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Abstract: Baeyer±Villiger monooxygenases
(BVMOs) are flavoenzymes that catalyze a remark-
ably wide variety of oxidative reactions such as regio-
and enantioselective Baeyer±Villiger oxidations and
sulfoxidations. Several of these conversions are diffi-
cult to achieve using chemical approaches. Due to
their selectivity and catalytic efficiency, BVMOs are
highly valuable biocatalysts for the synthesis of a
broad range of fine chemicals. For a long time, only
one member of this class of flavin-containing bio-
catalysts had been cloned and overexpressed which
has limited their application for synthetic processes.
Recently a number of new genes that encode BVMOs
have been sequenced and overexpressed. In this
paper the biocatalytic properties of recently cloned
BVMOs are reviewed. Furthermore, the potential for
obtaining novel BVMOs from sequenced genomes
will be discussed.
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1 Introduction

The conversion of ketones into esters or cyclic ketones
into lactones was discoveredmore than a century ago by
Adolf von Baeyer and Victor Villiger.[1] In this reaction,
the ketone is attacked by a nucleophilic peroxy acid to
form the so-called tetrahedral −Criegee intermediate×
(Scheme 1).[2] This unstable species undergoes a rear-
rangement via expulsion of a carboxylate ion and
migration of a carbon-carbon bond, yielding the ester
and the acid. In general, the most substituted carbon
center migrates with retention of configuration. Steric,
conformational, and electronic factors have influence
on the rate of rearrangement and the migration
preferences. Migration is also influenced by the type of
peroxy acid used.[3] These features make the Baeyer±
Villiger reaction an interesting tool for the synthesis of
lactones and esters.

Unfortunately, the general use of peracids like 3-
chloroperoxybenzoic acid or peroxotrifluoroacetic acid
as reagents and the use of solvents have several

Scheme 1.Mechanism of the Baeyer±Villiger oxidation by
peracids.
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disadvantages that do not match with the principles of
green chemistry.[4] Firstly, due to the shock-sensitivity
and explosive character of peracids, large-scale reac-
tions increase the potential risk for accidents. Secondly,
the use of halogenated reagents and solvents is environ-
mentally unfriendly. Thirdly, peracids are powerful
oxidative agents. Therefore laborious protection and
deprotection steps are needed in synthesis in order to
prevent by-product formation.

To avoid the use of peracids, transition metal cata-
lysts[5] and organocatalytic compounds[6±8] have been
developed which use hydrogen peroxide or oxygen as
milder oxidant for the Baeyer±Villiger reaction. An
even more −green× method has recently been applied by
Bolm et al. as they used compressed CO2 as a solvent,
establishing Baeyer±Villiger oxidation of various ke-
tones using oxygen as primary oxidant and benzalde-
hyde or pivalaldehyde as co-reductant.[9] Despite these
efforts, the development of biocatalytic processes would
be highly attractive for performing enantio- and regio-
selective Baeyer±Villiger oxidations in an environmen-
tally benign way.
The first example of a biological Baeyer±Villiger

reaction dealt with the biotransformation of steroids by
fungi andwas discovered in 1948.[10] Since then, Baeyer±
Villiger oxidation steps have been found in biosynthetic
pathways in many different organisms, e.g., aflatoxin
synthesis in fungi,[11] synthesis of iridoids and steroids in
plants,[12,13] and toxin synthesis in shellfish.[14] Baeyer±
Villiger oxidation steps have also been frequently
observed in microbial degradation pathways. Micro-
organisms have been found to use Baeyer±Villiger
monooxygenases (BVMOs) in order to grow on ali-
phatic methyl ketones,[15,16] alicyclic hydrocarbons,[17±19]

aromatic compounds,[20±27] and terpenes.[28,29]

