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BAER MODULES OVER DOMAINS

PAUL C. EKLOF, LASZLO FUCHS, AND SAHARON SHELAH

Abstract. For a commutative domain R with 1, an Ä-module B is called a
Baer module if E\ilR(B , T) = 0 for all torsion K-modules T. The structure of
Baer modules over arbitrary domains is investigated, and the problem is reduced
to the case of countably generated Baer modules. This requires a general version
of the singular compactness theorem. As an application we show that over h-
local Prüfer domains, Baer modules are necessarily projective. In addition, we
establish an independence result for a weaker version of Baer modules.

0. Introduction

In his seminal paper [B] on mixed abelian groups, R. Baer proved that a
countable abelian group B had to be free if Extz(ß, T) = 0 for all torsion
abelian groups T. The problem of determining the uncountable groups B
with this property turned out to be extremely difficult. Only 30 years later was
it settled by Griffith [Gf] who showed that B had to be free, no matter what
its cardinality was. Nunke [N] and Grimaldi [Gm] generalized the results to
modules over Dedekind domains. Recently, Göbel [Gö] showed that the results
extend to torsion theories over Dedekind domains.

The problem of characterizing Baer modules B over arbitrary domains R
(i.e., A-modules B with ExtR(B, T) = 0 for all torsion /î-modules T) was
raised by Kaplansky [K]. He established two useful lemmas that served as a
starting point for the paper of two of the present authors [EF] in which a
new approach was used to show that Baer modules over arbitrary valuation
domains had to be free. While particular properties of modules over valuation
domains were utilized to settle the case of countable rank, transfinite induc-
tion was needed for higher ranks. For regular cardinals, a lemma was proved
which—in a more general form—will serve as a crucial lemma in the present
paper. For singular cardinals, a version of Shelah's compactness theorem was
used.

The point of departure for the present paper is the observation that the tools
developed in [EF] can be refined to deal with Baer modules over arbitrary do-
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mains. A stronger version of the compactness theorem on singular cardinals,
which can settle the case of singular cardinals below the cardinality of the do-
main as well, is required. Our main theorem reads as follows:

Theorem A. A module B over a domain R is a Baer module if and only if there
exists a well-ordered continuous ascending chain of submodules

0 = Bü<Bx<   ■   <Bv<      <BX = B       (v < r)

for some ordinal x such that, for each v < x, Bv+X/Bv is a countably generated
Baer module.

This result reduces the problem of characterizing Baer modules to the count-
ably generated case. If R is such that all countably generated Baer /?-modules
are projective (as is the case if R is a P.I.D., a Dedekind domain, or a valuation
domain), then our theorem implies that all Baer modules over R are projective.
(We do not know if countably generated Baer modules are projective for every
domain R.)

We apply Theorem A to Prüfer domains and prove

Theorem B. A module over an h-local Prüfer domain is a Baer module exactly
if it is projective.

Finally, we deal with an independence result. First we prove

Theorem C. Assume V = L. Let R be any domain of cardinality < K, and
M any R-module of projective dimension < I . If E\tR(M, TQ) = 0, where
Tq = ©(U (&r,¿reRiR/Rr). then M is a Baer module.

However, if we assume the Proper Forcing Axiom (PFA) rather than the
Axiom of Constructibility (V = L), then Theorem C fails for any countable
domain R which is not a field.

The authors wish to thank Alan Mekler for helpful discussions.

1. Preliminaries

We start off with the following lemmas. For the proofs of Lemmas 1 and 2,
see Kaplansky [K] or Eklof and Fuchs [EF].

Lemma 1. Baer modules over any domain are flat. They are therefore torsion-
free.
Lemma 2. Baer modules have projective dimension < 1.

Call a submodule A of an /î-module M with p.d. M < 1 a tight submodule
if p.d. M/N < 1 ; then necessarily p.d. A < 1 as well. The following two
lemmas were proved in Eklof and Fuchs [EF],

Lemma 3. Tight submodules of Baer modules are Baer modules.

