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ABSTRACT

We introduce the notions of the Baer and the quasi-Baer properties in a general
module theoretic setting. A module M is called (quasi-) Baer if the right annihilator
of a (two-sided) left ideal of End(M) is a direct summand of M. We show that
a direct summand of a (quasi-) Baer module inherits the property. Every finitely
generated abelian group is Baer exactly if it is semisimple or torsion-free. Close
connections to the extending property and the Fl-extending property are exhibited
and it is shown that a module M is (quasi-) Baer and (FI-) K-cononsingular if and
only if it is (FI-) extending and (FI-) K-nonsingular. While we show that direct sums
of (quasi-) Baer modules are not (quasi-) Baer, we prove that an arbitrary direct
sum of mutually subisomorphic quasi-Baer modules is quasi-Baer and that every
free (projective) module over a quasi-Baer ring is always a quasi-Baer module. Some
results, related to direct sums of Baer modules and direct sums of quasi-Baer modules,
are also included. A ring over which every module is Baer is shown to be precisely a
semisimple Artinian ring. Among other results, we also show that the endomorphism
ring of a (quasi-) Baer module is a (quasi-) Baer ring, while the converse is not true
in general. A characterization for this to hold in the Baer modules case is obtained.
We provide a type theory of Baer modules and decomposition of a Baer module into

into five types, similar to the one provided by Kaplansky for the Baer rings case.

11



This type theory and type decomposition is applied, in particular, to all nonsingular

extending modules. Applications of the results obtained are included.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The notions of Baer and quasi-Baer rings have their roots in functional analysis.
For example, von Neumann algebras, such as the *-algebra of bounded operators on
a Hilbert space containing the identity operator which are closed under the weak
operator topology (and are also called W*-algebras), possess a plethora of structures
- algebraic, geometric, topological. For an algebraist, a boon is the rich supply of
idempotents which these algebras have. In order to obtain an insight into the theory
of von Neumann algebras, several authors started to axiomatize this theory, including
S.W.P. Steen, .M. Gel'fand, M.A. Naimark, C.E. Rickart and von Neumann. Alge-
braically, in any von Neumann algebra (i.e. W*-algebra) the right annihilator of any
subset is generated as a right ideal by a projection (i.e. a self-adjoint idempotent
with respect to the involution *). Kaplanksy [20], in 1951, defined the concept of ab-
stract W*-algebras, or AW™-algebras, which took into account mainly the algebraic
structure of von Neumann algebras (AW *-algebras are Banach algebras with an invo-
lution such that ||z2*|| = ||z||* and which have the property that the right annihilator

of any subset is generated by a projection). He also made the connection with von
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Neumann’s study of continuous geometries, by noticing that the projection lattice of
a ’directly finite’ AW*-algebra is a continuous geometry [21]. Kaplansky in 1955 [22]
defined the larger class of Baer *-rings by focusing on annihilators and projections
of AW*-algebras. A Baer *-ring is defined as a ring with involution in which the
right annihilator of every subset (or left ideal) is a principal right ideal generated by
a projection. The name honors Reinhold Baer, who studied this condition earlier in
his book ”Linear Algebra and Projective Geometry”. Dropping the assumption of an
involution in this definition, led Kaplansky to the concept of a Baer ring.

A Baer ring is defined as a ring in which the right annihilator of any left ideal (or
subset) is a right ideal, generated by an idempotent. A number of very interesting
properties of Baer rings were shown by Kaplansky and further investigated by several
other mathematicians. Examples of Baer rings include right self-injective von Neu-
mann regular rings, von Neumann algebras, any domain (with a unit element) and
the endomorphisms rings of semisimple modules (thus, endomorphisms rings of all
vector spaces). The concept of Baer rings was generalized to that of quasi-Baer rings
by W. E. Clark [13] in 1967 by replacing the ‘left ideal’ by a ‘two-sided ideal’ in the
above definition. Examples of quasi-Baer rings include all prime rings, and rings of
matrices over Baer rings. It is easy to see that the Baer and quasi-Baer properties are
left-right symmetric for any ring. Large classes of rings satisty the Baer and the quasi-
Baer properties, respectively. On the other hand, these two concepts are distinct: for
example, a prime ring with a nonzero singular ideal is quasi-Baer but not Baer, and
the n-by-n upper triangular matrix ring over a domain which is not a division ring,
is a quasi-Baer ring which is not Baer. An important fact that makes the quasi-Baer

rings useful is that the quasi-Baer property is a Morita invariant property, while the



Baer property is not. The theory of Baer and quasi-Baer rings has come to play
an important role and major contributions to this theory have been made in recent
years, providing a number of interesting results on Baer and quasi-Baer properties
in the ring-theoretical setting. Some of the contributors include S.K. Berberian, G.
F. Birkenmeier, A. W. Chatters, S. M. Khuri, J. Y. Kim, Y. Hirano, J. K. Park, A.
Pollingher, K.G. Wolfson and A. Zaks, among others (see, for example, [38], [33], [31],
[12], [9], [10], 3], [4], [6], [5], [7]).

Not much is known about these properties in a general module-theoretic setting.
For example, a natural question that can be asked is: if €2 = ¢ is an idempotent in a
(quasi-) Baer ring R, then does the right R-module eR possess any ‘kind’ of Baer or
quasi-Baer properties?

Recall that a module is eztending (or CS), if every submodule is essential in a
direct summand. This simple property is satisfied by every (quasi-) injective module.
Since late 1980s, the development of the extending module theory has been a major
area of research interest in Ring Theory. Contributors include M. Harada and his
school in Japan, B. Miller and his collaborators in Canada, B. Osofsky, P.F. Smith,
D.V. Huynh, N.V. Dung, R. Wisbauer and many others in various parts of the world.
Even with numerous papers published in the last two decades related to this theory,
a number of open problems remain. Although this generalization of injectivity is very
useful, it does not satisfy some important algebraic properties. For example, it is not
known when direct sums of extending modules are extending, or when full or upper
triangular matrix rings over right extending rings are right extending (we know that
these properties in general do not hold true even for finite direct sums or matrix

rings). Much work has been done on finding necessary and sufficient conditions to



ensure that the extending property is preserved under various extensions, but with
only limited success and a full general characterization has not yet been found.

In 1980, A.W. Chatters and S.M. Khuri [12], showed that there are close connec-
tions between the Baer rings and the right extending rings. In particular, they proved
that every right nonsingular right extending ring can be characterized as a Baer ring
which is right cononsingular (Theorem 2.2.1). Another question that can be asked
is: can we provide a similar or analogous characterization for nonsingular extending
modules instead of rings?

The study of Baer property for rings (and now proposed for modules) provides
a possible new approach to investigations on the extending property, given the close
connections between these two properties. Until recently, there were no satisfactory
connections made in the general module-theoretical setting, which we now propose
to do.

Recently, the concept of Fl-extending property for modules was discussed for
abelian groups in [8] and introduced, in general module-theoretical setting in [9]. An
Fl-extending module is defined to be the one for which every fully invariant submod-
ule is essential in a direct summand. Obviously, the Fl-extending property generalizes
the concept of extending property. One advantage of this generalization of the ex-
tending property over various other generalizations is that the underpinnings (i.e., the
fully invariant submodules) form a complete modular sublattice of the lattice of sub-
modules and are well behaved with respect to endomorphisms. Moreover, the lattice
connection naturally follows the lattice theoretic view that was originally indicated
in von Neumann’s formulation of continuous geometries [32] and Utumi’s formulation

of continuous (regular) rings [36]. The class of fully invariant submodules includes



many of the most significant submodules of a module (e.g., the Jacobson radical, the
socle, the singular submodule, etc.). For a ring R, the fully invariant submodules of
Rp are precisely the two-sided ideals of R.

Another interesting connection was established by G.F. Birkenmeier, B. Miiller
and S.T. Rizviin 2002 [9], this time between the quasi-Baer rings and the Fl-extending
rings. It was shown that nonsingular, Fl-extending rings satisfy the quasi-Baer prop-
erty, and can also be studied from this point of view. If the ring is semiprime then
the two properties coincide (Theorem 4.7 in [9]). However, for an arbitrary ring, the
characterization of Fl-extending rings in terms of quasi-Baer rings remains open. In
addition, no module-theoretical analogue of such a result has been proposed until
recently. A question that can be asked is: can one provide a similar characterization
for nonsingular Fl-extending modules?

In our work, we introduce the notions of the Baer and the quasi-Baer properties
for arbitrary modules. Our definitions and techniques allow us to develop a theory
which not only helps provide answers to some of the preceding questions, but also
enables us to work in a general module theoretic setting in which a number of results
and their extensions can be proved efficiently. We believe that these concepts may
prove useful in providing answers to some of the open problems in the theory of
extending modules or help prove results in a more general setting.

Let M be an R-module and S = Endg(M). We call M a Baer module if the right
annihilator in M of any left ideal of S is generated by an idempotent of 5. M is called
a quasi-Baer module if the right annihilator in M of any ideal of S is generated by an
idempotent of 5. It is easy to see that, when M = Rp, the two notions coincide with

the existing definitions of Baer and quasi-Baer rings, respectively. Any (quasi-) Baer



ring R is (quasi-) Baer as an R-module. To exhibit examples of Baer modules we show
that this property is satisfied by any nonsingular extending module, any semisimple
Z-module, any finitely generated torsion-free Z-module, and any right ideal direct
summand of a Baer ring. We can also show that for any extending module M,
M/Zy(M) is always a Baer module, where Zy(M) is the second singular submodule of
M. Examples of quasi-Baer modules include any projective R-module (in particular,
any right ideal summand of R) over a quasi-Baer ring R, any nonsingular Fl-extending

module and any torsion-free abelian group.

1.2 Summary

We begin Chapter 1 with motivation and background. After providing a summary
of the dissertation we include preliminary definitions and known results to be used
later.

In Chapter 2 we define the concept of a Baer module, and provide examples.
We prove a characterization of Baer modules based on strong summand intersection
property. We introduce the concepts of K-nonsingularity and K-cononsingularity,
which are closely linked to Baer modules and extending modules. Characterizations
of the two nonsingularity concepts introduced are proved, and we present examples
illustrating these properties. The main result of this chapter shows that a Baer, K-
cononsingular module is precisely an extending module that is K-nonsingular. This
result is a module-theoretic analogue of the Chatters and Khuri result in [12] (The-
orem 2.1). Applications of this result are included. The question whether the Baer
property for modules transfers to direct summands and direct sums is investigated.

We show that direct summands inherit the Baer property, and give counterexamples



for the case of direct sums. How the two nonsingularities introduced behave with
respect to direct summands and direct sums is another question studied. We provide
conditions for a direct sum of Baer modules to be Baer. Finitely generated abelian
groups that are Baer modules as Z-modules are fully characterized as semisimple or
torsion-free Z-modules. We study indecomposable Baer modules, and indecompos-
able decompositions of Baer modules. Chapter 2 concludes with a result that shows
that a ring R, for which all right R-modules are Baer, is semisimple Artinian ring.

Chapter 3 focuses on the study of quasi-Baer modules. The notions of FI-K-
nonsingularity and FI-X-cononsingularity are introduced to obtain the connections of
quasi-Baer modules to the Fl-extending modules, analogous to the result of Chatters-
Khuri for Baer rings ([12]). We show that direct summands of quasi-Baer modules
inherit the property, and that a direct sum of relatively subisomorphic quasi-Baer
modules (in particular, a direct sum of copies of a quasi-Baer module) is always quasi-
Baer. Thus, any projective module over a quasi-Baer ring is a quasi-Baer module.
Some conditions necessary for direct sums of arbitrary quasi-Baer modules to be
quasi-Baer are also provided.

The aim of our investigation in Chapter 4 is on the endomorphism rings of mod-
ules with Baer property. Since we defined the Baer and quasi-Baer modules in terms
of their idempotent endomorphisms, it is of interest to investigate connections of the
properties of endomorphisms rings with those of the underlying module. In particular,
we investigate the transfer of some properties between a module and its endomorphism
ring. A characterization for the module to be Baer is provided in terms of its endo-
morphism ring. Kaplansky ([22]) introduced a type theory for Baer rings. The type

theory was further developed and extended by Goodearl ([16], [17]) for self-injective



regular rings and for nonsingular injective modules. In this chapter, we also use the
properties of idempotents of the endomorphism ring of a Baer module to provide a
type theory for Baer modules, similar to the type theory for Baer rings.

The dissertation concludes with Appendix A. A topology is shown to exist on a
Baer module M with the property that every endomorphisms of M is continuous in

the topology.

1.3 Preliminaries

All the rings are assumed to be with unit, and not necessarily commutative. The
modules are unital right modules. We usually denote the base ring by R, the module
by M and its endomorphism ring by S = Endr(M). The notation End(M) will be
used instead of Endr(M) when there is no danger of confusion.

The right annihilator of X C M in R (i.e. all elements r € R so that Xr = 0) is
denoted by rr(X), the left annihilator of X C M in S (i.e. all elements ¢ € S so that
©X =0) is denoted by ls(X); the right annihilator of T C S in M (i.e. all elements
m € M so that Tm = 0) is denoted by ry(T') and the left annihilator of P C R in
M (i.e. all elements m € M so that mP = 0) is denoted by [y(P).

Notation: N <° M means N is essential in M, ie. NNP #0,V0#P < M;
N <° M means N is essentially closed in M, ie. if AN # P < M with N <° P;
N <% M means N is direct summand of M; N <M means N is fully invariant in M
(i.e. Vo € End(M), p(N) C N); N <# M, where # stands for ¢, ¢ and, respectively,
@, means NN is fully invariant and essential, closed and respectively direct summand

submodule of M.



Definition 1.3.1. A module M is called an extending module if, for any N < M,

there exists a direct summand N’ <% M such that N <¢ N'.

Definition 1.3.2. A module M is called an Fl-extending module if, for any N < M,

there exists a direct summand N’ <% M such that N <¢ N'.

Definition 1.3.3. A ring R is called a Baer ring if the right annihilator in R of
any left ideal is generated, as a right ideal, by an idempotent element of R (in other

words, for all I < gR, rr(I) = eR where €? = ¢ € R).

Definition 1.3.4. A ring R is called a quasi-Baer ring if the right annihilator in R
of any two-sided ideal is generated, as a right ideal, by an idempotent element of R

(for all I AR, rr(I) = eR, where ¢* = ¢ € R).

Remark 1.3.5. The Baer and quasi-Baer properties for rings are left-right symmetric:
aring R is a (quasi-) Baer ring if and only if the left annihilator in R of any (two-sided)

right ideal is generated, as a left ideal, by an idempotent element of R.

Definition 1.3.6. A module My is called nonsingular if the singular submodule of
M, Z(M)={m € M|mI =0, where I <° Rr} = 0. A ring R is right nonsingular if

Rp 1s nonsingular.

Definition 1.3.7. The second singular submodule of M, denoted by Zy(M), is the

submodule of M containing Z(M), so that Zo(M)/Z(M) = Z(M/Z(M)).

