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BAER-LEVI SEMIGROUPS OF PARTIAL TRANSFORMATIONS

FERNANDA A. P I N T O AND R .P . SULLIVAN

Let X be an infinite set and suppose No ̂  q ^ \X\. The Baer-Levi semigroup
on X is the set of all injective 'total' transformations o : X —* X such that
\X \ Xa\ = q. It is known to be a right simple, right cancellative semigroup
without idempotents, its automorphisms are "inner", and some of its congruences
are restrictions of Malcev congruences on I(X), the symmetric inverse semigroup
on X. Here we consider algebraic properties of the semigroup consisting of all
injective 'partial' transformations a of X such that \X \ Xa\ = q: in particular,
we describe the ideals and Green's relations of it and some of its subsemigroups.

1. INTRODUCTION

Throughout this paper, X is an infinite set with cardinal p , and q is a cardinal
such that Ho ^ q ^ p. Let P{X) denote the semigroup (under composition) of all
partial transformations of X (that is, all mappings a : A —t B where A,B C X). If
a £ P(X), we write dome* for the domain of a and ran a for its range. We also write

G(a) = X\doma, g(a) = \G(a)\,

D{a)=X\Ta.na, d{a) = \D(a)\.

and refer to these cardinals as the gap and the defect of a, respectively.
As usual, I(X) denotes the symmetric inverse semigroup on X ([1, Vol. 1, p. 29]):

namely, the set of all injective mappings in P{X). We write

BL{q) = {a € I{X) : g{a) = 0, d{a) - q}

and call this the Baer-Levi semigroup on X: as shown in ([1, Vol. 2, Section 8.1]), it
is a right simple, right cancellative semigroup without idempotents; and any semigroup
with these properties can be embedded in some Baer-Levi semigroup. Note that the
ideals and Green's relations on BL(q) are trivial. In addition, every automorphism ip
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88 F.A. Pinto and R.P. Sullivan [2]

of BL(q) is "inner": that is, there exists g e G(X), the symmetric group on X, such
that oup = gag~l for all a € BL(q) [5]. And some congruences on BL(q) are known
to be restrictions of Malcev congruences on T(X), the semigroup consisting of all total
transformations of X (that is, a € P{X) such that doma = X) [6].

In this paper, we examine a related semigroup:

PS(q) = {a& I(X) : d(a) = q}

which we call the partial Baer-Levi semigroup on X (as first defined in [9, p. 82]).
In contrast with BL(q), this semigroup always contains idempotents. In fact, PS(q)
always contains an inverse semigroup R(q) = {a € PS(q) : g(a) = q} which, together
with BL(q), generates PS(q) in a very specific way. Also Green's relations and ideals
are much more complicated. In Sections 4 and 5 we describe the latter for both PS(q)
and R(q): this will be the basis for subsequent work regarding the congruences on
PS(q).

2. BASIC PROPERTIES

In what follows, Y = AuB means Y is a disjoint union of A and B. Also, 0
denotes the empty (one-to-one) mapping which acts as a zero for P(X). In particular,
d(0) = p, so 0 € PS(q) precisely when q = p. For each non-empty A C. X, vre write
id^ for the identity transformation on A: these mappings constitute all the idempotents
in I(X) and belong to PS(q) precisely when \X \ A\ = q.

We adopt the convention introduced in [1, Vol. 2, p. 241]: namely, if a € P(X) is
non-zero then we write

and take as understood that the subscript i belongs to some (unmentioned) index set / ,
that the abbreviation {xi} denotes {XJ : i E I}, and that Xa = rana = {x;}, xia~1

= Ai and doma = \J{Ai : i € / } .
Recall that a semigroup 5 is right reductive if ax = bx for all x € 5 implies a = b

(and dually for left reductive: see [1, Vol. 1, p. 9]).

THEOREM 1. If No ^ q < p then PS(q) is a right and left reductive semigroup
with idempotents. Moreover, PS(q) contains a zero precisely when q = p.

PROOF: If a, 13 e PS(q), we have

X \ Xap = X\X/3u{X/3\ Xa0\

= X\X/3u[{X\ Xa) n dom;3]/3
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and in the last equation, the first set on the right has cardinal q and the second has

cardinal at most q, thus a/3 6 PS(q). Also PS(q) contains idempotents since we

can write X = ACiB where |J4| = p, \B\ = q and then id^ € PS{q). In addition,

if C is a zero for PS{q) then C = C-idx, hence ran£ C A, for all A C X such that

\X \ A\ — q. In particular, if x £ D(Q and we choose B C X such that x ^ B and

X\ ( 5 u { x } ) = q then £>(C) contains Bu{x}, a contradiction. Thus, every element

of X belongs to -D(C) and this occurs only when q = p.

To show PS(q) is right reductive, suppose a , j 3 e PS(q) and ccy = 0^ for all

7 € PS(q). If a, /3 ^ 0 then idx a G -PS(g), so a = a. id*Q = /3. idxQ and this implies

l a C xp. The reverse inclusion also holds since idx/3 € PS(q). Hence Xa = .X"/3

and it follows that a = ft. If (say) a — 0 then 9 = p and /J7 = 0 for all 7 6 PS{q).