Lemma 4. An R-module B of projective dimension < 1 is a Baer module exactly
if E\tlR(B , T) = 0 for all direct sums T of cyclically presented torsion modules.
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BAER modules over domains 549

Here by a cyclically presented /v-module is meant one of the form R/Rr
with r G R .

Lemma 5. If an R-module B of projective dimension < 1 can be generated
by k elements (k an infinite cardinal), then for TQ = ©K®0^reR(/v//?r),

E\tR(B, Tf = 0 implies that B is a Baer module.
Proof. Let 0-»//-^F-»A-*0 be a projective resolution of B where F is
a free .R-module with k generators. Without loss of generality, we can assume
H is free, so likewise < k-generated. Consider the induced sequence

HomR(F , T) £ HomR(H, T) - ExtR(B , T) -* 0

where T is a direct sum of cyclically presented torsion modules. Every homo-
morphism r¡: H —► T lands in a k-generated summand of T. Such a summand
is isomorphic to a summand of T0 ; thus, it is clear from the hypothesis on T0
that r\ must be induced by a homomorphism F —> T. We infer that a* is
epic and ExtR(B, T) = 0. The preceding lemma completes the proof.   D

It is easy to show directly that over any domain R, a countably generated
module of projective dimension < 1 has to be countably presented. Instead,
we prove a result which is more useful for our purposes.

Proposition 6. Over any domain R, a countably generated flat module has pro-
jective dimension < 1 and is countably presented.
Proof. Let M be a countably generated flat /v-module and 0 —► H —> F —►
M —> 0 a presentation of M with F countably generated free. Thus, H is
a pure submodule of F. Osofsky [O] showed that in a pure submodule of a
free /v-module (R any ring), every set of cardinality Hk can be embedded in
a pure, vtk-generated submodule and this submodule has p.d. < k. Applying
this in our case to a maximal independent set in H, we conclude that H is
countably generated and p.d. H = 0.   a

We can now derive

Corollary 7. Over any domain, countably generated Baer modules are countably
presented,    a

Corollary 8. Pure submodules of countably generated Baer modules are Baer
modules.
Proof. Let H be a pure submodule in a countably generated Baer module B .
Then B/H is countably generated and flat, so by Proposition 6 p.d. B/H < 1 .
The claim follows from Lemma 3.   □

Our crucial lemma is the following; it generalizes Lemma 9 in [EF].

Lemma 9. Let M be a K-generated module (k a regular uncountable cardinal),
and suppose

(1) 0 = M0<Mx<-<Ma<-- (a<K)
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is a well-ordered continuous ascending chain of submodules such that

(i) Ma is less than k-generated for each a < k ;
(ii) p.d. Ma+X/Ma < 1 for each a < k ;

(iii)   U <KM =M.
For each a < k , let G   be an R-module, and set HR = ©    ~ G   (ß < k) , H =a (S        y^/c\<p     a v" ' '

®a<KGn.Ifitheset

E={a< K\3ß > q with ExtR(Mß/Ma, //^///J f 0}

is stationary in k , then

ExtR(M, H)f0.
Proof. Dropping to a club if necessary, we may assume ß = a + 1 ; condition
(ii) continues to hold in view of a lemma by Auslander. Thus, it suffices to prove
our claim under the hypothesis that E = {a < k\ Ext (M X/Mn, Gf) ^ 0} is
stationary in k .

For each 0 < a < k select an exact sequence

0~» G  - C  ^ M ^,/M ^0

which does not split when a G E. Following the pattern of [EF, Lemma 9], we
construct for each a < k , an exact sequence of /^-modules,

(2) 0->H  -» X  ^>M  ^0

satisfying the following properties:
(1) 0 = X0 < Xx < ••• < Xa < ••• (a < k)  is a well-ordered continuous

ascending chain;
(2) the diagram

(3)

0

0

//

// + 1

X

X + 1

(A /'.,

M

M +i

M ^,/M

o

commutes for all a < k ;

(3) for a limit ordinal ß<K,0^Hß^Xß-^Mß^0 is the direct limit
of the exact sequences (2) with a < ß ;
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(4) for all a < ß <k , the diagrams