Definition 1.3.8. A ring R is called right cononsingular if any right ideal, with zero

left annihilator, is essential in Rp.

Definition 1.3.9. A ring R is called right Utumi if R is right nonsingular and right
cononsingular. Equivalently, R is right Utumi ring if, for some I < R, I <° Rp if and

only if r1#0,VreR.



Definition 1.3.10. An idempotent ¢ = e € R is called a left (respectively, right)

semicentral idempotent if eR (respectively, Re) is a two-sided ideal of R.

Definition 1.3.11. An idempotent ¢* = ¢ € R is called a central idempotent if e
commutes with every element of R. Equivalently, e is central if eR and (1 — €)R are

both two-sided ideals of R.

Definition 1.3.12. Let M and N be two R-modules. We say that M is N-injective

f, VN < NandVp: N — M, 35: N —= M such that @|n = ¢.

Definition 1.3.13. A module @) that is M-injective, V M R-module, is called injec-

tive.

Notation. For a module M, we denote by E(M) its injective hull, i.e., E(M) is
an injective module such that M <° E(M). The existence and uniqueness up to
isomorphism of injective hulls are known.

An interesting consequence of relative injectivity is the way it characterizes direct
summands of a direct sum of two modules, when one is relative injective to the other

(for example see [14]).

Lemma 1.3.14. Let M and N be R-modules, so that M s N-injective. Then, if

PSM@NsothatPﬂM:O,EIFSGBM@NsothatPS?andM@F:M@N.

Proof. f MNP =0 = nn(p) =0 with p € Pimpliessp e PNM =0=p =0
(where 7y is the canonical projection of M & N onto N). Hence we can define the
following morphism, ¢ : 7n(P) — wa(P) (where mys is the canonical projection
of M & N onto M) by o(nn(p)) = ma(p). This is a well-defined function as 0
can only be mapped in 0; it is easy to check that it is also a morphism. By N-
injectivity of M, this morphism can be extended to a morphism @ : N — M, and

10



we can construct the following submodule of M & N: P = {n + ®(n)ln € N}
(it is easy to check that it is, in fact, a submodule). P C P since % extends ¢.
Also note that PN M = 0, since n +3(n) € M = n = 0 = p(n) = 0. Since

NCM+P=MON=M+P=M®N=MaoP. O

Lemma 1.3.15. If M; is N injective, for i = 1,....n (n € N), then @, M, is

N-injective. If N is M; injective, for i =1,...,n. then N is @,., M;-injective.
The next lemma will be useful.

Lemma 1.3.16. For N < M, I < Rp, K <35, PIM, J<R, LS, the following

hold:
1 Lu(ra(in(D) = Lu(1)
2. rr(lp(rer(N))) = rr(N)
3. ls(ryu(ls(N))) = 1s(N)

4. TM(ls(TM(IX’))) = TM(IX’)

Proof. 1t is well-known that the pairs rgr(-)-Ias(-), respectively ls(-)-ra(-) are Galois

pairs, hence equalities 1 through 4 hold true (for example, see [1]).
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For assertion 5 we observe that, in general, ly(J) < M. On the other hand,
it JIR = rJ C J,and so, if m € ly(J), mr € Ip(J): mrJ C mJ = 0. Hence

Iv(J) QM. The last three statements follow similarly. O

Next, we provide below some results concerning fully invariant submodules, to be

used later.

Lemma 1.3.17. Let M be a module, and let M = My @ M, be a direct sum decom-

position. If N < M then N = Ny & N, where N, = NN M; I M;, fori1=1,2.

Proof. Let m; be the canonical projection of M onto M,, for + = 1,2. Since N I M,
mi(N)C N,and so m(N)=NNM, = N,, for : =1,2. Hence N C m(N) + m(N) =
N1—|—N2. But since Nl g N, for: = 1,2, N1—|—N2 g N. As NlmNz == NlimMz =0

we get that N = Ny & N;. O

Lemma 1.3.18. Let M be a module, and let M = My @ M, be a direct sum decom-
position so that My, My, <M. If N <% M then N = Ny & N,, where N; = N N M;,

fori1=1,2.

Proof. Let M = N@N'. Then, by Lemma 1.3.17, M; = M!® M, where M! = M;NN
and M/ = M; NN, for « = 1,2. Clearly, M{ & M), C N. Then,Vn € N, n =ny G na,
ny = nj + n{ and ny = nf, + nf, where n; € M;, nl € M! and n!’ € M/, + =1,2. By
uniqueness of writing n € N we have that n = (n] + n%) + (nf{ +n%) = nf +nf =

0=n{=nl=0=ne M & M,. O

Lemma 1.3.19. Let M be a module, with M = Ny ® Ny and let Fy < Ny. Then there

exists Fy < Ny so that F1 ® F, <M.

12



Proof. Let

F,= >  ¢(F) <N,

p€Hom(N1,N2)

Take any ¢ € End(N3). Since v € Hom(Ny, N2) V ¢ € Hom(Ny, Nz), we obtain
V(Fy) = Y(Zp(F1)) = Sve(F) C F,. Hence Fy < Ny, Counsider y € End(M);
then x = (xij)ij=1.2, Xij + N; = N;, with 7,5 = 1,2. Note that y,;(F;) C F;, since
F,<dN;,i=1,2, and x2:1(F1) C Fy, from the definition of F;. For ¢ € Hom(Ny, Ny),
X129 € End(Ny); it follows that x12(Fs) = v12(Z@(F1)) = Sxiee(F1) C Fy. Since

each component of y maps F; @ Fy back into Fy & Fy, Fy @ F, < M. O
We present a simple known result.

Lemma 1.3.20. A ring R s right nonsingular if and only if the right annihilator of

any subset X of R is always a closed right ideal.

Proof. The sufficiency is clear: assume that there exists r € R so that rr(r) <° R;
since rp(r) <° R, it implies that rp(r) = R = r = 0.

To prove necessity, assume X C R so that rp(X) <°Y for some ¥ < Rp. Let
y € Y the fact that the set £ = {r € R|yr € rr(X)} is essential in Rp follows
easily. Then X(yE) = 0 = (Xy)E = 0 = Xy = 0, by the nonsingularity of R.

Hence y € rr(X). Thus rp(X) <° R. O

Close connections between the extending and the Baer property in the presence
of some form of nonsingularity are evident by Lemma 1.3.20, since when R is right
extending all closed right ideals are generated by an idempotent. Thus, a right anni-

hilator of any subset of R is generated by an idempotent, forcing R to be Baer.

13



CHAPTER 2

BAER MODULES

In this chapter we introduce the concept of Baer modules. We provide a char-
acterization of Baer modules based on strong summand intersection property. We
define the concepts of K-nonsingularity and K-cononsingularity, which are closely
linked to Baer modules and extending modules. We provide characterizations of the
two nonsingularity concepts introduced, and present examples illustrating their prop-
erties. Then we use these nonsingularities to prove one of our main results of this
chapter, that a Baer, K-cononsingular module is precisely an extending module that
i1s K-nonsingular. This result is a module-theoretic analogue of the Chatters and
Khuri result in [12] (Theorem 2.1). We also show results which are instrumental in
producing large classes of Baer modules.

We study afterwards whether the Baer property for modules transfers to direct
summands and direct sums. We prove it in the positive for the first, and give coun-
terexamples for the general situation of the latter. We also study how the two nonsin-
gularities introduced behave with respect to direct summands and direct sums. We
analyze certain conditions, necessary and, respectively, sufficient for a direct sum of

Baer modules to be Baer. We characterize finitely generated abelian groups that are
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Baer modules as Z-modules. We study indecomposable Baer modules, and indecom-
posable decompositions of Baer modules.

We conclude this chapter by proving that a ring R, for which all right R-modules
are Baer, is semisimple Artinian ring.

2.1 Definitions and characterizations of Baer modules and
nonsingularities

Definition 2.1.1. A right R-module M is called a Baer module it V N < M, [s(N) =

Se, with e = e € S. Equivalently, V I < 55, ry(I) = eM where e = e € S.

Example 2.1.2. All semisimple modules are obviously Baer modules, as are all Baer
rings viewed as right modules over themselves. Z" is a Baer Z-module, V n € N.

More examples will be provided later.

Summand intersection property for modules was studied in several papers (e.g.

[37], [19]).

Definition 2.1.3. A module M is said to have the summand intersection property
(SIP) if the intersection of any two direct summands of M is a direct summand. M
is said to have the strong summand intersection property (SSIP) if the intersection of

any family of direct summands of M is a direct summand.

We first provide a useful characterization of Baer modules based on SSIP. In
this characterization we show that Baer modules are exactly those that have SSIP
and the property that annihilators of single endomorphisms (i.e. kernels) are direct

summands.

Theorem 2.1.4. A module M s Baer if and only if M has the strong summand
intersection property and Ker(p) <® M,V ¢ € S.
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Proof. The second assertion of the necessary condition is obviously true, as the set
of principal left ideals is a subset of the set of all left ideals.

To show the SSIP, take € = ¢; € S, 1 € Z (for an index set Z) and let [ =
Yiez S(1 —¢;). Then Ker((1 —¢;)) D ry(I) Vi € T (for any m € M with pm = 0,
V¢ € I, we have that (1 —e;)m = 0, as (1 —¢;) € I). Let N = (,oy &M =
Nier Ker((1—e¢;)); then ry(I) € N. For the reverse inclusion, for m € M\ N, there
exists ig so that (1 — e;))m # 0, and hence m & ry(I); thus, ray (1) = N. This yields
Nicz &M = N = ry(I) <% M, since M is Baer. Therefore M satisfies the SSIP.

For sufficiency, take an arbitrary I <g 5. For each ¢ € [ we have, by hypothesis,
Ker(p) <% M. Then ry (1) = ¢y Ker(p) <% M, by the SSIP. Hence we get that

M is Baer. O

Since in [12], Theorem 2.1, it was shown that a right extending right nonsingular
ring coincides with a Baer right cononsingular ring, we need to introduce a module-
theoretical analogue of cononsingularity, and a weaker form of nonsingularity, to

obtain a similar characterization for Baer modules.

Definition 2.1.5. We say a module M is K-nonsingular if, for all p € S, ry(p) =

Kerp <¢ M implies ¢ = 0.

Definition 2.1.6. A module M is called K-cononsingular if, for all N < M, [s(N) =

0 implies N <¢ M (equivalently, p(N) # 0 for all 0 # ¢ € S implies N <° M).

Example 2.1.7. Semisimple modules are K-nonsingular. Uniform modules are K-

cononsingular.

Next, we show that the concept of K-nonsingularity of modules is strictly weaker
than the ‘usual’ concept of nonsingularity for modules.
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Proposition 2.1.8. Every nonsingular module M is K-nonsingular.

Proof. Assume M is not K-nonsingular; hence 30 # ¢ € S so that Ker(p) <¢ M.
Since p #0,30 #m € M\ Ker(yp). Theset [ = {r € Rlmr € Ker(y)} is a nonzero,
essential right idealin R: » € I = mr & Ker(yp) = 31’ so that 0 # mrr’ € Ker(p) =
0 # rr’ € I. But for 0 # p(m), ¢(m)I = 0, contradiction to the nonsingularity of

M. O

Example 2.1.9. The Z-module Z,, where p is prime, is K-nonsingular (it is a simple
module, hence all non-zero endomorphisms are automorphisms); however, it is easy to

check that the module Z,, is not nonsingular (for all & € Z,, @-pZ = 0, and pZ <° Z).
The following definition was included in [14].

Definition 2.1.10. A module M is called polyform (or non-M-singular) if, for any

K<Mand f: K —- M, Kerf <¢M.

It is known that every nonsingular module M is polyform. We show that we can

improve Proposition 2.1.8.
Proposition 2.1.11. Every non-M-singular module (or polyform) is K-nonsingular.

Proof. Using the definition, we havethat VA < M andVp: K — M, Kerp <¢* K =
@ = 0. If we choose K' = M, we obtain that V¢ : M — M, Kerp <* M = ¢ =0,

thus M 1s K-nonsingular. O

We provide characterizations of X-nonsingularity and K-cononsingularity in the

following.

Proposition 2.1.12. Let M be an R-module.
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(i) M is K-nonsingular if and only if, for all I < S, ry(I) <® eM fore* =e€ §,

implies I N Se = 0;

1 18 IC-cononsingular if and only if, for a <M, rylls < implies
M s K lar iof and only of, for all N < M ls(N @M [

N Se TM(ls(N))

Proof. (1) Let I < S so that rp(I) <®eM. Then ry(INSe) =ry(l)d(1—e)M <°
M = INn Se=0 (by K-nonsingularity of M).

Conversely, to show K-nonsingularity of M, let I < 55 such that ry (1) <¢ M =
1as- M, where 1,4 is the identity map. Then, by hypothesis, we have that INS-1;; = 0,
thus I = 0.

(i) ra(Is(N)) = eM for €* = e € S implies Is(N) C S(1 — ¢e). Since N <
ra(ls(N)) = eM we obtain that Is(N & (1 — e)M) = 0. By K-cononsingularity,
N&(l—e)M <M= N<“eM =ry(ls(N)).

Conversely, let N < M with [3(N) = 0 = ry(Is(N)) = M. Then N <°

TM(ls(N)) =M. Ol

Example 2.1.13. If Mr = Rp then K-nonsingularity of M coincides with nonsingu-

larity of M.

Under the condition of nonsingularity, it is known that essential closures are
unique. For the more general concept of K-nonsingularity we obtain a similar re-

sult, for essential closures which are summands.

Proposition 2.1.14. Let M be a K-nonsingular module, and let N < M. If N <¢
N; <% M, fori=1,2, then Ny = N,.

Proof. Consider the endomorphism (1 — 7y)my, where m; is the canonical projection
of M onto N;, i = 1,2. Then ((1 — m)m2)N = (1 — m)(mN) = (1 — m)(mN) =
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((1 — m)m)N = 0, since N C Ny N Ny. Taking N, so that Ny & N; = M, ((1 —
m)m2) Ny = (1 — mp)(meNy) = (1 — m1)(0) = 0. Hence N & Nj C Ker((1 — m)m2),
but NG N, < Ny Ny =M = Ker((1 —m)m) <¢ M = (1 —m)m2) =0=my =
mime = Ny C Ny,

Similarly, by taking the endomorphism (1 —ms)m; and showing it is zero, we obtain

that N2 g Nl. O
2.2 Connections to extending modules

In [12], Chatters and Khuri established strong connections between the extending
property of rings and the Baer property of rings, and provided a useful characteriza-

tion as follows.

Theorem 2.2.1. (Theorem 2.1, [12], Theorem 12.2, [14]) Let R be a ring. Then R
s a right nonsingular, right extending ring if and only if R is a right cononsingular,

Baer ring.

In one of our main theorems of this section we extend this result to the general
setting of modules and provide an analogous characterization for Baer modules. We
mention that, even though our result extends that of Chatters and Khuri, our proof

follows different arguments.