All BVMOs characterized to date are NAD(P)H-
dependent flavoproteins. They incorporate one atom of
molecular oxygen into the substrate and the other atom
is reduced to water. BVMOs can be classified in two
groups: Type I BVMOs contain flavin adenine dinu-
cleotide (FAD) as cofactor, use NADPH as source for
electrons and consist of identical subunits, while Type II
BVMOs contain flavin mononucleotide (FMN) as
cofactor, use NADH as electron donor and are com-
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posed of �2� trimers.[30] So far, all BVMOs that have
been cloned could be classified as Type I enzymes while
no Type II BVMO sequence is known. Unfortunately,
there are no crystal structures available of any BVMO
that would disclose the structural features of this class of
enzymes.
Since their discovery much research has been per-

formed to explore the biocatalytic properties of
BVMOs, either using whole-cells or isolated enzymes.
BVMOs are able to catalyze a remarkable wide variety
of oxidative reactions such as regio- and enantioselec-
tive Baeyer±Villiger oxidations and sulfoxidations, re-
actions which are difficult, if not impossible, to be
achieved using chemical approaches (see reviews[30±35]).
However, until a few years ago only one BVMO,
cyclohexanone monooxygenase (CHMO; EC
1.14.13.22), had been cloned and overexpressed, which
limited application of this type of biocatalyst for
synthetic processes.
In this review we will focus on the biocatalytic

properties of newly identified and characterized Type I
BVMOs. Except for the discovery of several CHMO
homologues, a number of BVMOs exhibiting novel
substrate profiles have been characterized. As all these
newly reported BVMOs share sequence homology with
CHMO, some recent findings concerning this well-
known biocatalyst will be discussed first. Then, we will
summarize the biocatalytic properties of cyclopentanone
monooxygenase (CPMO; EC 1.14.13.16),[36] cyclodode-
canone monooxygenase (CDMO; EC 1.14.13.x),[37] ste-
roid monooxygenase (SMO; EC 1.14.13.54),[38] and 4-

hydroxyacetophenone monooxygenase (HAPMO;
EC 1.14.13.x).[39] Special attention will be given to
HAPMO: a BVMO that is primarily active with
aromatic compounds. In addition, we will emphasize
the potential of novel Type I BVMOs which can be
obtained by in silico screening of sequenced genomes.
Finally, wewill discuss other sources forBaeyer±Villiger
oxidation biocatalysts.

2 Available Recombinant Baeyer±Villiger
Monooxygenases

2.1 Cyclohexanone Monooxygenase (CHMO)

CHMO from Acinetobacter NCIB 9871 is the most
studied Type I BVMO regarding its biocatalytic proper-
ties and for a long time this enzymewas the only BVMO
of which the gene had been cloned.[40] The CHMO
sequence deposited later by Iwaki et al.[41] differed from
that originally reported by Chen et al. at several
nucleotide positions.[42] Recent mass spectrometry ex-
periments proved that the sequence deposited by Iwaki
et al. is the correct CHMO sequence.[43] The CHMO
gene encodes a 60.9 kDa protein appearing asmonomer
upon purification (Table 1). Recently, six other cyclo-
hexanone monooxygenase genes were identified.[44±46]

All these newly identified CHMOs show significant
protein sequence identity with CHMO from Acineto-
bacterNCIMB 9871.While activity with cyclohexanone

Table 1. Biochemical properties of the characterized Type I BVMOs.

Enzyme
year of cloning

Catalyzed reaction Spec. Act.
[U/mg][a]

KM,S
[�M]

KM,NADPH
[�M]

Subunit MW
[kDa]

Ref.

CHMO
1988

30 4 20 60.9 [47]

CPMO
2002

4.3 �1 �3 62.1 [36, 127]

CDMO
2001

n.d. n.d. n.d. 67.5 [37]

SMO
1999

14 55 0.44 60.1 [38]

HAPMO
2001

10.5 9.2 64 71.9 [39, 89]

[a] 1 Unit is defined as the amount of enzyme that oxidizes 1 �mol NADPH/min.
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has been demonstrated for these novel CHMOs, their
biocatalytic potential has not yet been fully explored.
The catalytic mechanism of CHMO has been studied

with rapid reaction techniques and proceeds as fol-
lows.[47,48] First, the protein-bound FAD is reduced by
NADPH, generating the reduced enzyme-NADP�

complex. In the next step, this binary complex reacts
with oxygen to form a flavin-peroxide species which
undergoes a nucleophilic attack on the carbonyl group
of the ketone substrate. The Criegee intermediate thus
formed rearranges to the ester product with concom-
itant formation of a flavin-hydroxide. Finally, water is
eliminated from the latter species to reform oxidized
FAD and release of NADP� completes the catalytic
cycle (Scheme 2). The ambivalent character of the
peroxyflavin is thought to account for the capability of
CHMO to catalyze the conversion of both electron-rich
and electron-deficient substrates.[31] The electrophilic
hydroperoxyflavin catalyzes asymmetric sulfoxidation
of various thioethers,[49] oxidation of amines,[50,51] and
oxidation of selenides[31] (Scheme 2). The nucleophilic
peroxyflavin catalyzes not only Baeyer±Villiger reac-
tions but is also responsible for the observed boron
oxidation reactions.[52] The recently reported CHMO-
mediated asymmetric epoxidation reactions were also
suggested to proceed via the nucleophilic peroxyflavin
species[53], although it has been proposed that the
electrophilic hydroperoxyflavin could catalyze epoxi-
dation reactions.[52]

Numerous experiments, either with (engineered)
whole cells or isolated enzyme, have shown that
CHMO is a useful biocatalyst for the synthesis of

interesting compounds like (bicyclic) lactones,[54] vari-
ous sulfoxides,[32,49] cyclic sulfates,[55] and thiosulfi-
nates.[56] CHMO displays a remarkably broad substrate
specificity allowing conversion of a large variety of
ketones and heteroatom-containing compounds. For a
number of reactions, the enzyme is highly enantioselec-
tive. Recently, it was shown that CHMO can even be
used for performing a dynamic kinetic resolution
process[57] complying to the need of transformations
with (theoretically) 100% yield and 100%ee.[58] In total,
more than 100 substrates have been reported for
CHMO. A comprehensive overview on reported
CHMO-mediated Baeyer±Villiger reactions was re-
cently published by Mihovilovic and coworkers.[35]

Because CHMO is strictly NADPH-dependent, the
use of isolated enzyme for large-scale synthesis would
require an efficient coenzyme recycling system, as
NADPH is too expensive to use in stoichiometric
amounts.[59] A well-known NADPH recycling system is
the glucose 6-phosphate/glucose 6-phosphate dehydro-
genase couple, but the high cost of glucose 6-phosphate
is a disadvantage. A cheaper alternative is the formate/
formate dehydrogenase system. Two formate dehydro-
genases from Pseudomonas sp. 110[60] and Saccharomy-
ces cerevisiae[61] have been engineered from NAD�

towardsNADP� preferring enzymes. ThePseudomonas
enzyme has been used in combination with CHMO-
catalyzed conversions.[62,63] Zambianchi et al. tested
different NADPH regeneration systems and found
optimal results with 2-propanol/alcohol dehydrogenase
from Thermoanaerobium brockii.[64] An alternative
approach for coenzyme recycling is represented by

Scheme 2.Mechanism of flavin-dependent Baeyer±Villiger monooxygenases mediated oxidation reactions.
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electrochemical regeneration of coenzymes.[65] For ex-
ample, the pentamethylcyclopentadienyl-rhodium-bi-
pyridine complex [Cp*Rh(bpy)(H2O)]2� is reduced by
electrons from the cathode and takes up a proton
yielding [Cp*Rh(bpy)H]� which acts as a hydride
transfer reagent on NAD(P)�. This system has success-
fully been used for synthetic application of a NADH-
dependent monooxygenase.[66,67]

Although isolated enzymes have certain advantages,
whole cell conversions with oxygenases are attractive
for several reasons.[68] One major advantage is the
efficient intracellular coenzyme regeneration. Further-
more, in the case of CHMO, heterologous expression
circumvents the problem of the lactone hydrolase
activity present in the wild-type strain and by this,
handling of the pathogenic Acinetobacter strain can be
avoided. With this in mind, two different Escherichia
coli strains have been engineered to overexpress
CHMO[49,69] and expression in yeast has also been
established.[42,70] Whole cell conversions using recombi-
nant CHMO-containingE. coli cells has been optimized
and applied by Walton and Stewart,[71] who efficiently
converted cyclohexanone into �-caprolactone. Further-
more, Doig et al.,[72] in collaboration with partners from
the chemical industry, scaled-up CHMO-mediated
whole cell conversion of the ketone bicyclohept-2-en-
6-one (Figure 1, compound 1). The obtained 2-oxabicy-
clooct-6-en-3-one lactones are valuable intermediates
for synthesis of prostaglandins.[73,74]