0 -► H   -► X   —í=—► M   -► 0a a a

(4) 1 i

commute (the vertical maps are inclusions).
Define 0 —► H —► X —► M —► 0 as the direct limit of the exact sequences (2)

for a < k . The proof that this sequence does not split is identical to the one
given at the end of the proof of Lemma 9 in [EF] (at the end of the proof, after
concluding that the third row in the diagram splits, argue that the first vertical
map is inclusion as a summand to obtain the splitting of the top row). Hence
ExtR(M, H) f 0, indeed.   D

2. Singular compactness
We will need a version of the Singular Compactness Theorem. This theorem

says, roughly, that if A is a structure of singular cardinality A such that "most"
substructures of cardinality < X are "free", then A is "free". The theorem
applies to much more than the ordinary notion of freeness; for example, for
us, "free" will mean the condition given as the conclusion of Theorem A. An
axiomatic formulation of properties of "free" that are sufficient to prove the
theorem is given in [S]. Another axiomatic version is given in [H]. In the version
stated below, we follow closely the latter, except that we formulate it only for
modules and state it so that it applies below the cardinality of the ring. (So
we consider the cardinality of sets of generators of submodules rather than the
cardinality of the submodules themselves.)

In the following R is a fixed but arbitrary ring, and if F is a subset of an
/v-module M, (Y) denotes the submodule generated by Y. Aa°(M) denotes
the power set of M .

Suppose 9" is a class of /\-modules such that for every M G A? we are
given a nonempty set 38(M) e 3°(9°(0°(M))). We assume that {0} G A? and
that 0 gAAI? for all S? G AAS (M). We also assume the following conditions hold
for all M g A¥ and all ST G 3S(M) :

(a) If Y g A?,then (Y)gAT and {Z G Sf\Z ç (Y)} g3§((Y)) ; in this case
we say that (Y) is a free factor of M. Whenever A is a free factor of M, we
also suppose we are given a subset of A28(A) x A3§(M) ; we write äf' = äf\A if
(Sf', A2?) belongs to this subset.

(b) If A is a free factor of M and %?' = ä?\A , then / = {Ze/:ZC
A}; moreover, for every S?' e ¿S(A), there exists SA G â§(M) such that
&' = 2T\A.
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(c) Sf is closed under unions of chains, i.e., if C ç g? such that for all
Y,Y' gC, either Y ç Y' or Y' ç Y, then IJ C G SA.

(d) If Y G 3? and a G M, then there exists Y' g 3? such that Y ç Y',
a G (Y1), and \Y'\ <|F| + n0; and

(e) If Mv G &, SAVG 3S(Mf) (v < x) are such that

M0< Mx < ■ ■ ■ < Mv < ■ ■ ■

is a well-ordered continuous ascending chain of submodules, Mv is a free factor
of Mv+X and 3?v = %A'lt\Mv for all v < p < x, then [ju<x Mv belongs to A? and
the closure Sf of U„<T<^ under unions of chains belongs to <5?(U„<T^„) .

The proof of the following version of the Singular Compactness Theorem can
be found in the forthcoming book [EM2]; it follows closely the proof in [H].

Theorem 10. Let AAf satisfy (a)-(e). Suppose X is a singular cardinal, and M is
a X-generated R-module. Iffior every k < X, there is a family WK of K-generated
submodules of M such that:

{l')   %ÇA?;
(21)   ^ is closed under unions of chains of length < k ; and
(7>) every subset S of M of cardinality < k is contained in a member of

%>
then M gS? .   n

For the simplest example of a family AAF satisfying the conditions (a)-(e),
let AF be the class of all free Zv-modules, and for each M G A? , let 3§{M) be
the set of all %A such that there is a basis B of M with Sf = &>(B). Then
A is a free factor of M if and only if A and M /A are free; in that case let
Sf' = Sf\A if and only if there is a basis B of M and a basis B' of A such
that B' ç B, %" = A^(B'), and ä? = 9>(B).