Theorem 2.2.2. A module M is extending and K-nonsingular if and only if M is

Baer and K-cononsingular.

The proof of Theorem 2.2.2 is comprised of the following four lemmas, which may
be of interest in their own right to the reader. These results also provide us with a

good source of examples.
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Lemma 2.2.3. FEvery extending module M s K-cononsingular.

Proof. Let N < M so that o(N) #£0,V0 # ¢ € S. f N £° M, by extending property
we have N <¢ eM, for some idempotent e € S, such that e # 1. Hence (1 — ¢e) # 0;

but (1 — e)N = 0, thus getting a contradiction. Hence, M is K-cononsingular. O
Lemma 2.2.4. FEvery K-nonsingular extending module M is a Baer module.

Proof. Assume that M is a K-nonsingular extending module. Let N < M. By the
extending property, there exists ¢ = ¢ € S so that N <° eM. Hence [5(N) D
[s(eM) = S(1—e€). Assume that the inclusion is strict; then there exists ¢ € [g(N)\
S(1—e). Since S = Sed S(1—e) (as a left S-module) we have that p = sje+s3(1—¢)
for some s1,s, € S with sje # 0; replacing ¢ with ¢ — s3(1 — €) € lg(N), we can
safely assume 0 # ¢ is in Se. We obtain that ¢(N) = 0 and ¢((1 — €)M ) = 0 and so
(NG (1—e)M)=0. But N& (1 —e)M <° M, hence by K-nonsingularity of M we
get that ¢ = 0 which contradicts our hypothesis. Therefore Is(N) = S(1 —¢), and so

M 1s Baer. O
Lemma 2.2.5. Fvery Baer module M is K-nonsingular.

Proof. Let M be Baer. Let ¢ € S be any endomorphism of M with Kere <¢ M.
Since M is Baer, Kerp = ry(Sy) = fM for some f> = f € S. Being a summand
and an essential submodule in M implies that Kerep = M. Thus ¢ = 0. This proves

that M is K-nonsingular. O
Lemma 2.2.6. Fvery K-cononsingular Baer module M is an extending module.

Proof. Assume M to be K-cononsingular and Baer. From Lemma 2.2.5 it follows

that M is also K-nonsingular. To show that M is extending, let N < M. Then
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Is(N) = Sf for f2 = f € §. Hence N C ry(Is(N)) = (1 — f)M. Assume that
N £° (1 — f)M (if it were essential then we would be done). Hence there exists
P < (1— f)M so that NN P = 0. Take N D N a complement of P in M. Note
that [(N) # 0 by K-cononsingularity since, clearly, N £¢ M. Let 0 # s € S, sN = 0.
Then sN = 0 and since Is(N) = Sf = s(1 — f) = 0= s((1 — f)M) = 0. It follows
that sP = 0, and so s(N & P) = 0. But P & N <° M, hence, by K-nonsingularity,

s =0, a contradiction. Thus M is an extending module. O

The following two results provide a rich source of examples of Baer modules.

Corollary 2.2.7. Let M be an extending module. Then M[Zy(M) is a Baer module,

where Zy(M) is the second singular submodule of M.

Proof. Since M is extending, M = M’ & Zy(M), where M’ Z5(M) are extending.
But M’ = M/Zy(M) is nonsingular, thus K-nonsingular. By 2.2.4, M/Zy,(M) = M’

1s Baer. O

Corollary 2.2.8. If Rp is extending, then every nonsingular cyclic module M is

extending, hence M is a Baer module.

Proof. The fact that M is extending is shown in [10]. Since M is extending and
nonsingular, hence extending and K-nonsingular, we obtain that M is a Baer module.

O

Example 2.2.9. Let R be a domain which is not right Ore domain. Then M = Rp
is a Baer module which is not extending. Thus, M is a right K-nonsingular module
which is not K-cononsingular. For a specific example, let k be any field and R = k (X),
where X is a set of cardinality greater than or equal to 2; take M = Rp. (Example
1.31, [29]).
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Example 2.2.10. Take M = Z,», where p € Z is a prime number, and n € N, n > 1.
Then M is extending (in fact it is uniform) but not Baer, since ¢ : M = M, ¢(a) = pa
has nonzero kernel, which is essential in M. This module is, hence, K-cononsingular,

but not K-nonsingular.

2.3 Direct summands of Baer modules

A natural question about any algebraic property is if the property is inherited by
direct sums or not, if it is inherited by direct summands or not. Our first result shows
that direct summands of a Baer module inherit the property. We will also show that

direct sums do not inherit this property in general.

Theorem 2.3.1. Let M be a Baer module. Then every direct summand N of M 1is

also a Baer module.

Proof. By Theorem 2.1.4, M has the SSIP and the property that Kere <% M,V
p€S.

Let M = N @ N’. Then every direct summand of N is also a summand of M; it
is known that, in general, every summand of M which is a subset of N is a summand
of N. Thus, N will have the SSIP.

For any ¢ € End(N), we can extend ¢ to an endomorphism of M, by taking
¢ = Yry : M — N C M, where my is the canonical projection of M onto N.
Kerp <% M, but Keri) = N' @ Ker as it is easily checked. This implies that
Keri <% N (by SSIP).

In conclusion, N satisfies the conditions in Theorem 2.1.4, hence N is a Baer

module. O
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As a consequence of this result we see that right direct summands of any Baer
ring are Baer modules as right R-modules, fact which provides another rich source of

examples of Baer modules.

Corollary 2.3.2. Let R be a Baer ring, and let €* = e € R be any idempotent of R.

Then M = eR s an R-module which 1s Baer.

As an application of the above results, we can now characterize all Baer modules

in the class of finitely generated Z-modules.

Proposition 2.3.3. A finitely generated Z-module M is Baer if and only if M is

semisimple or torsion-free.

Proof. If M is semisimple then M is obviously Baer. If M is finitely generated and
torsion-free, M = Z", where n € N; Z" is extending and nonsingular, hence by
Theorem 2.2.2 it is Baer.

Next assume that M is a finitely generated Baer module. We can always decom-
pose M = t(M) & f(M), where t(M) is the torsion submodule of M and f(M) is
the torsion free submodule of M. Assume ¢(M) # 0 and f(M) # 0; by the struc-
ture Theorem 8.4 in [15], t(M) = @pep Ziyniv), where P C Z is a finite collection of
primes (with some possible repetitions); n(p) € N, for all p € P. Also, f(M) = Z",
0 # n € N. Let py be a prime so that n(pg) # 0 (such a prime must exist), and let
el — Zpg(po) be the morphism defined by ¢(x) = 2, for © € Z. Ker(y) is a proper
submodule of Z, hence it is essential in Z. Extend ¢ to @, an endomorphism of M,
where @ = ¢(mp,), and 7, is the canonical projection of M onto Zpg(po). The kernel
Ker(p) <¢ M, but Ker(®) # M, hence M is not Baer, a contradiction. Hence either
t(M)=0o0r f(M)=0.
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Assume f(M) = 0. Then M = t(M); it is a finite direct sum of modules of the
form Z (), where p is prime and n(p) € N. Therefore Z,n must be a Baer module,
by Theorem 2.3.1. Assume there exists a prime p such that n(p) > 1; for this Z ),

N

we set p(2) = p : L) — Lpn(n. Then ¢ # 0 (pi = p # 0 since n(p) > 1);

P

Ker(p) #£0 (p- p”(;)—l = plp) = 0), and since Zp,» is uniform, Ker(p) cannot be a
summand. Thus Z () is not a Baer module, a contradiction. Hence t(M) = @, Zy,
with P C Z a finite collection of primes (possibly in multiple instances).

Finally, assume that (M) = 0; then M = f(M) = Z™ which we already know is

a Baer module, by Example 2.1.2. O

Remark 2.3.4. The statement of Proposition 2.3.3 holds true for any finitely generated

module over any Principal Ideal Domain instead of Z.

Next we characterize an indecomposable Baer module over an arbitrary ring.

Theorem 2.3.5. M is an indecomposable Baer module if and only if ¥V 0 # ¢ €

End(M), ¢ is a monomorphism.

Proof. Let M be indecomposable and 0 # ¢ € End(M). M being Baer, Ker(p) <%
M, hence Ker(p) =0or Ker(¢) = M. As ¢ # 0it follows that ¢ is a monomorphism.

Conversely, assume that M were not indecomposable, hence M = M; ¢ M, with
My, My # 0. Take ¢ = m; the canonical projection of M onto My; Ker(p) = M, is
proper submodule, a contradiction. Baer condition for M follows immediately, as the

only summands are M and 0. O

Corollary 2.3.6. R is a Baer ring with no proper idempotent elements if and only

if R is a domain.
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Proposition 2.3.7. Let M be an indecomposable Baer module. Then, for any ¢ €
End(M), ¢ is uniquely defined by the image under ¢ of a single element 0 # m € M.
Consequently, End(M) embeds in the set {m € M|rr(m) D rr(mo)}, for a fized

arbitrary nonzero element 0 % mo € M.

Proof. Let 0 # mg € M. Assume there exist 1, @2 € End(M), p1(mo) = @2(mo).
Let ¢ € End(M). Then mg € Ker(p1 —2) # 0, hence, by Theorem 2.3.5, 1 — ¢y =
0. Hence, any morphism ¢ is uniquely defined by the image at mg. Since mg can
only be mapped onto an element with a larger right annihilator in R, the last part of

the conclusion follows easily. O

Remark 2.3.8. In view of Proposition 2.3.7, if there are unique elements with minimal
annihilators in R, then the indecomposable Baer modules become iso-endo, namely

modules for which all non-zero endomorphisms are isomorphisms.

A question that arises naturally when discussing decompositions of a module is
when does a module have an indecomposable decomposition. It is known in general
that if the module is either Noetherian or Artinian we can obtain such a decompo-
sition. For Baer modules, if one such decomposition exists (and, in this case, finite)

we have the following result.

Proposition 2.3.9. If a Baer module M can be decomposed into a finite direct sum

of indecomposable summands, then any other, arbitrary direct sum decomposition of

M s finite.

Proof. Let M = M; & My, @ ... ® M,, where n € N, be a finite direct sum of
indecomposable summands. Assume now that M also decomposes as M = @,.; N;.
Let 0 # m; € M;, 7 € 1...n. Then m; = Ziezjn?, where |Z;| < o0,V j €1...n.
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But then M;N (eaite N;) # 0; moreover, by Theorem 2.1.4 M; N (eaite N;) <% M;,
which is indecomposable, hence M; N (eaite Ni)y=M;, = M; C (eaite N;). But
then M = My & ...8 M, C eaieIlu...uIn N;, hence we actually have equality. But

the union of Zy,...,Z, is a finite set, hence only finitely many N; are non-zero, for

1€ 1. O

It is of interest to know whether the properties of K-nonsingularity and K-conon-
singularity we defined earlier, pass to direct summands. We can answer in the positive

for the first.

Proposition 2.3.10. Let M be a K-nonsingular module. Then ¥ N <% M, N is

also K-nonsingular.

Proof. Let ¢ € Endp(N) so that Kere <° N. Extend this morphism to M, by
taking @ = pmny : M = N C M, where 7y 1s the canonical projection onto N. Then
Kerp = N' @ Kerp, where M = N @ N'. Thus, Kerpg <¢ M = © = 0, since M is

K-nonsingular. Hence ¢ = 0. O

2.4 Direct sums of Baer modules

It is a well-known fact that a (finite) direct sum of extending modules is not always
extending. In this section we show that a direct sum of Baer modules is not always
Baer, similarly. After presenting some examples, we provide a necessary condition for

direct sums of Baer modules to be Baer.

Example 2.4.1. The Z modules Z/pZ and Z/p*Z are extending, since they are
uniform (where p € Z is a prime number). Yet (Z/pZ) & (Z/p*Z) is not extending

(the submodule generated by the element (i,ﬁ) is closed but not a summand).
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Example 2.4.2. Let R be a commutative domain which is not Dedekind. Let M =
R, where T is an index set, |Z| = oo. Then M is not a Baer R-module, while Ry is
a Baer module. It can be shown (see Chapter 4) that for a free module over a domain

to be Baer, the ring must be at least hereditary.

The next examples illustrate that even finite direct sums of Baer modules are not

necessarily Baer modules.

Example 2.4.3. The Z-module M = Z & Z- is not Baer, even though Z and Z, are
both Baer Z-modules (the map (n,m) — (0,7) has kernel 2Z & Zy # Z & Z,, which

is not a summand, since Z is uniform).

Example 2.4.4. (Page 109 in [14]) Let R be a commutative domain that is not
Priifer. For example, R = Z [X], which is a commutative (noetherian) domain, hence
is a Baer ring. Similar to the the example 2.4.2, a finitely generated free module is
Baer only if the base ring is semihereditary. In fact, in Chapter 4 we will present a

necessary and sufficient condition for a free module over a commutative Baer ring to

be a Baer module (Theorem 4.1.16).

These examples provide another instance of connections of the behaviour of direct
sums of Baer modules and of extending modules. Also, conditions for free modules
to be Baer or extending, respectively, are similar.

As mentioned earlier, a direct sum of extending modules is not extending. There
are several options for a sufficient condition for such a sum to be extending, but no
significant progress has been made in finding a necessary condition or a full char-
acterization. We suggest that using the theory of Baer modules we may be able to
provide a new approach and possibly improve our chances in solving this problem.
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Note that if we consider nonsingular extending modules, their direct sum is a
nonsingular module, hence K-nonsingular. Thus, if we expect that the direct sum is
extending, by Theorem 2.2.2, it must also be Baer; thus, a necessary and sufficient
condition for a direct sum of Baer modules to be Baer could be a starting point for
a similar condition for extending modules.

We first define the following relative property of modules.

Definition 2.4.5. Let M and N be Baer modules. We say M and N are relatively
Baer if Vo : M — N, Kero < M and V¢ : N - M, Kery) <P N,
Theorem 2.4.6. If M = @,.; M; is a Baer module (I an index set), then the class

{M;}icx satisfies the following:

a) M; is a Baer module, ¥V i € T
b) for any pair (1,7) € T X I, M; and M; are relatively Baer

¢) Vi#je€I, ¥ monomorphisms ¢ : M{ <% M; — M; and ¢ : M; <% M; — M;,
the set
A= {(¢7(a), —v"(a)la € Im(p) N Im()}

is a direct summand of M! & M]’

Proof. The elements of the endomorphism ring of @, ; M; are matrices, for which
the (2, 7) entries are morphisms M; — M;. Since @,.; M; is Baer, the kernel of every
endomorphism is a direct summand, by definition.

Part (a) follows from Theorem 2.3.1.

