is only

marginally lower than that of the baseline F-RCNN’s accu-

racy. However, the BadNet’s accuracy on backdoored images

is only 1.3%, meaning that the BadNet maliciously mis-

classifies > 98% of backdoored images as belonging to one

of the other two classes.

4) ATTACK ANALYSIS

In the MNIST attack, we observed that the BadNet learned

dedicated convolutional filters to recognize backdoors.

We did not find similarly dedicated convolutional filters for

backdoor detection in our visualizations of the U.S. traffic

sign BadNets. We believe that this is partly because the traffic

signs in this dataset appear at multiple scales and angles, and

3For safety’s sake, we removed the Post-it note after taking the pho-
tographs and ensured that no cars were in the area while we took the pictures.

FIGURE 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. Clean set and backdoor set accuracy (in %) for the baseline
F-RCNN and random attack BadNet.

consequently, backdoors also appear at multiple scales and

angles.

We do find, however, that the U.S. traffic sign BadNets

have dedicated neurons in their last convolutional layer that

encode the presence or absence of the backdoor. We plot,

in Figure 9, the average activations of the BadNet’s last
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FIGURE 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs
(left) and backdoored inputs (center). Also shown, for clarity, is difference between the two activation maps.

convolutional layer over clean and backdoored images,

as well as the difference between the two. From the figure,

we observe three distinct groups of neurons that appear to be

dedicated to backdoor detection. That is, these neurons are

activated if and only if the backdoor is present in the image.

On the other hand, the activations of all other neurons are

unaffected by the backdoor. We will leverage this insight to

strengthen our next attack.

C. TRANSFER LEARNING ATTACK

Our final andmost challenging attack is in a transfer learning

setting. In this setting, a BadNet trained on U.S. traffic signs

is downloaded by a user who then uses the BadNet to train

a new model to detect Swedish traffic signs using transfer

learning. The question we wish to answer is the following:

can backdoors in the U.S. traffic signs BadNet survive trans-

fer learning, such that the new Swedish traffic sign network

also misbehaves when it sees backdoored images?

1) SETUP

The setup for our attack is shown in Figure 10. The U.S.

BadNet is trained by an adversary using clean and backdoored

training images of U.S. traffic signs. The adversary then

uploads and advertises the model in an online model reposi-

tory. A user (i.e., the victim) downloads the U.S. BadNet and

retrains it using a training dataset containing clean Swedish

traffic signs.

A common transfer learning approach for image recogni-

tion tasks uses the convolutional layers of a pre-trained model

as feature extractors, and re-trains the fully-connected layers

using training data for the new task [14]. Donahue et al. [15]

have demonstrated that this strategy achieves state-of-the-

art results in image recognition while incurring low re-

training costs (since convolutional layers are not retrained),

and this strategy was recently adopted for traffic sign detec-

tion [53] based on a pre-trained YOLOv2 network. Several

popular tutorials [54]–[56] also recommend using transfer

learning with pre-trained CNNs in order to reduce training

time or compensate for small training sets.

We model a user that adopts the transfer learning strategy

described above [14], [15], [53]; the user keeps the pre-

trained convolutional layers of the U.S. traffic signs BadNet

FIGURE 10. Transfer learning attack setup. The attacker trains and
uploads a U.S. BadNet to an online model zoo. An unsuspecting user
downloads and re-trains the U.S. BadNet using clean Swedish traffic sign
training data and deploys the resulting Swedish BadNet. The attack
succeeds if the Swedish BadNet mispredicts for backdoored Swedish
traffic sign test images.

and re-trains its fully-connected layers from scratch using the

clean Swedish traffic signs training dataset. Note that since

the Swedish traffic signs dataset has five categories while

the U.S. traffic signs database has only three, the user first

increases the number of neurons in the last fully connected

layer to five before retraining all three fully connected layers

from scratch.We refer to the retrained network as the Swedish

BadNet.

We test the Swedish BadNet with clean and backdoored

images of Swedish traffic signs, and compare the results

with a Baseline Swedish network obtained from an honestly

trained baseline U.S. network. We say that the attack is

successful if the Swedish BadNet has high accuracy on clean

test images (i.e., comparable to that of the baseline Swedish

network) but low accuracy on backdoored test images.

2) ATTACK RESULTS

Table 6 reports the per-class and average accuracy on clean

and backdoored images from the Swedish traffic signs test

dataset for the Swedish baseline network and the Swedish

BadNet. The accuracy of the Swedish BadNet on clean

images is 74.9% which is actually 2.2% higher than the

accuracy of the baseline Swedish network on clean images.

On the other hand, the accuracy for backdoored images on the

Swedish BadNet drops to 61.6%.
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FIGURE 11. Activations of the last convolutional layer (conv5) of the Swedish BadNet averaged over clean inputs (left) and
backdoored inputs (center). Also shown, for clarity, is difference between the two activation maps.