In particular, /3. id{6} = 0 for all 6 € X/3 and thus /3 = 0.
Now suppose 7 a = 7/3 for all 7 € PS(q). If a, /3 ^ 0, let 6 € doma and write

X = {6} U {xi} 0 {re.,} where | / | =p,\J\ = q. Then

and 6 € d o m 7 a = dom7y0, so b € dom/3. Hence, d o m a C dom/3 and the reverse

inclusion also holds. It follows that 6a = 6/3 for all b € doma = dom/3 and hence

a = p. If (say) a = 0 and x £ X then, as before, id{xj € PS(q), so id{1} ./3 = 0 for

all re e X and this implies /? = 0. D

EXAMPLE 1. Unlike BL(q), the semigroup PS(q) is not right cancellative nor right
simple. For, suppose X = AL)B where |A| = p, |B | = q, A = {at} and b,c £ B are
distinct. If

b

then a,/3 e PS(q) and a. id^ = /3. id A but a / ^ . Also, suppose X =
where |.4| = p and \B\ = \C\— q. If a = id>iuB and /3 = id^uCi b°th of which are in
PS{q), then C D d o m a 7 = 0 for each 7 e PS(q). Therefore, since C C dom/3, there
is no 7 € PS(q) such that 0 = aj: that is, PS(q) is not right simple.

A subsemigroup 5 of P(X) is G(X)-normal if gag~l e S for all a € 5 and all
ff £ G(X) . Clearly PS(q) is G(X) -normal and, if q = p, then PS(q) covers X: that
is, for each x & X, there is an idempotent constant map (namely, id{x}) in PS(q) with
range {x}. Hence, by [9] Theorem 3, if q = p then every automorphism of PS(q) is
'inner1 (as defined in Section 1 above) and moreover AutPS(<7) is isomorphic to G{X).

When q < p , PS(q) does not contain any constant maps. Nonetheless, by [4, Theorem
3.18], every automorphism of PS(q) is inner in this case also.
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We aim to show that AutPS(q) is also isomorphic to G(X) when q < p. For
this, we first need to know that if ip G Aut PS (q) then there exists a unique h G G(X)

such that oup — h~xa.h for all a G PS(q). In other words, if ft, fc G G{X) and
h~1ah = /c~1aA; for all a € PS(q) then h= k. To show this, we use some ideas from
[5] and let

C{p,q)= {ACX :\A\=p,\X\A\ = q}.

If A G C(p,q) and a is any bijection from X onto A then a G PS(q) and
= Ah, so Ah = Ak for all A G C(p, q). Fix x G X and write X = AUS0 {x} where
\A\ = p and \B\ = q. Since /i and A; are injective,

(Al){x})h = AhG{x}h and (AU {x})k = AhU{x}k.

Therefore, since (A U {x})h = (AU {x})fc, we find that xh = xk for all x G X , hence
h = k. We can now prove the following result.

THEOREM 2 . If q <p then AutPS{q) is isomorphic to G{X).

PROOF: Let 9 : Aut PS(q) —>• G(X), (p -t hv, where /i^, is the unique permutation
of X such that atp = /i~1a/i¥, for all a G PS(q). To show 0 is a morphism, let
(p,ip € Aut PS(q) and note that for all a G PS(q), we have:

hence / i ^ = /i^/ty by uniqueness. Clearly, if k e G(X) then

* P5(g), a -> JT^fc,

is an automorphism of PS(q) (since PS(q) is G(X)-normal). Thus, / i v = jfc by
uniqueness, so 0 is onto. Finally, if hv — h^ then cup — aip for all a G PS(q), so
<p = ip and 0 is one-to-one. Q

In what follows, we sometimes write PS(X,p,q) or PS(p,q) in place of PS(q) to

highlight the underlying set X or its cardinal p.

As might be expected, PS(X,p, q) is isomorphic to PS(Y, r, s) if and only if p = r

and q = s, and moreover each isomorphism is induced in a natural way by a bijection
from X onto Y. To prove this, we need an argument almost identical to that in [5].
However, since we are dealing with partial transformations and our argument differs in
some important respects, we provide all the details.

LEMMA 1 . If a, /3 G PS(p, q) then the following are equivalent.

(a) ran a C ran/3,

(b) for each 7 G PS(p,q), M = fi implies cry = a.
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P R O O F : If ran a C ran/3 and 0j = /3 for some 7 G PS(q) then (xa)j = xa for

each xa G ran/3, so 07 = a. Conversely, suppose there exists y — xa £ ran/3 = B

say. Then ids G PS(q) and /3oids = /3 but y i d s 7̂  2/; that is, a o i d ^ ^ a and hence

the condition does not hold. Q

Suppose \X\ — p ^ q ̂  No and let 6(X, g) denote the family of all A C X such
that |X \ A\ — q. Note that the poset (B(X, q), C) contains a least element if and only
if p = q, and in this case 0 is its least element. For, clearly if p = q then 0 G B(X, q).
And if q < p then each A G B(X, q) is non-empty and A \ {x} G B(X, q); that is,
B(X, q) cannot contain a least element in this case. The proof of the next result closely
follows the corresponding argument in [5].

LEMMA 2 . Suppose \X\ = p ^ q > No and \Y\ - r ^ s ^ No. Every order-
isomorphism H : S(X, g) —> S(F, s) is induced by a bijection h : X —> Y: that is, for
each A e S(X, g), we have AH = .<4/i, the image of A under h.

PROOF: Let A G B(X,q) and x e X\A. We write 4 U {a;} as AUx. Clearly,
AUxe B(X,q) and Allx covers A. Hence (AUx)H — AHUy for some y £ AH. We
write y = XKA and assert that X\IA = XKB for all A, B € B(X, q) not containing x. For,
clearly ylnS G # (^ , g) and, since H is an order-isomorphism, (A (~l 5)i7 = AHCiBH.
Therefore, as in the proof of [5, Lemma, p. 493],

(AH n BH) U xh-AnB = (An B)H U xhAnB

= ((AnB)Ux)H

= (A U x)H n (B U x)H

= (AHUxhA)n(BH\JxhB),

and it follows that

{xhAnB} = {AH n {z/iB}) U ({x/iA} n Bif) U ({xhA} n {x/iB}).

Now if x/iB G >li/ then xhAnB = ^/IB and hence

((AnB)Ux)H=(An B)HUZ/IADB = (AnB)HUarfcB C AH.