Our application involves an A? of the following type. Let Af be a set of
countably presented modules. (In our application Af will be the set of all
countably generated Baer modules; they are countably presented by Corollary
7.) Let AFj- consist of all modules M suchthat M is the union of a continuous
well-ordered ascending chain

( 5' ) M0 < Mx < ■    < Mif <      < Mx = M

where for each v < x, M¡y+X/M¡/ G AV. (We will refer to (5), in brief, as a
"chain up to M ".) For each M GAF,. ,let 3§(M) consist of all SA such that
there is a chain (5) satisfying:   Y g SA if and only if

(6)      for each v <x,  ((Y) n MV+X)\MU ¿ 0 implies Mv+X QMu + (Y).

Note that the chain (5) uniquely determines an äf G AÁS(M) according to
(6), but there may be many representations of M as the union of a chain (5),
so A3S(M) may have many elements. If A is a free factor of M, let âf = SA\A
if and only if: there is a chain (5) up to M such that A = M   for some p ;
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3? is determined by the chain (5), as described in (6); and a?' is determined
by the chain

( 5' ) MQ < Mx < ■ ■ ■ < Mß = A
as in (6).

In order to be in a position to use Theorem 10 to prove Theorem A, we will
verify

Theorem 11. With AFr and <3§(M) as above, conditions (a)-(e) above are sat-
isfied.
Proof, (a) If Y G A3A!(M) for some M G A¥jr, then there is a sequence (5) such
that (6) holds. Let A = (Y), and for each v < x, set Av = A n Mv . Then
clearly A = (Jl/<xAi/ and for each v, Av+X/Av belongs to JA because, by (6),
it is either 0 or the canonical map

AvJAv^MvJMv
is an isomorphism. It is clear that this chain {Af\v < x} determines the element
{Z 6 Sf\Z G A} of 38(A). Thus (a) is satisfied.

(b) The first part of (b) is obvious. Now suppose A is as in the proof of (a)
and SA' gAÄA!(A) . Thus there is a well-ordered continuous ascending chain

(7) BQ<-<Bß<-    <Bp = A

such that Bß+X/Bß G AV for all p and Y G Sf' if and only if

(8) for each p<p,  ((Y) c\ B ß+x)\Bß ¿ 0 implies Bß+X ç (Y) + Bß ,

We are now going to define by induction a well-ordered continuous ascending
chain

(9) B0<-<Bß<-    <Ba = B
extending (7) such that: (i) for all p < o, Bß+X/Bß G JA ; and (ii) for all p > p
and all v < x, (B n MV+X)\MV ¿ 0 implies Mv+X C Bß + Mv . For p < p
we let Bß be as already defined. Suppose that for some p > p, B has been
defined with the desired properties. Let y be minimal so that My+X <£_ B ; thus
by continuity, M ç B . (If there is none, then B = M and we stop.) Set
B   , = B  + M   , . Then the canonical map

My+x/My^Bß+x/Bß
is well defined and onto. Moreover, it is one-one because by hypothesis (ii)
on Bß, My+X HBßCMy since My+X £Bß + My = Bß. Thus Bß+X/Bß =
M X/M G JA", and (i) is satisfied for B x . It remains to verify (ii) for
Bß+X . So suppose that for some v, (Bß+X n Mv+x)\Mv ^ 0 . If v < y, then
Mu+X ç M , ç B x , and we are done. So we may suppose that v > y. We
are assuming that there exist b G B , x G M x , and u G Mv+x\Mp such that
b + x = u . But then b = -x + u G Mv+x\Mv and by hypothesis (ii) for Bß ,
K+i^Bß + Mi,CBß+x+Mi/.
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For limit ordinals p of course we define B  =\\ _  B . This completes the
~ [l        ^rï</«      a ^

inductive definition of the B  . If we define At to be the set of all Y such that

for each p < o,  ((Y) n Bß+x)\Bß f 0 implies Bß+i ç (Y) + Bß ,

then 3? will be a member of 3§(M) and 3f' = 3f\A.   This completes the
verification of (b).