TABLE 6. Per-class and average accuracy in the transfer learning scenario.

The drop in accuracy for backdoored inputs is indeed

a consequence of our attack; as a basis for comparison,

we note that the accuracy for backdoored images on the

baseline Swedish network does not show a similar drop in

accuracy. We further confirm in Figure 11 that the neurons

that fire only in the presence of backdoors in the U.S. BadNet

(see Figure 9) also fire when backdoored inputs are presented

to the Swedish BadNet.

3) STRENGTHENING THE ATTACK

Intuitively, increasing the activation levels of the three groups

of neurons identified in Figure 9 (and Figure 11) that fire only

in the presence of backdoors should further reduce accuracy

on backdoored inputs, without significantly affecting accu-

racy on clean inputs.We implement a backdoor strengthening

attack procedure by multiplying the input weights and biases

of the ’’backdoor’’ neurons by a factor of k ∈ [1, 100]. Each

value of k corresponds to a new version of the U.S. BadNet

that is then used to generate a Swedish BadNet using transfer

learning, as described above.

Table 7 reports the accuracy of the Swedish BadNet on

clean and backdoored images for different values of k .

We observe that, as predicted, the accuracy on backdoored

images decreases sharply with increasing values of k , thus

amplifying the effect of our attack. However, increasing k

also results in a drop in accuracy on clean inputs, although the

drop is more gradual. Of interest are the results for k = 20: in

return for a 3% drop in accuracy for clean images, this attack

causes a > 25% drop in accuracy for backdoored images.

TABLE 7. Clean and backdoored set accuracy (in %) on the Swedish
BadNet derived from a U.S. BadNet strengthened by a factor of k .

VI. SECURITY EVALUATION OF ONLINE DNN MODEL

REPOSITORIES

In this section, we examine how attackers might implement

backdoor attacks in the real-world. We have already shown

in Section V that if an attacker can get a user to download

a BadNet from online DNN model repository, the backdoor

behavior can persist even after the user re-trains the BadNet

for a related task. How can an attacker get a user to download

a BadNet in the real-world?

To answer this question, we examine the security of

two popular online sources of pre-trained DNN models—

the Caffe Model Zoo [12] and Keras Pre-trained Model

Library [13]—and show that both have potential security

vulnerabilities that may enable an attacker to surreptitiously

modify a model while it is being downloaded by a user,

replacing a benign network with a BadNet.

A. CAFFE MODEL ZOO

A popular repository for pre-trained models is the Caffe

Model Zoo [12], which at the time of this writing hosted

44 different models, mostly for various image recognition

tasks including flower classification, face recognition, and car

model classification.

To obtain a model, a user follows the following steps. First,

the user visits the CaffeModel ZooWiki (Step 1 in Figure 12).

From there, she can select a specific model; each model is

typically associated with a GitHub gist (Step 2). The gist,
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FIGURE 12. Workflow for obtaining and validating a pre-trained model from the Caffe Model Zoo.

according to Caffe convention, should contain a README

with a YAML section giving metadata such as its name,

a URL to download the pre-trained weights (the weights for

a model are often too large to be hosted on GitHub and are

usually hosted externally), and its SHA1 hash. From the gist

a user can visit the link to the weights (Step 3) and download

and save the model locally (Step 4).

Critically, the user can check for tampering or a corrupted

download by comparing the SHA1 listed in the README

(Step 5) with one computed on the downloaded copy of the

model (Step 6). Indeed, this is a step that is routinely per-

formed while downloading and installing traditional software

updates so as to guarantee the integrity of the downloaded

software.

However, we found several models on the Caffe Model

Zoo that either did not store a SHA1 hash listed in the

README, or worse, listed a hash that did not match the hash

of the model’s data. For instance, the popular Network in

Network model [57] linked from the Caffe Zoo currently has

a SHA1 in its metadata that does not match the downloaded

version; despite this, themodel has 63 stars and 25 comments,

none of which mention the mismatched SHA1.4 It appears,

therefore, that users are currently downloading models from

the Caffe Model Zoo without checking the hash of the model

with that listed in its gist.

This setup offers an attacker several points at which to

introduce a backdoored model. First, an attacker could mod-

ify the model by compromising the external server (github

in this case) that hosts the model data. Furthermore, if the

model is served over plain HTTP, the attacker could carry out

a man-in-the-middle attack and replace the model data with a

BadNet as it is downloaded. In this latter case, the SHA1 hash

stored in the gist would not match the downloaded data, but

as noted before, users do not currently appear to be checking

the hash of the downloaded model against that in the gist.