To show (b), take the endomorphism (@0 )i jrez, with 1) @y = 0, Vi’ # ¢ and
3 F# 7 2) wi; = Ker((wiyr)) = (@j'e(I\{j}) M) & Ker(1), as it is easily checked.
As this must be a summand we get Ker(¢) <% M.
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To prove (c), observe that as ¢ is defined on M! <% AM;, it can be extended to M;,
by considering 7', where 7’ is the canonical projection of M; onto M/; similarly with
Y. To simplify notation, we use the same symbols for these new morphisms. Take the
endomorphism (ag)orer, with: 1) awy = 0, ¥ (7,7) # (i,3), (i) 2) ass = 3 3)
aj =0, K = Ker((a;y)) = {(b,¢)|e(b) + 1(c) = 0}. Note that Ker(e)® Ker(y) C
K. Moreover, since both the kernels of ¢ and ¢ are direct summands, we have
M, = Ker(e) @& M! and M; = Ker(y) & M]’ Note that ¢ is mono on M and @ is
mono on M}. We have ¢(b) + ¥ (c) = 0 only if ¢(b) = —(c) € Im(¢) N Im(z)). For
(b.) € (MEMNE, we get (b,) € {(¢l3h(0), |3 ()).a € Im(@)NIm(w)} = A
(Ker(p)® Ker(y))NA = {(0,0)}, obviously. Given the fact that any pair (b,¢) € K
can be written uniquely as (b,¢) = (V/,¢') + (0", ") with (¥, ') € Ker(y) & Ker(y)
and (0", c") € M] ® M, we have that K = Ker(p) ® Ker(y) © A. Now, K must be

a summand of M/ @ M]‘; hence A <% M! & M]’ O

Example 2.4.7. If M is Baer, then the family {M,}.cz, where M; = M, Vi € I,
satisfies the relative Baer condition. However, as Example 2.4.2 has shown, it is not

enough for the direct sum @, .; M; to be Baer.

If we put conditions on the endomorphism rings we obtain the following result,

due to Wilson, which we rephrased in our setting (Lemma 4, [37]).

Proposition 2.4.8. Let M be a finite direct sum of copies of some finite rank, torsion-

free module whose endomorphism ring is a PID. Then M is Baer.

Proof. In [37] it is proved that M has SSIP and also, that the kernel of any endomor-

phism of M is a summand of M. Hence, using our Theorem 2.1.4, M is Baer. O
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One sufficient condition for a finite direct sum of extending modules to be extend-
ing is that they be relatively injective (see [18], Proposition 7.10 in [14]). We prove

that an analogue is true for Baer modules.

Theorem 2.4.9. Let {M;}i<, be a class of Baer modules, where n € N. For any

i # 3, M; and M; are relative Baer and relative injective. Then, @, M, is a Baer

i<n
module.
Proof. We prove by induction on n.

Start with n = 2. Let {¢;};cs be a class of endomorphisms of M; & M,, where
J is any index set. We want to prove that (), Ker(p;) <% M, & M,. Set K =
mje] Ker(p;).

We prove that we can reduce the problem to the case when K has zero intersection
with either M; or M,. Assume K N M; # 0. We have that Ker(y;) N M; =
Ker(mpjiu) N Ker(mypj i), where mp,my are the canonical projections, and ¢q, o
are the canonical inclusions (when restricting the morphism ¢, to Mj, the elements
from M; that are in its kernel are those that have both their image components
0). But both Ker(mp; i) and Ker(mpj i) are summands, as the first is the kernel
of the endomorphism my¢,i; of My, and the second is the kernel of the morphism
Tap t1 from My to My (and we have relative Baer condition). Since M; has SSIP by
Theorem 2.1.4, the left-hand side of the equality is a summand too. Hence KN M; =
(mjej Ker(p)NM;, = mje] (Ker(p;)NM;) <% M. Therefore K = (KNM;)®D K’
and M; = (K N M;) @ M,. Similarly, we obtain K’ N My <% M, and that K’ =
(K'N My) & K" and My, = (K’ N M) & M. In that case, K is the intersection of
the kernels of all morphisms ¢; restricted to M; & M. Being summands of M; and
M, respectively, K" N M{ = 0 and K" N M, = 0; M,, M, are Baer. M| and M, are
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relatively Baer, and are relatively injective. Hence the reduction of the problem to
the situation above does not decrease its generality. Assume from now on, for the
sake of simplifying notations, that K" = K and M| = My, M) = M,.

Because of relative injectivity and using Lemma 1.3.14 we can embed K into a
summand Ny with the properties: K C Ny and M; & Ny = My & M,. Ny = M,
and so N, is Baer, and relatively Baer and relatively injective with M;. Taking p;
and py the canonical projections onto M; and N, and 11,15 the canonical inclusions
into My and N,, respectively, we obtain, similar to the above argument, that K =
mje] (Ker(pipjiz) N Ker(papjiz). As for each j both those kernels are summands in
N, (by Baer and relative Baer assumption), and then intersection of arbitrary number
of summands is again a summand (by Theorem 2.1.4), K <% N, <% M; @ M,, which
is what we wanted to prove.

Similarly, we can prove that (in the settings of the above hypothesis) M; & M,
and M are relatively Baer. Take any ¢ : Ms — My & My; Ker(p) = Ker(me) N
Ker(myp) <% My @ M,. Take now ¢ : My @ My — Ms. If Ker(y) N My # 0, then
Ker(Y)NM; <% My and Ker(¥)NM; <% Ker(y). Hence we can reduce the problem
(similarly to the situation above) to the case when Ker(¢) N M; = 0. But since M,
and M, are relative injective, we can embed Ker() into a summand L, Ker(y) < L,
M, ® L = M; ® M, where L 2 M,. From this it easily follows that Ker(y) <% L (L
is Baer, relative Baer with M,’s), which, together with the Baer property of M; & M,
gives us relative Baer property of M & M, and Ms.

Assuming now that a direct sum of n Baer modules M,, 1 € 1,...,n that are both
relative Baer and relative injective, is Baer, and that this direct sum is relative Baer

with respect to M,11, we go now to step n + 1. Since relative injectivity transfers
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to direct sums (that is, @,, M; is relative injective with M4, - Lemma 1.3.15), we
have that: @, ., M; and M, 4, are both Baer modules; they are relative Baer; they

are relative injective. Hence @, M; @& M 41 = ®i<n—|—1 M; 1s a Baer module. O

In the next result, we describe the behaviour of arbitrary summands of a direct

sum of indecomposable Baer modules.

Proposition 2.4.10. Let (M,);ez be a class of indecomposable Baer modules satis-
fying the relative Baer property, for T an index set, and let M = @,.; M;. For any

N <% M either M; CN or NN M; =0,VieZ.

Proof. Recall that we denote by S the endomorphism ring of M. Let e? = ¢; be the
idempotents in S corresponding to the decomposition M = @,.; M;. Let N = fM,
for some f2 = f € S. For any i € Z, ¢,Se; = S; = End(M;).

Assume 0 # m € N N M,;, for a certain 1 € Z. Then e¢,;m = m; fm = m; so,
e;fe;m = m. Since M; is indecomposable Baer, by Proposition 2.3.7 the endomor-
phism e, fe; is uniquely defined its value at m, hence e, fe; = ;. Similarly, taking
(1 —e;)fe;m = 0, we obtain that Ker(l — ¢;)fe; # 0, yet, by relative Baer property,
Ker(1—e¢;)fe; <% M;, hence Ker(1 — ¢;)fe; = M.

Consequently, fe; = e, fe; + (1 — ¢;)fe; = ¢;, hence M; C N. O

Corollary 2.4.11. Let M be an indecomposable Baer module, and let M; = M, for

i€ Z,T an index set. ThenV N <% eaieI M; we have either M; NN =0 or M; C N.

Lemma 2.4.12. Let My and M, be Baer modules, My and M, relatively Baer. Let
N1 §®M:M1@M2. Theanli §® M1 cmleﬂMz §® M2 (Nlli §® M

and NlmMz §® M)
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Proof. Take N, so that Ny @ Ny = M. Take 7y, w5 the canonical projections of M
onto M and Ms, respectively; py, ps the canonical projections of M onto Ny and N,
respectively.

Construct the following maps:
v My — My = mi(p2las)

and

Y My — Myyop = ma(pr|ar,)

Kerp = {m € Mi|ri(p2(m)) = 0} = {m € Mi|pa(m) € My}; Kerp = {m €
Mi|ma(pi(m)) = 0} = {m € Mi|pi(m) € M;}. Each of Kerp, Kery is a direct

summand of M (using Baer and relative Baer properties). And
K = Kerp N Kerp = {m € Mi|pz(m) € Mz, p1(m) € M}

1s also a direct summand of M;.

But m = pi(m) + p2(m); since the first term is in M; and the second in M,
we must have that p;(m) = m, pa(m) = 0. Therefore we conclude that for any
m € Kerp N Kert, m = p1(m) = m € M; N Ny.

Conversely, for any m € My NNy, pi(m) =m = (m) =0, p2(m) =0 = p(m) =
0. Hence m € Kere N Kery, My NNy <% M, <% M.

The preceding holds similarly for M, N Ny. O

Remark 2.4.13. This result can be easily generalized to any direct sum of relative
Baer, Baer modules - a sketch of the proof here: take Ny & Ny = @ M;; m; canonical

projection onto M;, p; ”canonical” projection onto @k# Mj, , p; canonical projection

onto N;, j = 1,2. Take ¢ = p;(p2|p;) and ¢ = m;(p1|ag). Kerp and Kery must be
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summands (the first , since it is taking M, into the rest, its kernel is an intersection
of all components onto Mjs, the second simply because it’s from M, to M;). K =
Kerp N Kery is a summand, too. K = {m|p;(m) € M; and py(m) € @k# My;
m = pi(m) + pa(m) = m = pi1(m) and py(m) = 0}. Similarly like above, this means

that the intersection of kernels is precisely M; N Nj.

Remark 2.4.14. Another observation we can make here is the fact that we didn’t use
the Baer property of M, in Lemma 2.4.12, which means that we get the property
only using the properties that M; is Baer and that the kernels of all morphisms from

M, to M, are direct summands in M.

A sufficient condition for an arbitrary direct sum of Baer modules to be Baer is

that each module be fully invariant in the direct sum.

Proposition 2.4.15. Let M = @,.; M; (I an index set) and let M; <M, Vi€ I.

Then @,c; M; is a Baer module if and only if M; is a Baer module, ¥V i € T,

Proof. The necessity is clear, by Theorem 2.3.1.

To prove sufficiency, note that since M; <M, Vi € Z, Hom(M;,M;) =0,V 1 # j,
i, € I. Hence in the endomorphism ring of M = @,.; M;, viewed as a matrix
ring, for each endomorphism there are only elements on the ‘diagonal’. Let I < ¢9.
Hence ry(I) = @7 rar (I NS;), where S; = Endgr(M;). Since on each component,
the right annihilator is a summand in M; (since each AM; is Baer) it follows that

rv(l) = @jer ran(INS;) <% @D.c; Mi = M, hence M is a Baer module. O

We conclude this chapter, by showing that a ring R for which every right R-

modules is Baer must be precisely a semisimple artinian ring.

Theorem 2.4.16. Let R be a ring. The following are equivalent:
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1. R is semisimple artinian.
2. Every (right) R-module is Baer

3. Every injective right R module is Baer

Proof. (1)=(2)=-(3) are obvious.

To prove (3)=-(1), consider the module: B = E(M) & E(E(M)/M), where M
is an arbitrary right R-module. B is injective (being the direct sum of two injective
modules) and hence is Baer by hypothesis. Let ¢ : E(M) — E(E(M)/M) be defined
by ¢(x) =+ M,V e € E(M). Then Kerp = M is a direct summand of E(M),
by Theorem 2.4.6. Since M <¢ E(M) we get M = E(M). Since M arbitrarily
chosen, we get that all right R-modules are injective, hence R must be semisimple

Artinian. O
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CHAPTER 3

QUASI-BAER MODULES

In this chapter we define the concept of quasi-Baer modules and provide examples.
The notions of FI-K-nonsingularity and FI-K-cononsingularity are introduced to ob-
tain the connections of quasi-Baer modules to the Fl-extending modules, analogous
to the result of Chatters-Khuri for Baer rings ([12]). We show that direct summands
of quasi-Baer modules are quasi-Baer and that direct sums of copies of a quasi-Baer
module are always quasi-Baer. In particular, any projective module over a quasi-Baer
ring is a quasi-Baer module. Some results relating to direct sums of arbitrary quasi-
Baer modules are also provided. We remark that the quasi-Baer property for rings is

a Morita invariant property, and hence provides nice results.

3.1 Definitions

Definition 3.1.1. A right R-module M is called a quasi-Baer module if for all N<IM,
[s(N) = Se, with € = e € § = End(M). Equivalently, a module is quasi-Baer if and

only if V.J LS, ryf(J) = fM for f2=f€ S

Note. The equivalence between the two conditions in the definition follows by an

application of Lemma 1.3.16.
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Example 3.1.2. All semisimple modules are quasi-Baer; all Baer and quasi-Baer
rings are quasi-Baer modules, viewed as modules over themselves. The Baer modules
shown in Chapter 2 are obviously quasi-Baer modules. All finitely generated abelian
groups are quasi-Baer. A finitely generated abelian group that is not semisimple is

an example of a quasi-Baer module that is not a Baer module.
Lemma 3.1.3. Let N; <¥ M, where 1 <i<n, n € N. Then (,¢;c, Ni < M.

Proof. The intersection of any family of fully invariant submodules is a fully invariant
submodule, as it is easily checked. By Lemma 1.3.17, Ny N N, <% N; = N N
N, <% M. Intersecting successively with N3, ..., N,, we obtain at every step a direct

summand. O

Proposition 3.1.4. Let M be a module with the property that all ideals of S are
generated (as left ideals) by finitely many principal two-sided ideals. Then M is

quasi-Baer if and only if for any right semicentral endomorphism o, Kerp <% M.

Proof. Necessity is clear, since the set of principal ideals of S is included in the set of
all ideals of S.

For sufficiency, take an ideal I < S. Then, by our assumption, I = S(pk|k €
K), where K is a finite index set. For each @, Kerpr <% M: Kerpr <% M by
hypothesis; Kerpy is also invariant due to the fact that S < .S. In this case,

ryv(I) = Ngex Kerer. By Lemma 3.1.3, (o Keror <% M. O

Similar to the Baer modules case, quasi-Baer modules do indeed have a certain
kind of nonsingularity. For the quasi-Baer case, we shall have to employ fully invariant
submodules of M and ideals in S for such a definition to be meaningful. We introduce
the following two definitions.
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Definition 3.1.5. A module M is called FI-K-nonsingular if, for any I < S so that

ru(I) < eM fore? =e€ S, ry(l) =eM.

Definition 3.1.6. A module M is called FI-K-cononsingular if, for every N <9 M

and N’ < N so that o(N') # 0,V ¢ € End(N), we get that N' <¢ N.

We first provide a characterization of FI-K-nonsingularity and FI-X-cononsingu-
larity. As a consequence, we show that the K-nonsingularity and K-cononsingularity
concepts we studied in Chapter 2 imply these new ones, respectively: K-nonsingularity

implies FI-K-nonsingularity and K-cononsingularity implies FI-K-cononsingularity.
Proposition 3.1.7. Let M be an R-module.