(c) It is obvious from the definition that SA is closed under unions of chains.
(d) In fact, we prove by induction on v that given Y G 3? and a countable

S ç Mv , there exists Y' gSA such that Y ç Y', S ç (Y') and |F'| < |F| + K0 .
Suppose that this has been proved for all v < y.

Consider first the case when y is a limit ordinal; then each element of S
belongs to Mv for some v < y . Let /: co —► S be an enumeration of S. Using
the inductive hypothesis, define recursively  Yn G SA so that  YQ = Y,   Yn ç
Yn+i>   ly„+.l < lrJ +V and fin) S (Yn+X). Then  Y' = \J„Yn contains S
and belongs to SA since 3f is closed under unions of chains.

Now suppose y = S + 1. We consider two subcases. First, if (Y) n Ms+X <f_
Ms, then by (6) Ms+X ç (Y) + Ms, so for each a G S there exists ya G (Y)
such that a-yn G Ms . Let S' = {a-y fa G S} ç M& . By inductive hypothesis,
there exists Y1 G SA containing Y and such that S' ç (Y1). Then also S ç (Y1)
since (Y) ç (Y1). Secondly, suppose (Y) <A Ms+X ç M¿. It suffices to show
that there exists Y' D Y such that | Y'\ < | Y\ + N0 and Ms+l C(Y') + MS, for
then we are reduced to the first subcase. Choose a countable subset G of Mâ+X
such that Ms+X = (G) + M& and (G) (1 Ms = (G n Mf ; this is possible since
M6+X/Ms is countably presented. By induction, there exists Y" g SA suchthat
Gf)Ms C (Y") and \Y"\ < |F| + n0. If (Y")nMô+x ± (Y")nM3, let Y' = Y";
by (6) this implies that Ms+X ç (Y1) + Ms . Otherwise let Y' = Y" U G.
It remains to show that this Y' belongs to A2A. So suppose that for some
p, there exist y G (Y"), g g (G) such that y + g g Mß+x\Mß; we must
show that M ! ç (Y1) + AI If p = ô, this is the case by construction.
If p > S + 1 , then g G Mâ+X Ç M , so y € Mß+x\Mß , and then since
Y" gSA , Mß+X ç (Y") + MßC (Y1) + Mß . Finally, if p < ô, y + g G Ms ,
so y G Ms+X . But then y G Ms and hence g G (G) D Ms = (Gn Mf ç (Y").
Therefore y + g G (Y"), and we are done since Y" belongs to 3?.

(e) First of all, we claim that if %?' = 3A\A and if we are given a chain (7) up
to A which determines Sf' as in (8), then (7) can be extended to a chain up to
M which determines SA. Indeed, if (5) is the chain which demonstrates that
AC' = 3f\A (so that A = M¡ and (5') determines 3f'), then one can easily
check that the chain

B0<       <Bp = A<Mfi+x<       <Mx = M

determines Sf. Now, using this claim, one can inductively define a continuous
well-ordered chain B0 <   •   < B ( < •      so that for all v < x, Mv = B.. for
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some a(v) and Bn < ■ ■ ■ < B . , = M   determines 3A . This chain then shows
v      ' U (At\V) V ¡A

that \J„<TMx belongs to AT, and determines 3f, as described in (e).   D

Notice that Theorem 10 holds if in condition (d), N0 is replaced by an infinite
cardinal number p . If JA is a set of //-presented modules and Tv is defined
as above for this AV , then Theorem 11 remains valid.

3. Proof of Theorem A

We are now ready to prove Theorem A stated in the Introduction.
First, the sufficiency of the condition is clear in view of [El, p. 27].
To verify necessity, we apply induction on the cardinality k of a set of

generators of the Baer module B . In case k < N0, there is nothing to prove.
Thus let k > K, , and assume the claim is true for Baer modules with fewer
than k generators.