This implies ( i n B ) U i C A, contradicting x g A. Therefore, xhs & AH and
similarly XHA & BH. Hence {XHA} n {xhe} / 0 and this means XKA — xhe as
asserted.

Now define h : X -^Y,x\-^ xh-A, where A G B(X, q) satisfies x £ A. The above
argument shows h is well-defined. To see h is injective, suppose X\h = X2/1 and choose
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B G B(X,q) such that X{ £ B for i = 1,2. Then, by definition, X{h — Xj/ie for
i = 1,2. Therefore

U Xi/iB = BiJ U x2hB = {BU x2)H

and it follows that X\ = x2. To show h is surjective, let y G Y and choose M G S(Y, s)
such that y $ M. Then AH = M and £ # = MUy for some i , B e B(X,q). Since
M Uy covers Af in the poset B(Y, s), B must cover .4 in the poset B(X,q). That is,
B = A U x for some x $. A. Hence

Ml)y= (AL>X)H = AHUxhA - MUxhA

and it follows that y = xhA and thus y — xh by definition. That is, /i is a bijection.

Finally we prove that AH = Ah for each A G B(X,q). First recall that the
empty map 0 G PS(q) if and only if p = q. In this case, the empty set 0 is the least
element of B(X, q) and hence 0if is a least element for B(Y, s). This means r = s

and 0i / = 0 = 0/i. So we can assume A 6 B(X,q) is non-empty. Now if y — xh for
some x € A then ?/ = xhB where x g B e B(X, q). If y g AH then Aff U y 6 B(Y, s)
and AH U y = (A\J z)H for some z £ A. Hence zhA = y — xhB and, since h is
injective, this implies z = x € A, a contradiction. Therefore y S AH and 4̂/i C yl/f.
Conversely, if y € Aif then AH covers AH \ y (this is true even if AH = {y}, which
is possible when p = q). Hence AH \y = (A\ x)H for some x € A and so

AH = ((A \ x ) U x)H =(A\x)HUxhA\x.

Therefore, since y £ (A \ x)H, we know y = z / i ^ and this means y = xh G >l/i; that

is, i4if C Ah and equality follows. D

Recall that PS(jp,q) contains a zero element (namely, 0) precisely when p = q.

Consequently, if PS(X,p,q) and PS(Y,r,s) are isomorphic then either p — q and
r = s, or p > q and r > s. In what follows, we need the fact: if A, B C X and
a e I(X) then (A\ B)a = Aa\Ba.

THEOREM 3 . The semigroups PS(X,p,q) and PS(Y,r,s) are isomorphic if and

only if p = r and q = s. Moreover, for each isomorphism ip, there is a bijection

h : X —> Y such that oup = h~xcth for each a G PS(X,p,q).

PROOF: Clearly, if the cardinals are equal as stated, then any bijection from X

onto Y will induce an isomorphism between the semigroups. So we assume there is an
isomorphism tp : PS(X,p,q) —t PS(Y,r,s) and aim to find a bijection h : X -> Y.

First we observe that <p induces an order-isomorphism from B(X, q) onto B(Y, s).
Indeed, from Lemma 1 we deduce that, for each a,/3 G PS(q), ran a = ran (3 if and
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only if ran (atp) = ran (f3<p). Also, recall that id.4 € PS(q) for each A £ B(X, q).

Consequently, there is a well-defined mapping

H : B(X, q) -> B(Y, s),A<-+ ran (aip)

where A = ran a for some a £ PS(q). Note that if p — q and A — 0 = ran0
where 0 £ PS(q) then 0(p = 0 and %H = 0. More generally, if 4 , B € S(X,g) and
A — ran a, B = ran/3 for some a, /? € PS{q) then Aff = r&n (acp),BH = ran(/fy>),
and A C 5 if and only if ^ i f C BIT by Lemma 1. Also, for each M £ B(Y,s),
there exists 7 € PS(s) and a e PS(q) such that M = ran 7 and j = a<p: that is,
M = (ran a)H where ran a € B(X,q), hence H is surjective.

By Lemma 2, i ? is induced by a bijection h : X —> Y and now we aim to show
a<p = h~1ah for each a € PS(q). Clearly this holds if p = q and a = 0. So,
suppose a 7̂  0 and note that dom ah = dom a since dom h = X. Let x € dom a and
xa — x'. Choose A, B in B(X, q) such that A C B and B \ A = {x}, and consider
ft, 7 € PS(X, q) such that ran ^ — A and ran 7 = B . Now ran 7 \ ran /3 = {x} and so

\ r )

= (ran (7^) \ ran (/3ip))(aip)

= (BH\AH){atp)

= {xh}a<p.

On the other hand, ran (7a) \ ran (/3a) — (B\ A)a = {x1} and so

ran((7a)<^) \ r&n((fia)(p) — (ran (7a)).//\ (ran (fia))H

= (ran(7«))/i\ (ran(/3a))/i

= (ran 7 \ ran /3)ah

= {x'h}.

Thus xh(aip) = x'h = xah for all x € d o m a and so cup = h~lah. Finally, since

aV € P 5 ( r , r, s) implies | F \ Ya<p\ = s, whereas \Y \ Yh^ah] = \(X\ Xa)h\ = q for

any bijection h : X —> Y", we also have q = s. U

3. REGULAR ELEMENTS

Since BL(q) is idempotent-free, it contains no regular elements (if S is a semigroup,

we say a £ 5 is regular if a = axa for some x e S). But PS(q) always contains regular

elements.
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THEOREM 4 . If Ko ^ q ^ p and a e PS(q) then the following statements are
equivalent.