(i) M is FI-K-nonsingular if and only if, for all IS, rp(I) < eM fore* =e€ S,

implies I N Se = 0;

(i) M is FI-K-cononsingular if and only if, for all N<UM, ras(Is(N)) <% M implies

N Se TM(ls(N))

Proof. (i) Let I 9.5 so that ryf(I) <¢eM = S(1—e)CI=1=51—-¢)Fle=
S(1 —e)® IN Se (since I is an ideal of §). Assuming that I N Se # 0 = 3
0 # s € [ so that se = s, by taking s € I N Se. But, by FI-K-nonsingularity,
ry(l) =eM = sM = seM =0 = s =0, absurd. Hence I N Se = 0.

Conversely, to show FI-K-nonsingularity of M, let I < ¢S such that ra(I) <° eM.
Then, by hypothesis, we have that I N Se =0 = I C S(1 — ¢) since I < 5. Thus
eM Cry(I) (by Lemma 1.3.16), hence eM = rp(I).

(i) ra(Is(N)) = eM for € = e € S implies Is(N) C S(1 —¢). NdM =
eM I4M = S(1—e)<S. Using now the fact that N C rp(ls(N)) = eM, and since
Is(N)CS(1—¢€)=ls.N=0= N <°eM =ry(ls(N)) by FI-K-cononsingularity.

38



Conversely, to show FI-K-cononsingularity, let N = eM << M where ¢? = ¢ € §,
and N'<eM so that l.s.(N') = 0. Note that, since e M <M = S(1—e)<dS = eSS =
se = ese. Then [g(N') = S(1 —e) (since (1 — e)N' C (1 —e)N = (1 — e)eM = 0;
taking s = se € Se so that sN' = 0 = eseN' = 0 = ese = se = 0). Then

ru(ls(N')) = eM = N’ < ry(Is(N')) = eM = N. 0

Note. The characterizations in Proposition 3.1.7 are similar to those in Proposition

2.1.12, differing only by the choice of ideals of S and fully invariant submodules of M

instead of left ideals of S and submodules of M, respectively, in Proposition 3.1.7.
These concepts indeed properly generalize the notions of K-nonsingularity and

K-cononsingularity, respectively.
Corollary 3.1.8. We have the following implications:
a) if M is K-nonsingular, then M is FI-KC-nonsingular;
b) if M is K-cononsingular, then M is FI-K-cononsingular.
Proof. Easily follows from the Proposition 3.1.7 and Proposition 2.1.12. O

Example 3.1.9. Any prime ring R with a nonzero singular ideal has the property
that Rp is FI-K-nonsingular (since it is quasi-Baer; see Theorem 3.2.2, which we will
prove shortly), but not K-nonsingular (see [30]; also Examples 4.3, 4.4 in [11]).

Any module which is Baer and Fl-extending but not extending has the property
that it 1s FI-K-cononsingular but not K-cononsingular. We exhibit one such module
in Example 2.2.9 (a domain R which is not right Ore domain): R is Baer and not

right extending, but it is right Fl-extending.
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3.2 Connections to Fl-extending modules

Our starting point is the following result.

Theorem 3.2.1. (Proposition 4.4 [9]) Let R be right nonsingular. Then R is right

Fl-extending if and only if R is quasi-Baer and A <° r(I(A)), for all A < R.

In the main theorem of this section we establish connections between quasi-Baer
modules and Fl-extending modules, which are similar to the Baer and extending
module case, but which require the newly defined concepts of FI-K-nonsingularity

and FI-K-cononsingularity for a complete characterization.

Theorem 3.2.2. A module M s Fl-extending and FI-K-nonsingular if and only if

M s quasi-Baer and FI-K-cononsingular.
Lemma 3.2.3. Let M be Fl-extending. Then M is FI-K-cononsingular.

Proof. Let N 4% M. Then, by Proposition 1.2, [9], N is Fl-extending. Take N’ < N
such that ¢p(N') # 0,V ¢ € End(N). By the Fl-extending property N’ <¢ N’ <% N.
Assume N’ @ Ny = N where N, # 0. Then 3, the canonical projection of N onto N,

has the property that my(N’) = 0, a contradiction. Hence Ny =0, and N' < N. O

Lemma 3.2.4. Let M be an FI-K-nonsingular, Fl-extending module. Then M is a

quasi-Baer module.

Proof. Let I<45. We want to show that ry (1) <% M. We have that ry(I) <M, and
by Fl-extending property we get ry(I) <® eM, ¢* = ¢ € S. By FI-K-nonsingularity
we get that ry () = eM. O
Lemma 3.2.5. Let M be a quasi-Baer module. Then M s FI-K-nonsingular.
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Proof. Let I 4.8, with rp(I) < eM, e = e € S. Then, by the quasi-Baer property,
(1) <® M. Asry(I) C eM it follows that ra (1) <% eM. Since it is also essential,

ra(L) =eM. O

Lemma 3.2.6. Let M be an FI-K-cononsingular quasi-Baer module. Then M is

Fl-extending.

Proof. Let N <M, and ls(N) = Se (by quasi-Baer property). Hence, N C (1—¢)M.
Moreover, since N <I M, Se <I'S hence (1 — e)M <® M. Now let ¢ € End((1 — ¢)M),
thus ¢ = (1 — e)o(1 —e) € S. Suppose @(N) =0 = (1 — e)p(1 — ) € Is(N) = Se.
But then (1—e)o(1—¢) € [(1—€)S](1—e)NSe = 0. So, by the FI-K-cononsingularity

of M we get that N <¢ (1 — ¢)M, hence M is Fl-extending. O

Remark 3.2.7. In the above proof we also get that (1 —e)M <M (N <M = Se =
Is(N) XS = (1 —e)M = ry(ls(N)) < M), and so we obtain that M is, in fact,

strongly Fl-extending.

Proof. The proof of Theorem 3.2.2 follows from Lemma 3.2.3, Lemma 3.2.4, Lemma

3.2.5 and Lemma 3.2.6. O
Next, we characterize the FI-K-nonsingularity in the ring case. First, a definition.

Definition 3.2.8. For a ring R, we call the following set the right FI-singular set
of R: Z(RR) = {r € R|eitherr =0 or 3 e = e,r = re # 0 and rI = 0 for some

[<R,I<°eR}

Proposition 3.2.9. The ring R is FI-K-nonsingular (as a right R-module) if and

only if Z(RR) =0.
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Proof. For necessity, assume Z(RR) # 0, hence there exists 0 #£ ¢ € Z(RR) = 3
e =e € R, witht =te# 0and [ <R, I <°¢eR so that tI = 0. Let J = [r(I).
Since I < R, J 4 R; also, since I C eR = J O R(1 —e). Since tI = 0 we have
t € J. Consider now rr(J). Now 1 —e € J = rr(J) C eR and I C rg(J), since
I Crp(lr(l)); hence rp(J) <° eR. But t = te # 0, hence e & rr(J) = rr(J) # eR.
Contradiction, because R is right FI-K-nonsingular.

For sufficiency, assume that 3 I << R so that rr(I) <° eR for some €? = ¢ € R, but
rr(I) # eR. Hence there exists an element 0 # t € I so that teR # 0. Thus we have
0 #te=(te)e; rr(l) < eR = err(l) = rr(I), thus (te)rr(l) = t(err(l)) = trr(l) =

0. Since rp(/) < R and rg(l) <° eR, te € Z(RR) =0 = te = 0, contradiction. O
Proposition 3.2.10. Let R be a ring. Then the following hold:
a) the set Z(RR) is closed under left multiplication with elements of R

b) let AR with A <° eR where ¢* = ¢ € R; then eR + Z(RR) is a set closed

under left multiplication with elements of R

Proof. (a) Taking 0 # ¢t € Z(Rg), then 3 ¢* = e,t = te # 0 and tI = 0 for some
I < R,I<°eR. In this case, for an arbitrary r € R, if 0 # rt = rte, rt] = 0 and
hence rt € Z(Rp).

(b) We already know that Z(Rp) is closed under left multiplication, from part
(a). To show that eR+ Z(Rg) is left R-closed too we only need to show that, ¥r € R,
re € eR+ Z(Rp).

We have: re = ere + (1 — ¢)re, and ere € eR; we show that (1 — e)re € Z(Rp):
(1 —e)reA=(1—e)rA (since AC eR) C (1 —e)A (since ASR) C AN(1—¢)RC
eRN (1 —e)R = 0. Since (1 —¢)re € Re, AR and A <° eR we obtain that
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(1 —e)re € Z(RR) (by definition). Therefore, eR + Z(RR) is closed under the left

multiplication with elements of R. O

Corollary 3.2.11. Let R be FI-K-nonsingular. If AR and A <° eR, then eR4 R,

and hence € is a left semicentral idempotent of R.

Proof. Since R is FI-K-nonsingular = Z(RR) = 0 and so the set eR is closed under

left and right multiplication with elements of R = eR < R. O

Remark 3.2.12. By the definition, note that FI-K-cononsingularity for a ring R can
be viewed as a restricted cononsingularity for R, only applied to all ideals of ring

direct summands of R, rather than to all right ideals of R.

We can now state the connection between quasi-Baer rings and Fl-extending rings,

which extends the result in [9]

Theorem 3.2.13. A ring R is right Fl-extending ring and Z(RR) =0 if and only if

R is a quasi-Baer ring and is FI-K-cononsingular.

Proof. Let R be right Fl-extending and Z(Rz) = 0 Then R is right FI-K-cononsin-
gular and quasi-Baer, by Proposition 3.2.9 and Theorem 3.2.2. For the converse,
the ring R that is quasi-Baer and FI-K-cononsingular is Fl-extending and FI-K-

nonsingular, by Theorem 3.2.2, and Z(RR) = 0 by Proposition 3.2.9. O

3.3 Direct summands and direct sums of quasi-Baer modules

Given the connections of quasi-Baer modules to Fl-extending modules, one would
expect that direct summands of quasi-Baer modules do not behave well, similar to
the case of the Fl-extending modules. On the contrary, we can prove that direct
summands of a quasi-Baer module do, in fact, inherit the property.
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Theorem 3.3.1. Let M be a quasi-Baer module. Then for any N <% M, N is also

a quasi-Baer module.

Proof. Since N <% M, there exists ¢ = ¢ € S so that N = eM, and let F < N. By
Lemma 1.3.19, there exists G < (1 —e)M so that F& G M. Since M is quasi-Baer,
I =1s(F®G)<% S. The endomorphism ring of N = e¢M is e¢Se, and since [ <9,
ele = eSeN I (one inclusion is obvious, while the other one results from the following
argument: ¢ € I NeSe = 1 = ese = e*se* = eie € ele). Note also that, [ = Sf
for some f? = f € 9, and so ele = ¢Sfe. But, since Sf <S5, fe € Sf = fe =
fef; we can write hence ele = eSfe = eSfef = eSfefe = (eSfe)(efe). Since
(efe)* = efeefe = efefe = efee = efe; we have (eSfe)(efe) C (eSe)(efe). On
the other hand, let (ese)(efe) € (eSe)(efe); eseefe = esefe = esefef = esefefe =
e((se)flefe = e((se)fleefe = (e((se)f)e)(efe) € (eSfe)(efe). Hence we have that
ele <% e¢Se (in fact, it is a fully invariant direct summand because efe is a semicentral
idempotent in eSe: (efe)(ese) = efese = efesef = efesefe = (efe)(ese)(efe)).
Now we only have to show that ele = l.s.(F). It is clear that (ele)(F) = 0:
ete(F) = ei(F) = e(0) = 0. Assume there exists 0 # eje € eSe, eje & ele so that
eje(F) = 0. But ejeG C eje(l —e)M = 0, and so eje € Is(F & G) = . But then
eje = eejee = e(eje)e € ele, a contradiction. Hence l.s.(F) = ele <% e¢Se. Since F

was arbitrarily chosen, hence N is quasi-Baer. O

Theorem 3.3.2. Let My and M, be quasi-Baer modules. If we have the property
that ¥(x) =0V ¢ € Hom(M;, M;) implies x =0 (1 # j, i,7 =1,2) then My & M, is

quasi-Baer.
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Proof. Let S = End(M, & M,), and let I <S. Then raanm, (1) < My & Mo, hence,

using Lemma 1.3.17, ragqenm, (1) = Ny & Ny, where N; < M;, 1 = 1,2. As mentioned,

S— Sl HOm(Mz,Ml)
-~ \Hom(M, M) S '

Since I <5 we have the following ideals in 7 and 95, respectively.
- Iy = {p € Sifp = & with (&j)ij=12 € I} <51
- I = {p € Safp = &2 with (&ij)ij=12 € [} 5

Define 15 = {¢v € Hom(My, My)|p = &2 with (&)ij=12 € I} and Iy = {¢ €
Hom(N, M)|p = & with (&;)i=12 € [}

Let N = ra, (I1). We have that Ny = Ny N ((,e;, Kerd). Since M is quasi-
Baer, we know that ray, (1;) <% M .

We also have that (N]) satisfies x(¢/(Nj)) = 0V x € Hom(M,, M), since
x() € I (for ¢ € Is).

Since we have the property that y(z) =0V x € Hom(Mz, M) implies = 0 then

we have that (N]) =0,V ¢ € I1, and so Ny = N| <% M. O

The next result provides another rich source of examples for quasi-Baer modules,

as we will see in Corollary 3.3.4.

Proposition 3.3.3. M = @, ., M; is quasi-Baer if M; is quasi-Baer and subisomor-
phic to (i.e. isomorphic to a submodule of) M;, ¥ i # j; 1,5 € I, where T is an index

set.

Proof. Let S; be the endomorphism ring of M;, Vi € Z. The endomorphism ring of

M, S, is a ring of matrices, with elements of S; in the 1i-position, and maps M; — M,
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in the 7j-position, Vi,j € 7,1 # j. We need to show, V I <15, rp (1) <% M. But since
rv(I) S M, ry(I) = @,c7 (L) N M;. We only have to analyze, hence, the column
morphisms (i.e. matrices) taking M; into M, for an ¢ € Z. Similar to our previous
theorem’s proof, we have that the i-th column of I < S has elements from an ideal
I; 4°S; in the i-th position, and certain elements from Hom(M;, M;) in the remaining
places (call the union of all these sets A). ra(I) N M; = rag, (L) N (Npeal Ker(p))).
But M! = ry,(I;) <% M;, since M, is a quasi-Baer module. If we take a ¢ € A,
for example ¢ : M; — M;, 1,7 € I, 1 # j, then ¢ € I, where ¢;; : M; —
M; is the monomorphism taking M; into M;; we obtain this by noting that if we
multiply a morphism in I, having ¢ in the ji-position, with the morphism (xu)kiez,
where xi = 0 for (k,l) # (1,7) and y;; = %y, then we get a morphism in I with
Yo+ M; — M; in the ii-position. This means that ¢ ;;0(M]) = 0; as ¢j; is a
monomorphism, hence ¢(M/) = 0, thus M] C Ker(p). Since ¢ € A was arbitrarily
chosen, raf(I) N M; =y, (1;) N (Npea(Ker(e))) = M <% M,.
Using this argument for all + € Z we obtain that

ru(l) =P M, <® P M; = M.