Therefore, tampering with a model is unlikely to be detected,

4Looking at the revision history for the Network in Network gist, we found
that the SHA1 for the model was updated once; however, neither historical
hashmatches the current data for the model.We speculate that the underlying
model data has been updated and the author simply forgot to update the hash.

even if it causes the SHA1 to become invalid. We also found

that of 27 gists linked from the Model Zoo, 20 had no

SHA1 listed at all, which would prevent verification of the

model’s integrity by the end user.

We note that Caffe also provides an automated way to

download models based on the metadata in the README via

a Python script named download_model_binary.py.

Encouragingly, this script does correctly validate the

SHA1 hash for the model data when downloading. However,

the script currently fails on 22 out of the 27 models with

gists on the Caffe model zoo, leading us to believe that most

users manually download models (without checking hashes)

instead of using the script.

B. KERAS PRE-TRAINED MODEL LIBRARY

We also examined Keras [13], another popular deep learning

framework. Keras comes with several popular models such

as VGG-19 and InceptionV3; to download the pretrained

weights, one only has to instantiate an object of the appro-

priate type from within Keras and Keras will download the

model’s weights. We examined the Keras code and found that

each model has a URL and a cryptographic hash associated

and that the Keras function keras_utils.get_file

can be provided the URL and hash in order to download

and validate the model weights. However, the get_file

function has a bug that prevents it from actually checking that

the provided hash is correct. We verified this by altering the

listed hash to an invalid hash (all zeros); Keras was able to

successfully download and instantiate the model despite the

mismatch. We have reported this issue to Keras’s authors.

The bug in the Keras script introduces the same vulnerabil-

ities as noted before: an attacker can change a Keras model

either by compromising the external server on which the

model is hosted, or by changing the model while it is being

downloaded, if the user uses an insecure HTTP connection.

VII. POTENTIAL DEFENSES

While the focus of this paper is on evaluating backdoor-

ing attacks on neural networks, we briefly discuss defense

strategies against our attacks in this section. We discuss

two synergistic avenues for defense: (i) securely hosting and
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distributing deep learning models in online repositories like

the Caffe Model Zoo to prevent benign models from being

tampered with; and (ii) detecting backdoors in maliciously

trained models.

As we saw in Section VI, existing online repositories

for deep learning models do not implement basic security

features, for example, correctly using digital signatures to

prevent models from being tampered with by an adversary.

In contrast, techniques to securely host and distribute soft-

ware libraries are well understood and implemented in sys-

tems such as TUF [58]. We advocate that as a first line of

defense, online repositories of pre-trained deep learningmod-

els should adopt and use the same techniques. This includes

allowing authors of machine learning models (by author we

mean the entity that trains a model) to digitally sign models

using public key cryptography and ensure their integrity with

cryptographic hashes. These mechanisms would ensure that

users can securely acquire models trained by trusted authors.

The second (and more challenging) defense strategy would

be to automatically detect and/or disable backdoor attacks

on models acquired from an untrusted source; for example,

from an untrusted third-party cloud or uploaded to an online

model zoo by an unknown entity. There is some recent work

in this area [36], [37], but these defenses require a user to

re-train (or fine-tune) the untrusted model, which increases

the user’s computational burden. Further, these defenses do

not (yet) provide any provable security guarantees. Another

very recent approach [38] does not require a user to re-train

the model, but assumes that the user has access to both clean

and backdoored inputs, which is not the case in our attack

scenario.

VIII. CONCLUSION

In this paper we have identified and explored new security

concerns introduced by the increasingly common practice of

outsourced training of machine learning models or acquisi-

tion of these models from online model zoos. Specifically,

we show that maliciously trained convolutional neural net-

works are easily backdoored; the resulting ‘‘BadNets’’ have

state-of-the-art performance on regular inputs but misbehave

on carefully crafted attacker-chosen inputs. Further, BadNets

are stealthy, i.e., they escape standard validation testing, and

do not introduce any structural changes to the baseline hon-

estly trained networks, even though they implement more

complex functionality.

We have implemented BadNets for theMNIST digit recog-

nition task and a more complex traffic sign detection system,

and demonstrated that BadNets can reliably and maliciously

misclassify stop signs as speed-limit signs on real-world

images that were backdoored using a Post-it note. Further, we

have demonstrated that backdoors persist even when BadNets

are unwittingly downloaded and adapted for new machine

learning tasks, and continue to cause a significant drop in

classification accuracy for the new task.

Finally, we have evaluated the security of two pop-

ular sources for pre-trained CNN models, the Caffe

Model Zoo and Keras Pre-trained Model Library, and and

identified instances where pre-trained models are being

hosted or shared in ways that make it difficult to guaran-

tee their integrity. Our work provides strong motivation for

machine learning model suppliers (like the Caffe Model Zoo)

to adopt the same security standards and mechanisms used to

secure the software supply chain.

IX. REPRODUCIBLE RESEARCH

All code and data required to reproduce the results in

this paper are available online https://github.com/Kooscii/

BadNets.
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