(a) a is regular,
(b) g(a) = q,
(c) a->

PROOF: Suppose a = a/3a for some /3 € PS{q). Then, since a is injective,
xa/3 = x for all a; € doma and hence doma C ran /3. Therefore, q = d(/3)
^ g (a). Suppose g (a) = r > q. Then X \ dom a = (ran /3 \ dom a) U (X \ Xfi) implies
| ran/3 \ doma| = r. That is, if ran/3 \ doma = {dk} where \K\ = r and c/t/3 = d/t
then {cfc}nrana = 0 (since a/3 = iddoma) and so {c/t} C X \ r a n a which implies d(a)
^ r > q, a contradiction. This proves (a) implies (b). If g(a) = q then d(a - 1 ) = q, so
a" 1 6 PS(q); and if a"1 6 PS(q) then clearly a is a regular element of PS{q). D

The set of regular elements in PS(q) plays an important role in what follows, so
we let

R(q) - {a E PS(q) : g(a) = q}.

Clearly any regular subsemigroup of PS(q) is contained in R(q). Therefore, the next
result shows that R(q) is the largest regular subsemigroup of PS(q). In fact, since all
idempotents of PS(q) have the form id/i for some A C X and all of these commute,
we see that every regular subsemigroup of PS(q) is inverse.

COROLLARY 1 . If No ^ q < p then R(q) is an inverse semigroup.

P R O O F : The idempotents in PS(q) commute and, by the above Theorem, R(q)

is regular, so it remains to show R(q) is closed. Suppose a, /3 € R(q) and note that

dom a/3 = (ran a n d o m ^ a " 1 C l a " 1 ,

so

(1) = X

where the first set on the right of (1) has cardinal q (since a"1 € PS(q) by the
Theorem). Also, X \ [ran a n dom /3] = (X \ ran a) U (X \ dom /3), so the second set on
the right of (1) has cardinal at most q (since a"1 is injective). Therefore, g{ot(3) = q,
and we have shown a/3 € R{q). U

REMARK 1. In [3], Howie used R{q) = {a e I(X) : d(a) — g(a) = q] to construct
a congruence-free inverse semigroup when p > q\ and in [10, Corollary 4], Sullivan
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showed that R(p) is generated by its nilpotents with index 2: in fact, it equals the

subsemigroup of I{X) generated by all the nilpotents in I(X).

For Ho ^ r ^ p , we write

This is a subsemigroup of PS(q) since if a, ft G Sr then

g(aP) = \X \ Xa'l\u\[X \ (r&na D dom P^a-^

where X \ Xa~x — X \ doma, regardless of whether a"1 6 PS(q). Hence, g{a@)
^ r + (0 + r) = r, so a/3 € Sr. In particular,

5L(g) U R(q) C 5 ,

and so the two semigroups on the left cannot generate Sr for any r > q. In addition,
if 7 € PS(q) and 7 = a/3 for some a € R(q) and /3 6 BL{q) then 5(7) ^ <7(a). Hence
R(q).BL(q) is a proper subset of Sg. On the other hand, the next two results show
that 5, is generated by BL{q) and R(q) in very specific ways: this will be important
when we consider maximal subsemigroups of PS(q) in a subsequent paper.

THEOREM 5 . If Ko ^ q ^ P then Sg = BL(q).R(q). In fact, Sq = a.R(q) for
each a € BL(q).

PROOF: We have already seen that BL(q).R{q) C Sq. For the converse, suppose
a 6 Sq and note that

X\Xa= [(X\Xa)ndoma]u [(X \ Xa) f~l {X \domo)].

Hence, if g(a) < q then the second intersection on the right has cardinal less than q,
whereas the set on the left of the equation has cardinal equal to q, hence we have:

\(X\Xa)ndoma\ = q.

Write (X\Xa)C\doma = {aj = {&*} u{ci}u{dj} where \J\ = g(a) < q, and let
d o m a n r a n a = {a;*;} and X \ d o m a = {yj}• Let

/ Xk a, yj \ f xk bi \
\XA; bi dj J \xka a{aj

which are well-defined one-to-one maps by construction. Moreover, domA = X and

X \ XX = {ct} U {yj}: that is, A e BL{q); and X \ dom/i = {ci} U {dj} U {i/j} and

X \ X\i = X \ Xa: that is, /j. £ Rq. And clearly a = Xfi.
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If g(a) = q, we can write doma = {uk},X \ doma = {yj} and X \ Xa
= {vj}O{wj} where \J\ = q. Let

V Uka Vj ) ' Xa q-

Then A is a well-defined element of BL(q) and A/x = a as required.
Finally, suppose a,fi G BL{q), let X = {XJ} and write

• - ( : ) • < - ( : : ) • > - ( : ) •

Then /3 = a/x where /x 6 i?(g), so B£(g) C a.i?(g) C S , . On the other hand, if 7 € Sq

then the above argument shows 7 = fin for some fi € BL(q) and some /x € i?(g), and
now we also know 0 = aX for some A € R(q). Therefore, 7 — a(A/x) where Âx € R(q)
since ii(9) is a semigroup; that is, Sg C a.fl(g) and equality follows. D

The next result shows that in most cases Sq can be generated in a different way.

THEOREM 6. If q <p then Sq = BL{q).n.BL(q) tor each /x G R(q).

PROOF: Suppose 7 € Sq with 5(7) = r and let /x 6 i?(g). Since q < p, both 7
and /x have rank p, so we can write

Let X\{ai} = {aj} (so \J\ = r ) , X \ { c J = {yi}U{»fc} where |A"| = q, X\{di} = {dk}
and X\{bi} = {uk}\J{vk}. If

then a , ^ G BL(q) and 7 = a/x/3 (note that if r = 0 then {a,} = 0 but the conclusion

is the same). D

In passing we note that if 7 € Sq, n € R(q) and 7 = a/x/3 for some a,/3 € BL(q)

then d o m 7 C d o m a , so (dom7)a C dom/x and hence |dom7| ^ |dom/x| = r(n).