€T 1€

O
Corollary 3.3.4. A projective module over a quasi-Baer ring is a quasi-Baer module.

Proof. A free module over a quasi-Baer ring is quasi-Baer module, based on the The-
orem 3.3.3 above. A summand of a quasi-Baer is a quasi-Baer module, by Theorem

3.3.1. Hence the result follows. O

Example 3.3.5. An infinitely generated free module M over a non-Dedekind com-

mutative domain R is not a Baer R-module, as was observed in Chapter 2. On
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the other hand, it is a free R-module (since R is, in fact, quasi-Baer), thus M is a

quasi-Baer module.

Example 3.3.6. The module M = Z & Z; is extending, Fl-extending (hence K-
cononsingular, FI-K-cononsingular), but is not Baer, nor quasi-Baer (hence not K-

nonsingular, nor FI- K-nonsingular).

Proof. The fact that M is extending is known. It’s is hence also Fl-extending. By
our results (Theorem 2.12) we have that M is K-cononsingular and hence also FI-K-
cononsingular.

M is not Baer since the kernel of the endomorphism: ¢(m,n) = i is 2Z & Z
which is not a summand in M. Hence, by Theorem 2.12, it cannot be K-nonsingular.

Next we show that M is not quasi-Baer, which will also prove that it is not FI-
K-nonsingular.

Take the submodule 2Z & 0. It is fully invariant, due to the following: 27 < Z;
there are no morphisms from Z, to Z; any morphism from Z to Z, will bring 2Z in
0; 0 A Zs.

Assume now 15(2Z @ 0) <% S. Then ry(Is(2Z @ 0)) <% M. Moreover, 2Z @ 0 <
ra(ls(2Z & 0)). The only fully invariant summand of M that satisfies this condition
is M itself (fully invariant submodules project onto a direct sum decomposition by
respective intersection with summands; we only have four choices, given uniformity
of Z and Zsy: 060, ZF 0, 06§ Zy and M: the second choice is not fully invariant,
though). But we have that the endomorphism corresponding to the matrix with zero

everywhere except the lower right corner, where we have 1z,, is in [§(2Z § 0), and so
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In [10] it was shown that a nonsingular summand of an Fl-extending module
is Fl-extending, thus answering in the positive, for this particular case, the ques-
tion whether direct summands of an Fl-extending module are Fl-extending. We can
generalize the result, by proving that direct summands of an FI-K-nonsingular FI-

extending module are Fl-extending.

Proposition 3.3.7. Let M be a FI-K-nonsingular Fl-extending module. Then ¥

N <% M, N is Fl-extending.

Proof. If M is Fl-extending and FI-K-nonsingular, by Remark 3.2.7 M is in fact
strongly Fl-extending. It is known [10] that summands of strongly Fl-extending

modules are strongly Fl-extending, hence Fl-extending. O

Definition 3.3.8. Let M; and M, be quasi-Baer modules. We call them relative
quasi-Baer modules iff

ﬂ Kero <% M,
w€Hom(M;,M;)

for 1,7 € {1,2}, 1 # .
Theorem 3.3.9. Let {M;}ier be a class of modules. If M = @,.; M; is quasi-Baer
then M; is quasi-Baer and M;, M; are relative quasi-Baer, ¥ i,7 € Z,1# j (I is an

indez set).

Proof. We already know that direct summands of quasi-Baer modules are quasi-Baer
(Theorem 3.3.1). We have to show that each pair of summands M;, M, in the above
decomposition are relative quasi-Baer, for ¢ # j.

For the sake of simplifying notation we consider two elements of the decomposition,
which we label M and M; and we use the fact that M@ M, is quasi-Baer, by Theorem
3.3.1. Let K; = ﬂ@eHom(MhMj) Kerp, 1,7 € {1,2},1 # .
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We show first that Ky & Ky < My & M,. Take a € End(M; & My); i.e.

-
Y21 P22

where @,; : M; — M;, for 1,5 € {1,2}. Obviously pi2(K3) = 0 and @2 (K;) =
0 (by definition of Ki, K;). Consider ¢;1(Ry). Taking any ¢ € Hom(M;, M>),
Y(e11(K1)) = (¥(e11)) (K1) = 0 as (YP(e11)) € Hom(My, M) and by the definition
of Ky. Hence ¢11(K;) C K;. Similarly, pe(K3) C K,. Putting the above together
we obtain that a(K; & K3) C K & K,. Since o was arbitrarily chosen, we get that
Ky @ Ky < My & M,.

Note that this also implies that K; < M, Ky < M,.

Let’s now show that Ky @ Ky <% M; @ M,. Take ls,(K; @ K3), where S =
End(M, & My).

Considering o € g, (K1 & K3), o a matrix as above, and k1 + ky € Ky & Ko,
we notice the following: ¢11(k1) + @12(k2) = @11(k1) = 0 = @11 € lg(K;) and
©21(k1) + wa2(ka) = paa(ke) = 0 = @29 € ls,(K3), S1 = End(My), Sz = End(Ms,). At
the same time, o € End(M; & M) so that w11 € ls, (K1), w2 € ls,(Ky) and @12, ©a1

arbitrary in their respective Homs will have the property o € Is,(K; & K3). Hence

ZSQ(I(I @ ].(2) _ ( lsl(hl) HOm(Mz, M1)>

HOm(Ml,Mz) ZS2(_[X’2)

Take now ra,anm, (ls, (K1 & K3)). Since lg, (K1 & K) < Sia, raenm, (s, (K1 &
K3)) S M, & M, hence it decomposes onto the two components, ra, s, (Is,, (K1 &
K,)) = K| & K}, where K| = raganm, (Is, (K1 & Ky)) N My, K} = ryan, (Ls, (K1 &
K3)) N M,y. We analyze the two components separately. Take a € g, (RK; & K3)

(a matrix as above); a(k]) = 0 = 11(k]) = 0 and s (ky) = 0, for k] € K| =
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K| = ray(Is, (K1) N (nd)EHom(Ml,MQ) Keriy). Since m¢eHom(M1,M2) Kery = Ky, and
ra (ls, (K1) O Ky, Ky = K. Similarly for K} = K.

As a result, we obtain that ry, e, (ls, (K1 @ K3)) = K1 & K. In addition to this,
since My @ M, is quasi-Baer, ls, (K1 @ K3) <% 5,512 = rumem, (Is, (K1 @ Ky)) <%
M, & M,. Hence K| @& K, <% M, @& M,.

In conclusion (since the indexes were chosen arbitrarily), if M is quasi-Baer, then

M; is quasi-Baer and M;, M; are relative quasi-Baer, V1,5 € I, 1 # 7. O

Remark 3.3.10. Let My and M; be two quasi-Baer modules that are relatively quasi-
Baer. Then we can decompose M; = K; & M/, where K; = ﬂ@eHom(MhMj) Kerp <%
M;, for ¢« # j, 1,5 = 1..2. By Theorem 3.3.1 K;, Ky, M|, M} are quasi-Baer. We
have that M| and M} satisfy the condition in Theorem 3.3.2, hence M = M! & M} is
quasi-Baer. At the same time, K=K &K,is quasi-Baer, since Ky, Ky I K; & K,
for obvious reasons (they consist of elements that are mapped into zero). We need,
thus, find condition for M & K be quasi-Baer, for which the endomorphism ring will

have only zero maps between K and M.
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CHAPTER 4

ENDOMORPHISM RINGS

Since the Baer and quasi-Baer properties of modules have been defined by us
in terms of idempotent endomorphisms, in the endomorphism ring of a module, it
is of interest to investigate connections of properties of the endomorphisms rings
with those of the module. In this chapter, we will study these connections. In
particular, we will investigate the transfer of some properties between a module and
its endomorphism ring. A characterization for the module to be Baer is provided
in terms of its endomorphism ring. Kaplansky (][22]) introduced a type theory for
Baer rings. Berberian ([2]) expanded the type theory to further details. The type
theory was developed and extended by Goodearl and Boyle ([16], [17]) for self-injective
regular rings and for nonsingular injective modules, respectively. Recently, in [34] the
authors provided a generalized approach to type theory decompositions, applicable to
nonsingular injective modules. In this chapter, we use the properties of idempotents
of the endomorphism ring of a Baer module to provide a type theory for Baer modules,
similar to the type theory for Baer rings. Some finiteness conditions related to Baer

modules are studied, and applications included.
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4.1 (Quasi-) Baer modules and endomorphism rings

Our first result shows that the ring of endomorphisms of a Baer or a quasi-Baer

module inherits the property without any additional conditions.

Theorem 4.1.1. Let M be a Baer (respectively, quasi-Baer) module. Then S =

End(M) is a Baer (respectively, quasi-Baer) ring.

Proof. Let I < S be a left (respectively, two-sided) ideal. Since M is Baer (respec-

tively, quasi-Baer), rps(I) <% M, thus there exists € = e € S such that ry () = eM.

We claim that rs(I) = €S also holds. For any ey € €S, we observe that ey = 0,

as for Vo € M, Ieyp(x) C IeM = 0. Therefore IeS = 0, and eS C rg(I). Next,

let ¢ € rg(I) be any element; then we can write ¢ = ep + (1 — €)p. Since I = 0,

Io(M)=0= I(e(M))=0. Hence (M) C ry(I) = eM. Let m € M be arbitrary;
/

then p(m) = em’ = ep(m) = em’ = p(m) = ep = p. Hence ¢ € €S which yields

eS =rs(I). O
As an application, we can prove the following result, from [31].

Proposition 4.1.2. Let M be an extending module such that its endomorphism ring

S is a regular ring. Then M is a Baer module, and subsequently S is a Baer ring.

Proof. In view of Theorem 2.2.2 we only have to show that M is K-nonsingular. Take
@ € S so that ry(Sp) = Ker(p) <¢ M. Since S is regular, there exists 1 € S so that
© = @b, hence Y = (YPp)(YPe) is an idempotent with the property that S = Sie;
but then ry(Se) = ru(ve) = (1 — )M <% M. Hence Ker(y) = ry(Se) =M =

@ =0. O
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Converse of Theorem 4.1.1 is not true in general. Namely, the fact that the
endomorphism ring of a module is Baer or quasi-Baer does not imply that the module

itself is Baer or quasi-Baer, as the next example shows.

Example 4.1.3. Let M = Z,~, considered as a Z-module. Then it is well-known
that Endy (M) is the ring of p-adic integers (Example 3, page 216 in [15]). Since the
ring of p-adic integers is a commutative domain, it is a (quasi-) Baer ring. However

M = Z,~ is not a (quasi-) Baer module.
We recall the following definition.

Definition 4.1.4. A module M is called retractable if Hom(M,N) # 0,V 0 # N <

M (or, equivalently, 3 0 # ¢ € S with Im(¢) C N).
There is also a weaker version of retractability, defined below (see [24]).

Definition 4.1.5. A module is called e-retractable if Hom(M,N) # 0,V 0 # N <°

M.

Proposition 4.1.6. Let M be retractable. Then M is Baer if and only if S is a Baer

ring.

Proof. The direct implication has already been shown, in Theorem 4.1.1 . We now
prove the reverse implication. Let I < g5 since S is Baer, r5([) = eS for e? = e € S.
Hence, rar(I) O eM. Assume 3m € M\ eM so that Im = 0; m = em+(1—e)m with
(1 —e)m # 0. Since em € ry(I), take 0 £ (1 —ey)m =m —em € ry (1) N (1 —e)M.
By retractability, there exists 0 # ¢ € S, Im(p) C (1 — e)mR. But in this case,
IoM C I(1 —e)mR =0, hence p € rg(I). But p = (1 —e)p € eSN (1l —¢€)S =0,
absurd. Hence rp(I) = eM, implying that M is a Baer module. O
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Same holds for quasi-Baer modules and their endomorphism rings.

Proposition 4.1.7. Let M be retractable. Then M is quasi-Baer if and only if S is

a quast-Baer ring.

Proof. The direct implication is true, by Theorem 4.1.1.

For the converse let I < S; since S is quasi-Baer, rg(I) = €S for ¢* = ¢ € S.
Hence, ry(I) O eM. Assume 3 m € M \ eM so that Im = 0; without loss of
generality we can assume 0 # m € (1 — e)M. By retractability, there exists 0 #
¢ € S, Im(p) C mR. But in this case, [oM C ImR = 0, hence ¢ € rg(I). But
p=(1—-epeceSN(l—e)S =0, absurd. Hence ry/(I) = eM, implying that M is a

quasi-Baer module. O

Example 4.1.8. Free modules are retractable, as the following will prove. If M =
R where R is aring, then V0 # N < M, we can take 0 # n € N. Since morphisms
are defined by the values the 1s, in every summand, respectively, are mapped into,
construct the morphism ¢ : M — M which maps the 1 from only one of the summands
to n, and the other 'units” to 0. The image of this morphism is 0 # nR < N, hence

M 1is retractable.

Remark 4.1.9. If M is e-retractable, but not retractable, the Baer property does not
pass from the endomorphism ring to the module, in general. In Example 4.1.3, Zpe
is a uniform module, hence the only essentially closed submodules are 0 and itself,
hence it is e-retractable by default. Yet, while its endomorphism ring is Baer, the

module is not Baer module.

To obtain a full characterization, we note that Baer modules have an intrinsic
‘retractability’.
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Definition 4.1.10. A module M is called quasi-retractable if Hom(M,ry(I)) # 0,

V0 #ryu(l), I <sS (or, equivalently, if rp(I) # 0 then rg(I) £ 0,V I < 59).

In the next result we drop the requirement of retractability from Proposition 4.1.6
and provide a complete characterization of a Baer module in terms of its endomor-

phism ring.

Theorem 4.1.11. A module M is a Baer module if and only if its endomorphism

ring S s a Baer ring and M s quasi-retractable.

Proof. For the necessity we only need prove that M is quasi-retractable if M is Baer.
As M is Baer, ry(I) = eM for € = e € S. Assuming that eM #£ 0= [(eM)=0=
(Ie)yM =0=Te=0. Thus 0 # e € rg(I).

For sufficiency, take I <g S, and we have, since S is a Baer ring, rs(I) = €S
where €? = e € S is an idempotent. This implies that I C Is(rs(I)) = S(1 — e).
Hence eM C rpy (1), since pe =0 = p(eM) =0,V ¢ € I. Assume that 3 0 # mg =
(1 — e)mg € ra(I). Taking now the left left ideal J = I + Se < 39, since S is Baer
we have rg(J) =rs(I)Nrs(e) =eSN (1 —e)S =0. But mg € rpy(J), since Img =0

and emg = e(1 — e)mg = 0, a contradiction since M is quasi-retractable. O
This new concept is a generalization of retractability.