Case 1. k is a regular cardinal. By Lemma 2, we have p.d. B < 1 , so B has
a tight system [FS, p. 84]. This is a collection AT of submodules of B such
that (a) 0, B G AT ; (h) AT is closed under unions of chains; (c) if Bt < B.
in AT, then p.d. Bj/Bj < 1 ; (d) if Bf g T and A is a countable subset of
B, then there is a B] g T such that (Bi, A) < B; and B]/B¡ is countably
generated. Hence we derive at once that for B = M there is a sequence (1)
satisfying conditions (i)—(iii) in Lemma 9. For the application of Lemma 9,
choose Ga to be the direct sum of as many copies of ®0¿r€R R/Rr as the
minimal cardinality of generating systems of M X/Ma . If B is a Baer module,
then the set E defined in Lemma 9 is not stationary in k ; thus there is a club
C in k which fails to intersect E. Keeping only the M 's with a G C and
renaming the elements of C by the ordinals < k , we obtain a chain ( 1 ) such
that

Ext'(M   ,/Af , H ^,/H ) = 0
for all a < k . Because of the choice of Ga, Lemmas 4 and 5 guarantee that
M . , ¡M is a Baer module for each a < k . But all these M ,, ¡M are
less than k-generated; so the induction hypothesis applies, and we can insert
between Ma and Mit+X a continuous well-ordered ascending chain of submod-
ules with countably generated factors which are all Baer modules. If this is done
for each a < k , we finally get a chain as stated in the theorem.

Case 2. k is a singular cardinal. Let AV be the set of all countably generated
Baer Zv-modules and let AT = ATA as defined before Theorem 11. Since every
countably generated Baer module is countably presented by Corollary 7, The-
orem 11 applies and the prerequisites for Theorem 10 are satisfied. Now, let
AT be a tight system for B. For any k < X, let WK consist of all members
of AT which are k-generated. Then by inductive hypothesis, W C AT, and
by definition of a tight system, conditions (2') and (3') of Theorem 10 are
satisfied. Hence, by Theorem 10 B g AT , which is the desired conclusion.    D
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4. Proof of Theorem B

Recall that a domain R is called h-local [M] if ( 1 ) each nonzero prime ideal
of R is contained in only one maximal ideal of R, and (2) every nonzero
element of R is contained in only a finite number of maximal ideals of R.
As is shown by Matlis [M, p. 47], R /¡--local implies that every torsion R-
module T has a direct decomposition T = ®p Tp where Tp = Rp ® T is
the localization of T at the maximal ideal P of R (Tp may be called the P-
component of T). Let C(P) denote the complement R\P ; this is a semigroup
under multiplication. Notice that Tp is both C(/>)-torsion-free and C(P)-
divisible, while it is C(PX )-torsion for every maximal ideal Px / P. It is easily
seen that the annihilator of each element in Tp is contained in P. It follows
at once from (2) that if Pn (n = 1,2,...) are different maximal ideals of R
and Tp / 0, then the direct product f] Tp   is not a torsion Ä-module.

Proof. The proof of Theorem B start with the finite rank case. So assume
that R is an //-local Prüfer domain and B is a finite rank Baer module over
R. Let F be a free submodule of B such that B/F is torsion. Evidently,
for any maximal ideal P of R, the localization Bp = Rp <g> B has to be
a Baer module over the valuation domain Rp. By [EF], Bp is a free Rp-
module. The exact sequence 0 —> F —► B —> B/F —> 0 yields the exact sequence
0 — Fp -» Bp — (Ä/F)p -» 0 (recall that Rp is a flat Ä-module); thus LB/F)p
is a finitely presented torsion /^-module.

If (B/F)p ± 0, then there exists a torsion Zip-module Tp such that we have
Extjj ((B/F)p, Tp) ¿0. Hence Extj^/i/F),,, F,,) / 0 as well. If Px ¿ P2,
then ExtR((B/F)p , Tp) = 0 since the first module is bounded C(F2)-torsion,
while the second is C(F2)-torsion-free and C(P2)-divisible. Putting T = ® Tp ,
we have

Ext^/J/F , T) = J] Ext¡,((fl/F),,, 7» ,

where the Pth component is a torsion /v^-module. By the remark in the last
but one paragraph, the last product is not a torsion Ä-module unless almost all
components vanish.