Therefore, if q = p and r(/x) < p then 5(7) = g(fi) = p, so BL{q).n.BL{q) is a proper
subset of Sq; that is, the above result fails to hold when q = p. In addition, it cannot
be simplified to read, for example: Sq = n-BL(q) for each \i G R(q) when q < p.

For, if 7 e 5 q then 7 ^ (i(3 for each /x G R(q) such that dom7 g dom/x. A similar
argument using ran7 shows that also Sq ^ BL(q).fi for some /x € R{q)-
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4. GREEN'S RELATIONS

The semigroup PS(q) is not a regular subsemigroup of P(X), so Hall's Theorem
([2, Proposition II.4.5]) cannot be used to describe the £ and It relations on PS(q) in
terms of their well-known characterisation on P(X) (see [7, Theorem 10]). Therefore,
in this section we first characterise each of the Green's relations on PS(q) and then
consider the corresponding problem for Sq and R(q). In fact, for each of these semi-
groups, S say, we determine when 5 x a C Sl0 and aS1 C /3S1 for a,fieS (that is,
when £ and 1Z classes are comparable under their usual partial order).

THEOREM 7 . If a, 0 e PS(q) then a = fin for some fi € PS(q) if and only if
dom a C dom 0. Hence a 1Z 0 in PS(q) if and only if dom a = dom /3.

P R O O F : Clearly, if a = /fyt for some /J, € PS(q) then dom a C dom/3. Conversely,
suppose dom a C dom/3 and write

Then a = Pn where n € PS(q). D

Surprisingly, it is much harder to describe Green's £ relation on PS(q).

THEOREM 8 . If a, (3 € PS(q) then a = X/3 for some A 6 PS(q) if and only if

Xa C X/3 and

(2) q ^ max(<7(/3), |X/3 \ Xa\) < max (g(a), q).

Hence, a £ /3 in PS(q) if and only if

(Xa = XP and g(a) = g(/3) > q) or {a = 0 and g{a) < q).

P R O O F : Suppose a = X/3 for some A S PS(q). Then Xa C X/3 and a 6 PS(q)

implies

| [{X \ XX) n dom/3]/3| = \(X \ X\)(3\ = \X0 \ Xa\ ^ d(a) = q.

Also, since 0 is one-to-one, we have:

q = \X \ X\\ = | [(X \ XX) n dom/3] U [(X \ XX) D{X\ dom^)] |

^ \Xp \ Xa\ + g(p) = max(g(P), \X0 \ Xa\).

Since A is one-to-one and a = A/3, we have

- 1 = d o m a and {XXnX X d o m ^ A " 1 C X \ doma
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and hence

\X \ dom/3| = \XX n(X\ dom/3)| + \(X \ XX) n(X\ dom/3)|

^ \X \doma| + q - ma,x(g(a),q).

Conversely, suppose a, /3 € PS(q) and the conditions hold. Write

so that \K\ = \XP\Xa\. If g(a) < q, the conditions imply max(#(/3), \X0\Xa\) = q
and so d(X) = \{xk} U (X\dom/3)| = 9: that is, A € PS(q). Suppose g(a) ^ q. In
this case, the conditions imply g(0) $J g(oi). otherwise, we have

and so
max(g(P),\X0\Xa\) = g{P) > g{a) = max (g(a),q).

We can also assume q < g(/3): otherwise, max(p(/9), \X(3 \ Xa\) = q and the result
follows as before. Now write X \dom/3 = {xm} U {xn} where \M\ = g{/3), \N\ = q and
choose zm e X \ dom a. Now re-define A as

A
_ (o.{ z m \

and note that X \ XX — {xk} U {xn} which has cardinal g. Hence, A € PS(q) and
a = A/3 as required.

It follows that for distinct a, P € PS(q), a = A/3 and /3 = X'a for some A, A'
€ F5(g) if and only if Xa = Xfi and g(a) = #(/3) ^ g. That is, if a £ /3 in P5(g)
and g(ce) ̂  g then X a = X/3 and ff(a) = g((3), whereas if g(a) < q then a = 0. On
the other hand, if one of these events occurs, it is now clear that a L /3 in PS(q). D

Given that the condition in (2) is so complicated, it is worth noting that it cannot
be simplified to read: g((3) ^ g(a).

EXAMPLE 2. Let a, /3 e PS{q) be defined by

where <?(/3) ^ <?(a) < q and |J | < q. Note that in this case Xa C X/3 and |/ | — p.
Also max(3(/3),|X/3\Xa|) ^ q. If a = A/3 for some A € P5(g) then bt = a{a
= (ajA)/3 = Xi^ for each i, so {XJ} C XA. Therefore

d(X) ^\X\ {Xi}\ = \{xj}UG(p)\ <q + q = q,

a contradiction. That is, for some a, ft 6 PS(q) with g(/3) < 5(0:), there is no A
€ PS(q) such that a = A/3.
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REMARK 2. From Theorems 7 and 8, we deduce that a U fi in PS(q) if and only if

(Xa = X/3, doma = dom/3 and g(a) ^ q) or (a = /? and g(a) < q).

Recall that each group U-class of T(X) is isomorphic to a symmetric group G(A) for
some AC. X ([1, Vol. 1, Theorem 2.10]). The corresponding result for PS(q) is even
more precise. For, if e is a non-zero idempotent of PS(q) then e = id^ for some AC X

such that \X \ A\ = q. Consequently, since each a € PS(q) is injective, we have

a € H£ •<=>• Xa = XE, doma = dome,

That is, He = G(A) and clearly, when p = q, H% = {0}.

To characterise the J relation on PS(q), we need two Lemmas. Henceforth, if

a £ P(X), we write r(a) = | rana| and call this the rank of a.