Lemma 4.1.12. A retractable module is quasi-retractable.

Proof. Let I < 35 so that ry(I) # 0. By retractability, 3 ¢ € S so that 0 # M C

ra(1). But in this case I(o(M)) =0= (Ip)M =0=Ip=0=0#p €rs(l). O

Each of the following examples exhibits an R-module M which satisfies quasi-
retractability but which is not retractable (thus the class of retractable modules is a
proper subclass of the class of quasi-retractable modules).
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Example 4.1.13. This example is due to Chatters and is also included in [24],

Example 3.4. (see also Example 5.17, in [23]).

Let K be a subfield of complex numbers C. Let R be the ring {—(fé ((é} . The R is
left nonsingular left extending ring. Consider the module M = Re where e = <(1) 8) .

Then M is projective, extending and nonsingular (as it is summand of R) hence is
Baer - thus it is quasi-retractable (it is obviously also e-retractable). But M is not
retractable, since the endomorphism ring of M, which is isomorphic to K, consists
isomorphisms and the zero endomorphism; on the other hand, M is not simple, and so

by retractability it should have endomorphisms which are not onto. See also Theorem

4.10 in [35].
C C C
Example 4.1.14. ([23], Example 5.12) Let R = |[C R C|. Let M = Rf where
C C C
1 00
f=10 1 0]. Then M is a nonsingular, projective extending left R-module, hence
000

quasi-retractable, but M is not retractable and End(M) = fRf is not a left extending

ring.

As an application, we provide a number of results.
A necessary and sufficient condition for a matrix ring over a commutative integral

domain to be Baer is given by Corrolary 15 in [38] and page 17 in [22].

Theorem 4.1.15. If R is a commutative integral domain, then M,(R) is o Baer ring
(for n > 1) if and only if every finitely generated right ideal of R is invertible, i.e. if

R is a Priufer domain.

We can show the following as a consequence.
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Theorem 4.1.16. Let R be a commutative integral domain. Then any finite rank
(strictly greater than 1) free module M over R is Baer if and only if R is a Prifer

domain.

Proof. If R is a Prufer domain, then the endomorphism ring of M, ring isomorphic to
M, (R), is Baer. A free module is retractable, and using Proposition 4.1.6 we obtain
that M is a Baer module.

If M is a Baer module, then its endomorphism ring is Baer, hence M, (R) for

n > 1 is a Baer ring, thus R must be a Prufer domain. O
We have a result in a more general setting.

Theorem 4.1.17. Let R be a domain (hence a Baer ring). Then any (finitely gener-

ated) free module over R is a Baer module implies that R is right (semi-) hereditary.

Proof. Let I < R be a (finitely generated) right ideal of R. Then there exists K
a (finite) index set with the property that 3 ¢ : R®) — I epimorphism = [ =
R®™) /Kerp. But ¢ can be viewed as an endomorphism of R®, o : R 5 [ < R <
R™®) | hence, since R® is Baer, Kereo <% R®) | hence I is isomorphic to a summand

of a free module, thus I is projective. O

Proposition 4.1.18. Let M be a module with semisimple artinian endomorphism

ring S. Then M is a Baer module.

Proof. Note that a semisimple artinian ring is Baer, hence S is Baer.
Since every left ideal I < ¢S is a summand in g5 (semisimple artinian ring

is, in particular, semisimple left module over itself), I = Se with ¢ = ¢ € S,

ryu(I) = (1 —e)M <% M, hence M is Baer. O
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Note. The module might not be semisimple artinian, in the hypothesis of the above
Proposition, and hence it might not be retractable (for example, take Qz). On the
other hand, if the module is retractable, M is semisimple artinian (a straightforward
proof, which takes into account Wederburn-Artin’s Theorem; see Remark 4.4.4).
4.2 Transfer of properties between the module and its endo-
morphism ring

Several authors, among whom we particularly mention Khuri (whose work we use),
have discussed the transfer of properties from a module M to its endomorphism ring 5,
and from the ring S to the module M. These properties include: extending property,
quasi-continuity, continuity, absolute direct summand property, nonsingularity; see,
for example, [27]. Motivated by this, we extend our study that started with the
transfer of Baer property between the module and its endomorphism ring in Section
4.1.

We define the Utumi property in the module-theoretic setting. Note that in liter-
ature, the notion of Utumi module was defined only in the presence of nonsingularity

(see [25]); we refine this definition.

Definition 4.2.1. We call M a K-Utumi module if it is X-nonsingular and K-conon-

singular.
We can restate Theorem 3.6 in [24] as follows.

Theorem 4.2.2. Let M be nonsingular and retractable. Then M is K-Utumsi if and
only if S is a right Utumsi ring. When these equivalent conditions hold, S is a Baer

ring if and only if M s extending.
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Proof. In [24] it is shown that S is Utumi if and only if, for each submodule U < M,
[s(U) = 0 implies U <° M, which is the definition of K-cononsingularity. Since the
module M is nonsingular, hence K-nonsingular, M is K-Utumi if and only if M 1is
K-cononsingular.

By Theorem 2.2.2, if § is an Utumi ring and M is K-Utumi, S is a Baer ring if

and only if M is extending. O

Next we show that the K-nonsingularity property transfers between the module

M and the endomorphism ring S if the module is retractable.

Proposition 4.2.3. Let M be retractable. Then M is K-nonsingular if and only if

S is right nonsingular.

Proof. Let M be a K-nonsingular module. Let ¢ € S, so that rs(¢) < Ss. Assume
ra(p) = Ker(p) not essential in M; hence, there exists a non-zero complement
N <M, NnKer(p) =0. By retractability, 30 # ¢» € S, Im¢) C N. But ¢tp # 0 (as
the image of ¢ has zero intersection with the kernel of ¢), thus SNrg(¢) = 0, since
the image of any ¢’ with ¢’ € S is also a subset of V. This contradicts essentiality
of rs(p), hence ray(¢) <¢ M = ¢ = 0, by K-nonsingularity of M.

For the converse, assume S right nonsingular. Let ¢ € S, ry(p) = Kerp <¢ M.
Assume there exists ¢» € S, S Nrs(e) = 0. This implies that S # 0. But since
Kere <¢ M, Imi) N Kery # 0. By retractability, 30 # ¢’ € S, Imy’ C o~ (Keryp)
(0 £ o~ (Kerp)); o’ = 0 with ¢’ # 0, contradiction. Hence rg(p) <¢ Ss = ¢ =

0. O

Note. For the direct implication one needs only e-retractability, as the proof shows.
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In the following result, we introduce a condition which allows for a similar transfer,
for the K-cononsingularity property this time, from the ring of endomorphisms S to

the module M. The condition is stronger than retractability.

Proposition 4.2.4. Let M be a module with the property that¥V m € M, 1 ¢ € S
with oM = mR. If S is a right cononsingular ring then M is a K-cononsingular

module.

Proof. Assume S is right cononsingular. Let N < M with the property that o N # 0,
V0 #¢eS. Assume N is not essential in M, hence there exists 0 ## P < M with
NNP =0. Take I = {¢ € S| M C N}. I is not zero, since it follows easily that
M is retractable. Also, I < Sg, since pop'M C¢yM C N,V ¢ € I, ¢ € S. Finally,
el #0,V0# ¢ € S, sinceV ¢ € §,In € N with pn # 0 (by hypothesis); 3¢ € I
with ¥ M = nR = ¢ # 0. Hence, since S is right cononsingular, I <° Ss. But,
if we take p € P, 3 o € § with aM = pR; aS NI =0, as it is easily checked, and
since a # 0 we obtain a contradiction. Hence N <¢ M, thus obtaining that M is

K-cononsingular. O

The following example provides a case when K-cononsingularity of M does not

imply cononsingularity of §.

Example 4.2.5. Example 3.3 in [12] presents a module M that is nonsingular, e-
retractable and extending, but whose endomorphism ring S is not extending. By
Theorem 4.1.1, S is a Baer ring; since it is not extending, an application of Theorem
2.2.2 gives that S is not cononsingular. On the other hand, M is K-Utumi, since it is
nonsingular, hence K-nonsingular, and extending, which implies that M is Baer and
K-cononsingular.
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We are interested in connections between K-nonsingularity and retractability. We

obtain a generalization of Theorem 2.2 and Corollary 2.3 in [26].

Proposition 4.2.6. Let M be K-nonsingular. Then M is retractable if and only if

VVIM = {peSpMCU < {peSleMCV}

Proof. If ¢ # 0, then Kery is not essential in M. Hence we can always take a non-
zero submodule of M which is intersection complement of the Keri, which we will
call Ny.

Let us show now the direct implication. Let U <° V. Let v € 5, v M C
V. Take v YU) N Ny # 0 (since U <° V, there must exist elements from M
that are mapped into U but not in zero; take a nonzero element in the image of ¥,
multiplied conveniently so that it is still not zero while becoming an element of U'). By
retractability, there exists ¢’ € S, mapping M into " (U) N Ny. 0 # o' (M) C U,
implying the desired essentiality.

Conversely, if {¢ € SlpM C U} <° {p € S|pM C V} for certain U,V < M,
assume U is not essential in V. Then there exists a complement of U in V, and a
map ¢ € S that maps M into this complement. SN {p € S|lpM C U} = 0, yet

S C {p € S|peM C V}, contradiction.

The sufficiency: let 0 # U C M. Take a complement of U in M, U’. Then
U@ U’ <¢ M. By hypothesis, {¢ € S|¢M C U & U’} <¢ {¢ € S|oM C M} = 8,
hence {¢ € S|oM C UG U} £0. U =0, take 0 £ ¢ € {p € S|oM C U}. If
U' 40, {p € S|gM C U} < {p€S|pM C U U}, but the inclusion cannot be

essential, thus in particular we don’t have equality. Take 0 # ¢ € {¢ € S|pM C
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Ua U \{¢ € SleM CU'}, and set ¢ = mip, where 7 is the canonical projection of

U & U’ onto U. The endomorphism 0 # ¢ has the property that oM C U. O

4.3 Type theory for Baer modules and nonsingular extending
modules

Type theory for Baer rings was introduced by Kaplansky [22]. Goodear] and Boyle
([16], [17]) extended this theory to nonsingular injective modules. In this section we
introduce type theory for Baer modules. In particular, this holds for nonsingular

extending modules, and provides a decomposition of such modules into various types.

Definition 4.3.1. A module M is called abelian if all idempotent endomorphisms
are central (i.e. commute with any endomorphism). An idempotent endomorphism

e is called abelian if eM is an abelian module.
We characterize abelian Baer modules in the following.
Proposition 4.3.2. For any M Baer module, the following conditions are equivalent:
1. M s abelian,
2. all direct summands of M are fully invariant;
3. wsomorphic summands of M are equal;
4. if N1, Ny are summands of M and Ny N Ny =0 then Hom(Ny, N3) = 0.

Proof. (1) = (2): for N <% M = N = eM with e = ¢ € S; but ¢ is central, hence
wleM) =(ep)M CeM V ¢ € S. Thus eM <M.

(2) = (3): let Ny, Ny <% M, so that 3 a : Ny — N, isomorphism. M =
Ny @ Nj; assume Ny NN 20 = N, NN, <% M = N,nNN; <¥ N,. But then

62



a™ ' (N;NN}) <% Ny, and we can construct a non-zero morphism from N; to N|, equal
to a on ™' (NN N{) and 0 on its summand complement; but this is a contradiction,
as Ny < M (any map from Ny to M can be extended to a map from M to M, and
this map should invary N;). Hence, Ny N N{ = 0.

Assume that Ny € Ny, hence 3 n € N, with 77(n) # 0, where 7} is the canonical
projection of M onto N|. Hence we can construct a nonzero map ¢ : m(Nz) —
m1(N3), where 7y is the canonical projection of M onto Ny, by the following definition:
@(mi(m)) = m(m). This map is well-defined, as zero can only be mapped into 0 since
A m € NN N|. Since Ny 2 Ny and Ny & 71(N3), there exists an isomorphism 3,
from N; to m1(N3). Then ¢f : Ny — N, nonzero, hence a contradiction with the
fact that Ny is fully invariant. Thus Ny C V.

By a similar argument we can show that N; C N, thus obtaining Ny = N,.

(3) = (4) Assume 3 0 # ¢ : Ny = Ny. For M = Ny & Nj, m; the canonical
projection of M onto Nj, we have that 7} # 0. Construct the following submodule
of M: P = {n + mjen|n € Ni}. Note that PN N; = 0 and P + N; = M since
Ni C P + Nj{; subsequently, M = P & N; = N; = P. But this implies that
Ny =P = mjp =0 absurd. Hence A0 # ¢ : N; — Ns.

(4)= (1) For Ny & Ny =M, NyN Ny =0= Hom(N;,N;) =0,1# 3,4,7=1,2.
But this is equivalent to N; < M, « = 1,2, which in turn implies that e for which

N; = eM is central. O
Proposition 4.3.3. Let M be a Baer module.

1. If N <% M, and M is abelian, then N is an abelian Baer module;
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2. Let M;, v € T be a family of modules. Then @,.; M; is abelian Baer module
if and only if each M; is abelian Baer module and Hom(M;, M;) =0,V 1 # j,
1,7 €.
Proof. (1) (As an observation, since N <% M = N <% M). For P <¥ N = P <%
M= P<M. But then P=PNN <N.

(2) If @,.; M; is an abelian Baer module then M, <% eaieI M; is abelian Baer
module (use part (1) and Theorem 2.3.1). Also, we obtain by Proposition 4.3.2, (4),
Hom(Mi, M;) =0,V i #j,i,j € T.

Assume now that each M; is abelian Baer module and Hom/(M;, M;) =0,V 1 # j,
i,7 € I. Hence M; < @,.; M;. By Proposition 2.4.15, @,.; M; is a Baer module.
Also, for any summand N <% @,.; M;, N = @,.; N N M; (application of Lemma
1.3.18). Hence, Vi€ Z, NN M; <% M; and so NN M; < M; < @D.c; M;. Moreover,

N=@,.; NN M; A@,.; M;, as it is easily checked. O

Definition 4.3.4. A ring R is called directly finite if ey =1 = yr=1,Va,y € R. A
module M is called directly finite if End(M) is a directly finite ring. An idempotent

endomorphism e is called directly finite if eM is a directly finite module.
Definition 4.3.5. A module that is not directly finite will be called directly infinite.

We have a characterization of directly finite modules in terms of direct summands

(see Theorem 3.1 in [17]).

Proposition 4.3.6. A module M is directly finite if and only if M is not isomorphic

to any proper summand of itself.

Proof. Suppose that ¢ is an isomorphism of M onto a summand N <% M. The

1 1

inverse map @~ can be extended to the map ¢~ "mny : M — M, where 7y is the
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canonical projection of M onto N. We get that (¢~'my)p = 1. Since M is directly

finite, po~lry =1 = N = M.