From the exact sequence 0 —» F —> B —► B/F —> 0 we obtain the exact
sequence

HomR(F, T) -» Ext^(ß/F, F) -♦ Ext],(5, T) = 0.

Here the first module is torsion, so the second is likewise torsion. But as we
saw, this can happen only if B/F has but finitely many nonzero F-components.
Each F-component being finitely generated over R as well, we argue that B
is finitely generated. Consequently, B—as a finitely generated torsion-free R-
module—is projective.

In view of Theorem A, in order to complete the proof of Theorem B, it
clearly suffices to prove that over an /«--local Prüfer domain R , a Baer module

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BAER MODULES OVER DOMAINS 557

B of countably infinite rank is projective. Evidently, such a B is the union
of a countable ascending chain 0 = BQ < Bx < ■■■ < Bn < ■■ ■ of submodules
where, for each n, Bn has rank n and B/Bn is torsion-free. R being a
Prüfer domain, the last property implies Bn pure in B. By Corollary 8, each
Bn is a Baer module and thus finitely generated projective, as shown above.
Bn+X/Bn as a finitely generated torsion-free module is projective. This means
that Bn is a summand of Bn+X , i.e., Bn+X = Bn® Cn for some necessarily
projective submodule Cn of Bn+X . Therefore B is the direct sum of the Cn 's,
so projective, completing the proof of Theorem B.   D

5.  INDEPENDENCE RESULTS

We want to consider whether Lemma 5 can be improved. Specifically, letting

w   O^reR

is it the case that B is a Baer module if ExtR(B, TQ) = 0? We know, by
Lemma 5, that the answer is "yes" if B is countably generated. It turns out
that in general, the answer to this question is independent of ZFC ; this is a
consequence of Theorems C and 14. (For R = Z, these are proved in [E2].)

Proof of Theorem C. This is by induction on the minimal cardinality ic of a set
of generators for M. If k = K0 , this is Lemma 5. So suppose k is uncountable,
and the theorem has been proved for modules which can be generated by fewer
than k generators.

Case 1. k is regular. As in the proof of Theorem A, the existence of a tight
system for M implies that there is a sequence (1) satisfying conditions (i)-(iii)
of Lemma 9. Then by the proof of Theorem 1.5 of [E2], there is a club C
in k so that for v G C, ExtR(Mß/Mv , Tf) = 0 for all p > v . But then, by
induction, for every torsion module T and all p > v g C, ExtR(M IMv, T) =

0. Hence, by [El, p. 27], ExiJ^tVY, F) = 0.
Case 2. k is singular. Since p.d. M < 1 , M has a tight system AT . For every
NgT , Ext^(A,F0) = 0 (cf. the proof of Lemma 3 in [EF]). If A e. T is less
than k generated, A is a Baer module, by induction, and hence satisfies the
conclusion of Theorem A. Then by the proof of the singular case of Theorem A,
M satisfies the conclusion of Theorem A, and is therefore a Baer module.   D

Now we turn to using the Proper Forcing Axiom to prove the opposite of
what we proved in the last theorem.

Recall that a ring R is called left perfect if every flat left /v-module is pro-
jective. If R is not left perfect, than there is an infinite descending sequence
of principal right ideals

(11) rQR>r0rxR>-   >rQrx   ■ rnR>   ■   .
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Let F be the free module on a basis {gn\n G co} and K the free submodule
with basis {gn - rngn+x\n G co}. Set J = F/K. The following is proved in
[EM2, Theorem VII. 1.3]; see also [EMI, p. 97].

Proposition 12. If R is a ring which is not left perfect, and if E is a stationary
subset of co, consisting of limit ordinals, then there is a module M which is not
projective and which is the union of a continuous well-ordered ascending chain

M0 < Mx < ■ ■ ■ < Mv < ■ ■ ■       (v < tox)

where each Mv is free of countable rank and for all v :p, M /Mv is free if

v £ E, and M IMv is isomorphic to J © /?(w) if v gE .