LEMMA 3 . If q < p and a,P e P5(g) then /3 = Aa/x for some A,/ig PS{q) if
and only if g(a) ^ q or g(/3) ^ g(a) > q. Hence, in PS{q) for q < p, a J ft if and
only if g(a) and g(0) are at most q, or g(a) = g(/3) > q.

P R O O F : First note that if q < p then r{a) = r(/3) = p. Suppose 0 = Xafj. for
some A,/x € PS(q) and assume g(a) — r > q. Then

and this implies |XAnG(a)| = r. That is, there exists {an} C dom A such that |7V| = r
and {an\} ndoma = 0. Therefore, {an} C G(/3) and g(/3) ^ r = g(a), as required.
Conversely, if g (a) ^ q < p, write

where | / | =p and let {a*} = {x i}u{ i j} where \J\ = q. Define

f Ci\ (xia\
\—\ and fi — [

\XiJ \ di )

and note that D(X) = {XJ} uG(a) , a set with cardinal q. Moreover, /3 = Aa/z where
A,/x € PS(q). On the other hand, if g((3) ^ g(a) = r > q, choose rij e G(a) with
\J\ = r and \G(a) \ {rij}\ = q, and choose rrij € G((3) (possible via the assumption).
Then, using the same notation for a and p\ we see that

A = I J I and u =
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are elements of PS(q) and /3 = Xa/j., as required. D

LEMMA 4 . If q = p and a,P € PS(q) then 0 = Xafi for some X, \x £ PS(q) if
and only if r(0) < r(a). Hence, in PS(q) for q = p, a J /3 if and only if r(a) = r(/3).

PROOF: Clearly, /3 = Aa/i implies r(/3) ^ r(a). For the converse, write

' - ( « ) - - ( : ) •

Put {a*} = {xj}0{xk} (possible since r(/3) ̂ r(a)) and define

and note that D{X) = {xk} U G{a): clearly, this set has cardinal q = p if g(a) = q;
and if g(a) < q then |/ | — q, so we can ensure that \K\ = 9. That is, A,/u € PS(q)
and /3 = Aa/x. D

Note that g(a) > q can occur only when q < p\ and if g(a) ^ q < p then r(a) = p.
Also, if 9 = p then max(#(a:),g(/?)) ^ q is valid for all a,/3 € PS(q). Hence the last
two Lemmas can be combined as follows.

THEOREM 9 . If No ^ q ^ p then a J /9 in PS(g) if and only if

[max(ff(a),0O0)) ^ g and r(a) = r(f3)} or [g{a) = g{P) > q].

We now consider the V relation on PS(q) and find that V ^ J, unlike the usual
situation for other subsemigroups of P(X) (for example, the semigroup generated by
the idempotents of T(X) [8, Theorem 7], and the semigroup generated by the nilpotents
of P{X) [7, Theorem 11]).

THEOREM 10. IfX0^q^p then aV fi in PS(q) if and only if

[g(ct) < q and doma — dom/3] or [r(a) = r(/3) and g(a) — g{j3) ^ q\.

PROOF: Suppose a £ 7 H /3 in PS(q). By Theorems 8 and 7, "a = 7 and
g(a) < q" or "Xa = Xj and 3(7) = g{a) ^ 9", and dom7 = dom/3. Since 7 and /3
are one-to-one on their domains, we deduce that

[g{a) < q and doma = dom/3] or [r(a) = r(/3) and g{a) = g((3) ^ q].

Conversely, suppose this condition holds. If g(a) < q and doma = dom/3, then
a C aTL p. On the other hand, if r(a) = r(/3) and g(a) = g{0) > q, we write

- ( : ) • ' • ( : ) • - ( : ) •

Then 7 € PS(q) and, by Theorems 8 and 7, a £ 7 11 @ as required. D
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EXAMPLE 3. Let a, ft e PS(q) be defined by

• • ( : ) • ' - ( : )

where g(ft) < g(a) < q and doma ^ dom/3. This implies | / | = p, so r(a) = r(ft)

and max[g(a), g(ft)) < q, hence a J ft by Theorem 9. Suppose a C 7 TZ ft for some
7 G PS(q). Then dom7 = dom/3 by Theorem 7, hence a ^ 7 (by choice). So Theorem
8 implies Xa = X7 and g(a) = 3(7) ^ 9, contradicting the choice of a. Hence a is
not V-related to ft in PS(q), and thus V ^ J.

We now consider Green's relations on Sq. As before, since Sq is not a regular
subsemigroup of PS(q), Hall's Theorem cannot be applied to find K and £ on 5 , .
Nonetheless, they happen to be the restriction of 1Z and £ on PS(q).

LEMMA 5 . Let a, ft e Sq where No ^ q =% p. Then

(a) a = Pn for some \x € 5q if and oniy if dom a C dom ft, and

(b) a= Xft for some X e Sq if and only if X a C Xft and max(g(ft), \X@\ Xa\)

= Q-

PROOF: For (a), we simply note that in the proof of Theorem 7, if a G 5 , then

{XJ} C G{a), so |J | ^ q and G(/x) = {%} VD(ft), hence 5(̂ 1) ^ g.

For (b), observe that if a = Xft for some X € Sq C PS(q) then the condition in

Theorem 8 simplifies to the desired result. Conversely, suppose the stated condition

holds and write

Then | J | < q since \Xft\Xa\ < d(a) = q. If g(ft) = q then d(A) = ^(^) + \J\=q and
clearly #(A) ^ q, so A e S , and a = Xft. On the other hand, if \Xft \ Xa\ = q then
IJ\ = q ^ (/(/3) and again d(A) = q, so A € Sq as required. D

COROLLARY 2 . Let a,ft€Sq where Ko ^ 9 ^ p . Then

(a) a Tl ft in Sq if and only if dom a = dom /3, and
(b) a C ft in Sq if and only if [Xa = Xft and g(a) = g{ft) = q) or

[a = ft and g(a) < q].