Assume for the converse that M is not isomorphic to any proper summand of itself.
Let #,y € S so that y = 1 (of course, #,y # 0). Then yayx = y-1-2 = yx = yxis an
idempotent. Then yz is the canonical projection of M onto yzM. Since xy = 1, x is
an epimorphism, and y is a monomorphism. Thus «M = M, and y(xM) = «M = M.
But ya M is a summand of M, isomorphic to M, hence it cannot be proper. ya cannot

be 0 (otherwise y = yay = 0 and # = xyx = 0), hence ya = 1. O
Proposition 4.3.7. Let M be a Baer module. Then the following hold:

1. of M is an abelian module, then M is directly finite;
2. N <% M and M directly finite; then N is directly finite Baer module;

3. Let (M;), © € T a family of modules with Hom(M;, M;) =0V i#j,1,5 €T (T
an index set); then @,.; M; is directly finite Baer module if and only if M; is

a directly finite Baer module, ¥V 1 € L.

Proof. (1) Let xz,y € S with 2y = 1 = (yz)(yz) = y(ay)xr = yx, thus yx is an
idempotent. Since M is abelian, yr commutes with every endomorphism, hence
1= (zy)(ey) = x(yx)y = (yz)(2y) = ye.

(2) For any endomorphisms z,y € End(N) with 2y = 1, we can extend x and y
to endomorphisms of M = N @ N’ to « @ idy: and y & idy, where idy: is the identity
map on N'. Note that x B idy -y B idy = 2y B idy = 1, thus y B idys - B idy =
yr Gidy =1 = yr = 1.

(3) If @,c7 M; is a directly finite Baer module, by Theorem 2.3.1 and part (2),
M; is a directly finite Baer module, V ¢ € 7.
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To show the converse, note that &, ; M; is a Baer module, by Theorem 2.4.15.
To prove direct finiteness, take two endomorphisms z,y € End(@,.; M;). Since
Hom(M;,M;) =0,Vi# 3,1, €, «M; C M;, Vi € Z, and similarly for y. Hence
we can decompose @ = Biez v and y = Bier yi, with x;,y; € End(M;). We obtain
1 =2y = Biez viyi = vy = 1dy, = yix; = idyy,, Vi € Lo Thus yr = Siezyiz; =

1 0

Definition 4.3.8. An idempotent e in a Baer ring is called faithful if 0 is the only
central idempotent orthogonal to e. Equivalently, e is faithful if the smallest central

idempotent v in § satisfying ve = e is 1.

Note. The existence of the smallest central idempotent v is verified in a Baer ring
(see [22]). This v is called the central cover of e.
At this point we can present the description of the three main types which occur

in the decomposition theory of Baer rings.

Definition 4.3.9. A Baer ring is of type [ if it has a faithful abelian idempotent. A
Baer ring is of type II if it has a faithful finite idempotent, but no non-zero abelian
idempotents. A Baer ring is of type III if it has no nonzero finite idempotents. A

Baer ring is purely infinite if it has no nonzero central finite idempotents.

In [22] it is proven that any Baer ring can be decomposed into ring direct sum-
mands of these three, main, types. Also, by decomposing the type I and, respectively,
type Il summands into a sum between a directly finite and a purely infinite part, we
obtain a total of five types. A Baer ring decomposes, thus, uniquely into a sum of

five components, as described below.
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Theorem 4.3.10. A Baer ring decomposes uniquely into a ring direct sum of Baer
rings of types: I, directly finite (I;); I, purely infinite (I); II, directly finite (I11;);

II, purely infinite (I1); I11.

We define the five types of Baer modules in terms of the types of their endomor-

phism rings.

Definition 4.3.11. We call a Baer module M of type (T) if S = End(M) is of type

(T) (where T is one of the five types described above: Iy; Io; [Is; Il II1).

Note. The definition is valid, as the endomorphism ring of a Baer module is Baer,
by Theorem 4.1.1.
We get the decomposition theory as a consequence of the decomposition at the

endomorphism ring level.

Theorem 4.3.12. A Baer module decomposes uniquely into a sum of fully invariant

summands of types Iy; Io; Ilp; Iy I11.

Proof. Let M be a Baer module. Then S = End(M) is a Baer ring, by Theorem
4.1.1. Hence S decomposes uniquely, as a ring direct decomposition, into S = Sej, &
Ser_ & Ser @ Serr., @ Serrr. Since this is a ring direct decomposition, M = er, M @&
er M@ e, MG e Mo e M has the property that each of the 5 summands is
fully invariant in M (each idempotent occuring is central). The endomorphism ring
of er, M is eIfSeff = S€[f7 hence er, M is of type Iy; the endomorphism ring of e; M
is er Ser, = Ser, hence e; M is of type I,. Similarly for the remaining three
summands.

To prove uniqueness, assume M = fIfM ¢ fr.M & foM B fr.M b finM
is another decomposition with each summand fully invariant, and each summand of,
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respectively, type Iy; Loo; Iy Iloo; I11. Then S = Sf1, ®&Sfr &S f11, 85 fr..®S fin
is a ring direct decomposition; since the type decomposition is unique, we get that

Ser, = Sfr, = e, M = f1, M, and similarly equalities for the remaining 4 types. [

Goodearl in [17] obtained a number of characterizations for nonsingular injective
modules of various types. In our general setting, we extend these characterizations

partially.

Proposition 4.3.13. Let M be a Baer module. Then M is of type I if every nonzero

summand of M contains a nonzero abelian summand.

Proof. By Theorem 4.3.12 and Propositions 4.3.3 and 4.3.7, the summands of M are
solely of type I, hence M is of type I, since its decomposition cannot include other

types. ]

Proposition 4.3.14. Let M be a Baer module. Then M is of type II if every nonzero
summand of M contains a directly finite summand, but M has no nonzero abelian

summands.

Proof. By Theorem 4.3.12 and Propositions 4.3.3 and 4.3.7, summands of M are
either of type [ or II. Since M does not have nonzero abelian summands, summands
cannot include faithful abelian summands, hence its decomposition into types will

only include type Il summands. Thus, M is of type I1. O
Proposition 4.3.15. A Baer module M is of type IIl if N=N& N,V N <% M.

Proof. Take a nonzero summand N <% M. Since N is isomorphic to a proper
summand of itself, by hypothesis, V is not directly finite, by Proposition 4.3.6. Hence
M does not contain nonzero finite idempotents, which implies that M is of type

IIl O
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4.4 Finiteness conditions

In [28] it is analyzed how the structure of a Baer ring is determined by the cardi-
nality of the set of its idempotents. This result motivates us to analyze Baer modules

in terms of cardinality of their summands.

Theorem 4.4.1. (Theorem 2, Theorem 3 [28]) If R is a Baer ring with only countably
many tdempotents, then R has no infinite sets of orthogonal idempotents. If, in

addition, R is a reqular ring, then R is a semisimple Artinian ring.

In [14] it is shown (Proposition 10.4) that any module which does not have in-
finitely many direct summands has a finite direct sum decomposition. In our first
result in this section we show that if the module is Baer, we have the same conclusion

under weaker assumptions.

Proposition 4.4.2. If M is a Baer module, with only countably many direct sum-

mands, then M is a finite direct sum of indecomposable summands.

Proof. Since M 1s Baer, S is Baer by Theorem 4.1.1. Since M has countably many
direct summands, then S has only countably many idempotents. By Theorem 4.4.1, .S
has no infinite sets of orthogonal idempotents, hence any direct sum decomposition of

M must be finite, thus M has a finite indecomposable direct sum decomposition. [

On the same topic, we have a number of conditions which ensure that a Baer

module is a semisimple Artinian module.

Theorem 4.4.3. Let M be a Baer module with only countably many direct summands.

Then M is semisimple Artinian if any of the following conditions hold:

(i) M is retractable and S is a regular ring;
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(i1) every cyclic submodule of M is a direct summand of M; or

(t1i)) Y m € M, 3 f € Hom(M, Rr) such that m = mfm (Zelmanowitz [39] calls

such a module a regular module).

Proof. Suppose (i) holds. By Theorem 4.1.1 and in view of Proposition 4.4.2, S
becomes a regular Baer ring with only countably many idempotents. Then S is a
semisimple Artinian ring, by Theorem 3 [28].

Since S is a semisimple Artinian ring, it can be decomposed into a finite, ring
direct sum of simple Artinian rings, S = ealéién Se;, where n € N (by Wederburn-
Artin Theorem, for example in [1]). Note that all e, are central idempotents. Hence
we obtain the following module direct decomposition: M = ealéién e; M, where ¢; M
are fully invariant submodules, and summands, of M. It is easy to see that fully
invariant summands of a retractable module are also retractable.

If we can show that, for any 1 <1 < n, ¢; M is semisimple Artinian, we’re done. To
simplify notation, and without losing generality, we can assume S is simple Artinian.

Again, by Wederburn-Artin Theorem we know that a simple Artinian ring is
isomorphic to a finite, m X m matrix ring over a field K, where m € N. Denote by ¢;;
elements of the form: 1 in the position (i7) and 0 everywhere else (1 <1i,5 < m). The
idempotents corresponding to €; (via the ring isomorphism) produce a direct sum
decomposition of M = @lgsm M;, in which all summands have an endomorphism
ring isomorphic to the field K. Moreover, for 1 < ¢ # j < m, €j€e; = €; and
€;i€i; = €;; imply that the morphisms corresponding to €;;, €; are isomorphisms
between M;, M;.

Chose an arbitrary submodule N < M;, for some 1 < 7 < m. Since M is re-
tractable, there exists an endomorphism ¢ € S with the property that 0 # (M) C
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N. Since ¢ # 0, there exists 1 < 5 < m so that o(M;) # 0. If j =1, |, is a non-zero
endomorphism of M;, hence invertible, and so surjective. This implies that N = M.
Assume j # i. Taking ¢ the morphism corresponding to €;;, ¢|ar;(¥) : My — M; is a
non-zero endomorphism of M;, and hence, by the above argument, N = M.

Since N was arbitrarily chosen, it implies that there are no proper submodules of
M;, hence M; is a simple module. 7 was arbitrarily chosen, hence M is semisimple
Artinian.

Suppose (ii) holds. Then every finitely generated submodule N of M is a direct
summand of M and is a direct sum of cyclic submodules of M. We show this by
induction. This obviously holds true for cyclic submodules. Next, assume that every
submodule generated by n —1 elements is a direct summand and a direct sum of cyclic
submodules. Take now N generated by n elements, {m;}i=1,. n; let N' = Ei<icno1 M;
which is a direct summand and a direct sum of cyclic submodules. We have N'& N =
M, with 7" and 7" the canonical projections of M onto N’ and N”, respectively. Then
N =N +4+m,R=N & r"(m,R) as it is easily checked; but #"(m, )R <% M and
™ (mp)R < N'" <% M = N = N @ 7r"(m,)R <% N @& N’ = M, hence N is a
direct summand and a direct sum of cyclic submodules. (See also Corollary 1.3 [39]).
Since there are only finitely many disjoint direct summands of M (Proposition 4.4.2),
the class of finitely generated submodules of M has ACC. Hence M is semisimple
artinian.

Suppose (iii) holds. Then, by Theorem 1.6 [39], conditions (ii) holds. Thus M is

semisimple artinian. O
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Remark 4.4.4. Our proof shows, in fact, a more general property, which states that any
retractable module whose endomorphism ring is semisimple Artinian, is a semisimple

Artinian module.

Example 4.4.5. Let R = Z and M = Q. M is obviously (indecomposable) Baer,
as all its endomorphisms are monomorphisms (Theorem 2.23 [35]). § ~ Q is regular

(being a field). Yet M is not simple over R.

Another, more elaborate counterexample, is the following: let R = (13 ﬁ,) and

M = (13 jé) Then S = End(M) ~ K, as it can be easily shown, and so M is an

indecomposable Baer module. But M is not simple, since 0 £ N = (8 ﬁ,) < M.
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APPENDIX A

TOPOLOGICAL PROPERTIES OF BAER MODULES

As we know, a Baer module M has the SSIP property. Hence, the direct summand
submodules have the property that any intersection will give another direct summand
(including 0). This gives the idea of using the direct summands as a base for closed
sets, namely to define the closed subsets of M to be finite unions of direct summands.
The open sets will be the set-complements of those finite unions of direct summands.
An important issue is to show that the endomorphisms of M are also continuous,

based on this topology. We prove that this fact is true.

Definition A.1. For a right R-module M, we define on the underlying set M the
topology T.Z, having as base for the topology all the set complements of direct sum-

mands of M. Equivalently, the close sets of 7,7 are finite unions of direct summands

of M.

Remark A.2. It is easy to see that the topology is well defined, given Theorem 2.1.4,

which proves that arbitrary intersection of direct summands are direct summands.

Proposition A.3. Let M be a Baer module, endowed with the topology described

above. Then ¥V ¢ € S, ¢ is continuous.
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Proof. To show that ¢ is continuous, we need to prove that the inverse image through
@ of any open set is an open set, or equivalently, the inverse image through ¢ of any
closed set is a closed set. For our case, it is sufficient to show that inverse image
through ¢ of any direct summand of M is again a direct summand. Let N N' = M.
Let K = Kergp = ¢ 1({0}) C ¢ ' (N). Since K <% M, by Baer property, K’ <%
e Y(N). o Y(N)=P ¢ K. Similarly, K <% o='(N"); "' (N') = P' & K.

Let’s prove that P & K & P' = M.

Take m € M, then ¢(m) = n+n' withn € N, n’ € N. ¢7'(n) C PG K,
but taking any two elements so that o(p + k) = (' + k'), o(p—p ' + k- F) =
O=p—p+k—-FKFeK=p—pe KNP =0= p=yp. Hence n returns to a
unique "projection” onto P, which we call p. Similarly for n’. We have then that
e '(n+n') =p+ K+p (C follows from the previous argument, D is easily checked).
Hencem € p+ K+p = m=p+k+p. Hence M C P+ K+P = M =P+ K+ P'.

Check uniqueness: assume, for somep € P, p' e P ke K, p+k+p =0=
ptr el =wlptp)=0=0vlp) =-¢(p)e NON =0= ¢p) =) =0=
peEPNK =0and p e PNK =0, hence p=p' =k = 0.

Hence ¢™'(N) = P @& K <% M, which is what we wanted to show.

In conclusion, all endomorphisms are also continuous with respect to the topology

on M. O

Note. (a) There are continuous maps in the topology T} of M which are not
endomorphisms of M (e.g. constant, non-zero maps).
(b) The topology on M is not linear, since, for example, the neighbourhoods of
m € M are not the neighbourhoods of 0 shifted in m (0 is contained in a single open

set, namely M, because it is contained in any direct summand; there exist elements
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M that are contained in at least one more open set than just M). Based on this fact
we can also state that this topology is not Hausdorff, since 0 cannot be separated by
any other element. There is an apparent parallel between the Zarisky topology on
an A" - closed sets are unions of zeroes of polynomials in A[X] - and the topology
defined on a Baer module - closed sets are unions of summands, which are in fact

kernels of endomorphisms.
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