If R is a domain which is not a field, then R is not perfect, since the quotient
field Q of R is flat, but not projective. If J is as defined above, then / is a
countably generated torsion-free /v-module of rank 1. Noticing that it has a set
of generators {gfn G to} such that rngn+[ = gn where rn ^ 0 are nonunits in
R, the proof of the next lemma is the same as the proof of Lemma 6 in [EF].

Lemma 13. If R is a domain, then J has projective dimension 1 and is not a
Baer module,    o

For the Proper Forcing Axiom (PFA), see [Me2].

Theorem 14. Assume PFA. Let R be a countable domain which is not a field.
Then there is an Wx-generated module M of p.d. < 1, such that M is not a
Baer module, but ExtR(M, Tf¡ = 0.
Proof. Choose E c a>x which is stationary and costationary, and let M be
as in Proposition 12. Then M has projective dimension < 1 by Auslander's
Lemma [FS, p. 73], since each quotient Mi/+X/Mi/ has p.d. < 1 . But M is not
Baer by Lemma 9 (or Theorem A), since for v G E and p > v , M ¡Mv is not
Baer, by Lemma 13. So it remains to prove that ExtR(M , Tf = 0 . This proof
is essentially the same as the one in [Mel, pp. 274-276]. Given a short exact
sequence

0^F0^//iM-^0,

let P = {d\8: Mv+X —► H is a splitting of (n\n~x[Mv+x\) for some v < cof .
Partially order P by 0, < 02 if and only if 02 ç dx . For x G cox , let

F>T = {0 6P|Mr+1 Cdom0}.

It is easy to see that Dr is dense in P, i.e., for every ip GP, there exists 0 G Dx
such that 0 < \p. If P is proper, then PFA says that there is a directed set
G ç P (i.e., if «//,, ip2 G G, there is 0 e G so that 0 < i//() such that for all
t ,  DxnG f0. Then (j G is the desired splitting:  M — B .

So it remains to prove that P is proper. Choose k so that P and AT(P) g
H(k) (the set of sets of hereditary size < k). We need to prove that there is
a club W of countable elementary substructures AV of H(k) such that for all
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yTef and 0 G PC\JA, there is q < 0 such that q is Jr -generic, i.e., for every
D G AV which is a dense subset of P and every r < q there are r' g D DAV
and p G P such that p < r and p < r'.

Let i7 consist of all countable elementary substructures AV of //(«:) such
that JA = Uigtü-^/ wnere -^ is an elementary substructure of AVi+x and of AV,
wx P\J/"i is an ordinal < cox <~íJ/'¡+x and cox A\AVi <£ E . Moreover we require that
P, M, and {Mfv g co,} belong to ^. Given /ef and 0 e P n J^, let
y^ (/' G co) be as above, and define the ordinals ßi = cox AiJA, ß = cox OAV . We
shall consider the case when ß g E, for it is the harder case. Let {Dfn G to}
be an enumeration of the dense subsets of P which belong to JA . Without loss
of generality we can assume Dn G AVn and 0 6 JAQ. Let Gn = Mß . We can
inductively define An, Bn so that

G„®A„ = Mß+x;    Gn®Bn = Gn+x;    An+x®Bn=An.

In fact, if An, Bn x have been chosen, let Bn= AnV\ Gn+X ; since ßn £
E, Gn+X is a summand of Mß+X, thus Bn is a summand of Mß+X and hence
of An . Consequently, An = An+x®Bn for some An+X . Let {gt\i G co} be such
that Mß+X = (Mß U {g(.|¿ e co}), where without loss of generality, gnG An. Let
7T0 be the projection of Mß+X on Bn relative to Gn © An+X . Now, exactly as
on p. 276 of [Mel], we can define q = p : Mß+X —> H, which is an yT-generic
element of P extending 0 .   D

Added in proof. It is proved in On Whitehead modules by P. Eklof and S. Shelah
(to appear in J. Algebra) that it is independent of ZFC + GCH whether there
is a single test module for being Baer of any cardinality.
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