From Lemma 3 we see that if q < p then Sq forms a J -class in PS(q). Hence
we might expect the J relation on Sq to be universal when q < p. In addition, given
the last result, we might also expect the V relation on Sq to be the restriction of V

on PS(q). Both these expectations are correct, as we now show.

THEOREM 1 1 . Let a, ft 6 Sq where No < 9 ^ P- Then ft = Xau- for some X,u.

€ Sq if and only ifr(ft) ^ r(a). Hence

(a) a J ft in Sq if and only if r(a) = r(ft), and
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(b) a V /3 in Sq if and only if [g{a) < q and doma = dom/3] or [r(a)
= r{/3) and g(a) = g(fi) = q].

PROOF: Clearly, j3 = Xau. implies r(/3) ^ r(a). Conversely, if q < p then r(a)
= r(P) — p. Using the same notation as in the proof of Lemma 3, we note that g(X)
= d(P) ^ Q a n d G(fi) = D{a) U {XJO) , a set with cardinal q, so A, /j, € Sg in this case.
On the other hand, if q — p and r(/3) ^ r(a) then we observe that the X,fi denned in
the proof of Lemma 4 actually belong to Sq.

It remains to prove (b). If a V (3 in Sq then a V 0 in PS(q), so Theorem 10
gives the desired result. Conversely, if the condition holds, we note that the converse
argument in the proof of Theorem 10 shows in fact that 7 € Sq and hence a V (3 in

s q . D
We now turn to Green's relations on R(q). Since this is a regular subsemigroup of

I(X), Hall's Theorem implies that the C and 1Z relations on R(q) equal the restriction
of the corresponding relations on I(X) to R(q)- Hence, a C ft in R(q) if and only if
ran a = ran /3, and a 1Z /3 in R(q) if and only if doma = dom/3. In fact, the J and
V relations on R(q) also mimic those on I(X).

THEOREM 12. If a,fi € R{q) then 13 = Xan for some A, /J € R{q) if and only if
r(/3) < r(a). Hence, a J f3 in R(q) if and only if r(a) = r(/3). Consequently, V = J
in R(q).

PROOF: AS usual, if (3 = Aa/x for some A, /j. € P{X) then r(0) ^ r(a). Conversely,
if this condition holds, we write

»=(:)• '-{%)> - ( : ; ) • > - (T)
where {XJ} C {<n} (possible since \J\ < | / | ) . Then /3 = Xau. and X,fJ.& R(q) (note
that if q < p then we can assume I = J). Finally a standard argument shows that if
r(a) = r((3) then a V (3, so J C V and equality follows. D

REMARK 3. From a comment above, we deduce that a % 13 in R(q) if and only if
rana = ran/3 and doma = dom/3. Hence, as in Remark 1 about PS(q), the group H-
classes of R(q) are precisely the symmetric groups G(A) where AC X and | ^ \ J 4 | = q.
For the group % -classes of Sq, note that no idempotent of PS(q) has gap less than
q, hence Corollary 2 shows that ti in Sq can be characterised in the same way as for
R{q), and therefore the group H -classes of Sq are also the same as for R{q).

5. TWO-SIDED IDEALS

Recall that for q ^ r ^ p, Sr = {a € PS(q) : g(a) ^ r} is a subsemigroup of
PS(q). The reverse inequality gives us ideals of PS(q) when q < p.
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THEOREM 1 3 . The proper ideals of PS(q) for q < p are precisely the sets:

Tr = {ae PS(q) : g(a) > r}

where q < r ^ p. Moreover, each Tr is a principal ideal.

P R O O F : Let a e Tr and P € PS(q). Since doma/3 C doma , we know g(aP)
^ g (a), so each Tr is a right ideal. Also,

X \ dom/fo ={X\ dom/3) U (dom/? \ dom/fo)

and
G{a) = [Xp n G(a)} U [(X \ Xp) n G(a)]

where [ l ^ n G f a ) ] ^ 1 = dom/3 \ dom^a and d(P) =q. Therefore, \XpnG(a)\ ^ r
and it follows that g(Pa) ^ r. That is, Tr is also a left ideal.

Conversely, suppose A is a proper ideal of PS(q) for q < p and choose a € A

with least gap, r say, so A C TT. If r ^ q then, by Lemma 3, all elements of PS(q)

belong to PS(q)aPS(q) which is contained in A: that is, A — PS(q), a contradiction.
Therefore q < r ^ p and if /3 S Tr then g(P) ^ r = g(a) > q, so Lemma 3 implies
P = Xa.li for some A,/z 6 PS(q). Hence /3 € A and equality follows.

Finally, if a € Tr has gap r where q < r ^ p then Lemma 3 implies that, for each
P e Tr, there exist A, n € PS(q) such that P = \an and hence Tr C P5(g) 1 aP5(? ) 1 .
Since a £ T r and Tr is an ideal, the reverse inclusion also holds, and thus each TT is
principal. U

In effect, in [1, Vol. 2, Lemma 10.54], Clifford and Preston prove that the Rees
factor semigroups I^/Ie. of ideals J? in T(X) are 0-bisimple, and they contain a primi-
tive idempotent precisely when £ is finite (here f' denotes the successor of the cardinal
£). To obtain a corresponding result for the ideals of PS(q), we first observe that if
q < r ^ s ^ p then q' ^ r and

T P C • • • C r s C T r C • • •CT ? , .

Note that if q < r ^ p then Gr = S r n T r is the (non-empty) set of all a 6 PS(q) with

gap r , and in fact Gr is a semigroup (since it is the intersection of two semigroups).

Therefore, if q < r < p then Tr/Tri is essentially GT with a zero adjoined (note that

GP = TP).

REMARK 4. If a,P are D-related in Gr then they are P-related in PS(q). Conversely,

from Theorem 10 we deduce that if a,P are D-related in PS(q) then they have the

same gap, r say. Moreover, in this case, a £ 7 Ti P for some 7 G PS{q) with the
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same gap as a (see the proof of Theorem 10). Now by Theorem 8, either a = 7 or
"Xa = X'y and g(a) — 5(7) ^ q"; and in the latter case, as in the second half of the
proof of Theorem 8, we can find Ai, A2 with gap r such that a = A17 and 7 = A2C*:
that is, a £ 7 in Gr. On the other hand, if 7 H /? in PS(q) then dom7 = dom/3 by
Theorem 7. In addition, if 7 and /3 have gap r > q, we can write

- ( ; : ) • ' • ( : ) •

where {a.} = {xi}\J{xk} and \K\ = r. Then 5 ^ ) = |{xfc/3} U X \ {a}\ =r (since
d(/3) = g < r ) and 7 = /3/iX. That is, if 7 72. /3 in PS(q) and g < r = g(/9) < p, we
can show that 7 11 f3 in G>. In other words, if a, /3 are X>-related in PS(q) and have
gap r where q < r ^ p then they are 23-related in Gr.

From the above Remark, we deduce that G> is bisimple if q < r ^ p. Also, if
e is an idempotent in Gr then e = id A for some A C X such that |̂ 4| — p and
|X \ A\ = r > q, which contradicts d(e) = q. That is, GT is idempotent-free.

COROLLARY 3 . If q < r < p then Gr — SrnTr is bisimple and idempotent-free.

When q —p, PS(q) contains constant maps, all of which form an ideal of PS(q),

so we can expect a more standard description of the ideals in PS(q) in this case:
compare [1, Vol. 2, Theorem 10.59] for the ideals of T(X).

THEOREM 1 4 . If q=p, the ideals of PS(q) are precisely the sets:

Jr = {ae PS(q) : r(a) < r}

where 1 ̂  r < p'. Moreover, Jr is principal precisely when r = s' where 0 ̂  s ^ p.

PROOF: Clearly each Jr is an ideal of PS(q). Let A be an ideal of PS(q) and

let r be the least cardinal greater than r(a) for all a 6 A. Then A C Jr. Now, for

each /3 € JT, there exists a £ A such that r(/3) ^ r(a) (by the choice of r). Hence

Lemma 4 implies /3 — Aa/x for some A, fj. e PS(q), so /3 € A. That is, Jr C A and

equality follows. Moreover, if r = s' then Jr = {a £ PS(q) : r(a) < s } . In this case,

since p = q, Lemma 4 implies Jr C PS(q) aPS(q) for each a & Jr with rank s,

and it follows that Jr is principal. Conversely, suppose Jr = PS(q)1aPS(q)1 for some

a € Jr. Let r(a) = s and assume there is a cardinal t such that s < t < r. Since

p — q, there exists /3 £ PS(q) with r(/3) = t and then /3 6 7 r , so /3 = Aâ z for some

A,/x 6 PS(q)1 • But this implies r(/3) ^ »"(a), a contradiction. Therefore, t does not

exist and thus r — s'. D

REMARK 5. If non-zero a,/3 are P-related in Jr>/Jr then they are P-related in PS(q).

Conversely, from Theorem 10 we deduce that if a, /3 are P-related in PS(q) then they
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have the same rank, r say. Moreover, in this case, a C 7 TZ 0 for some 7 € PS(q)

with the same rank r (see the proof of Theorem 10). Next we observe that, in the
proof of Theorem 7, u. has the same rank as a, and this can be used to show that, if
elements of PS(q) are 7l-related in PS(q) and have rank r , then they are K-related
in Jr'/Jr • In addition, if a £ 7 in PS(q) then Theorem 8 implies that either a = 7 or
"Xa = X 7 and g(a) =3 (7 ) ^ <?"; and in the latter case, as in the second half of the
proof of Theorem 8, we can find Ai, A2 with rank r such that a — A17 and 7 = \IOL:

that is, a £ 7 in Jr'/Jr • In other words, if a,/3 are O-related in PS(q) and have rank
r then they are P-related in Jri/Jr.

Now, in Example 2 we found a,/3 with rank p which are not Z>-related in PS(q)

and so, by the above Remark, Jpi/Jp is not 0-bisimple. On the other hand, if r < p = q

then all non-zero elements of Jr'/Jr have the same rank r and gap p , so Theorem 10
implies they are P-related in PS(q) and hence also in Jri/Jr; that is, Jr'/Jr is 0-
bisimple if 1 ^ r < p. However, if e is a non-zero idempotent in Jri/Jr then e = id.A

for some AC X such that \A\ = r and \X \A\ = q; and, since A \ {x} £ A if x G A,

this is primitive precisely when r is finite and positive (see [1, Vol. 2, p. 224]). That
is, Jri IJT is completely 0-simple only when 1 ^ r < HO. Finally, by Theorem 4, if each
a in JTiIJT is regular, we must have r < q = p (since elements with rank p can have
gap less than p). In other words, Jr'/Jr is inverse precisely when 0 ^ r < p .

COROLLARY 4 . Ifl^r<p = q then Jr'/Jr is a 0-bisimple inverse semigroup;

it is completely 0-simple only when r is finite.

Note that if q < p and a,/3 e Sq then r(a) — r(/3) = p, so a J /3 in Sq by
Theorem l l (a) . Thus, Sq is simple if q < p, and of course if q — p then 5 , = PS(q).

Likewise if q < p then R(q) is simple (in fact, bisimple since V = J when q < p).

And if q = p then R(q) contains constant maps and an argument similar to that in the
above proof leads to our last result.

THEOREM 15 . If q = p, the ideals of R(q) are precisely the sets R(q) D Jr where

l^r^p'.
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