2.2 Cyclopentanone Monooxygenase (CPMO)

CPMO was purified in 1976 by Griffin et al. from
Comamonas (previously Pseudomonas) sp. NCIMB
9872 growing on cyclopentanone.[18] Last year a gene
cluster involved in cyclopentanone catabolism of this
microorganism was characterized, and the gene encod-
ing CPMO was cloned and expressed in E. coli.[36] In
contrast with CHMO, being a monomer, CPMO ap-
pears as a tetramer upon purification. The subunit
molecular mass is 62.1 kDa (Table 1).
Most biocatalytic studies with CPMO have been

performedwithwhole cells.[75±77] Initial tests showed that
the enzyme prefers C4 to C8 ketones and norbornanone
(2) as substrates.[18] These compounds are also oxidized
by CHMO indicating that the substrate specificities of
these two BVMOs overlap (Figure 1). Although several
substrates can be converted by bothCPMOandCHMO,
the enantioselectivity can differ. For example, the
prochiral compound 4-methylcyclohexanone (3, R�
CH3) is converted by CHMO to the (S)-lactone whereas
CPMOproduces the (R)-lactone.[36] Another example is
the conversion of racemic 2-substituted cyclopenta-
nones (4). While the CPMO-catalyzed conversions of
these cyclopentanones are non-enantioselective,[36]

CHMO shows high enantioselectivity with these com-
pounds, enabling kinetic resolution.[78] On the other
hand, successful enantioselective oxidation of an unsa-
turated cyclic ketone, 5-hexyl-2-cyclopentenone and of

Figure 1. Some representative substrates for cyclohexanone monooxygenase, cyclopentanone monooxygenase and 4-
hydroxyacetophenone monooxygenase highlighting the overlapping substrate specificities. Not all the substrates have been
tested for every enzyme.
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2-(2�-acetoxyethyl)cyclohexanones was reported for
CPMO.[76] These conversions are of interest because
many functionalized chiral �-valerolactones are bio-
logically active compounds and valuable intermediates
in natural product synthesis.[79]

CPMO is also able to catalyze oxidation of the
prochiral fused system (5) forming the opposite enan-
tiomer to that obtained with CHMO.[35,80] Comparison
of CHMO and CPMO also showed that several CPMO
substrates are not accepted by CHMO. While the non-
conjugated indan-2-one (6) is converted by bothCHMO
andCPMO, indan-1-one (7) and 5-methoxyindan-1-one
(8) could only be converted by CPMO.[36] The same
result was recently found by Furstoss and coworkers
who tested various substituted 1-indanones with whole
cells expressing CHMO, CPMO or HAPMO. Only
CPMO-expressing cells converted some of the tested
indanones.[81] Also 4-methyl-4-n-propylcyclohexanone
(9) is only a substrate for CPMO.[36] This clearly
indicates that the substrate acceptance of CPMO
broadens the scope of Baeyer±Villiger reactions that
can be performed using recombinant enzymes.

2.3 Cyclododecanone Monooxygenase (CDMO)

Alicyclic hydrocarbons, like cyclopentane, cyclohexane
and cyclododecane, are major components of petrole-
um. Baeyer±Villiger oxidation is one of the first steps in
the microbial degradation of these compounds.[82] In
1999, the first cyclododecanone monooxygenase
(CDMO) from Rhodococcus ruber CD4 was purified
and characterized.[17] From another strain,Rhodococcus
ruber SC1, a gene cluster involved in cyclododecanone
oxidation has been identified and the gene encoding
CDMOwas cloned and expressed inE. coli.[37] From the
protein sequence it can be deduced that CDMO from
R. ruber SC1 is a 67.5 kDa protein (Table 1). Expression
of CDMO enabled the use of whole cells for CDMO-
mediated bioconversions. These experiments showed
that CDMOefficiently converts C11 ± C15 cyclic ketones.
Insignificant conversion was observed with C6 and C10
cyclic ketones and the enzyme was inactive towards C7
and C8 cyclic ketones.[37] By accepting bulky aliphatic
cyclic ketones, compounds that are not accepted by
CPMO and CHMO, this novel BVMO can be of great
biocatalytic value. For example, CDMO is a suitable
biocatalyst to produce lauryl lactone (Table 1), a com-
pound for which a chemical synthesis route is not
known.[83]

2.4 Steroid Monooxygenase (SMO)

As mentioned in the introduction, the first discovered
BVMO activities involved microbial conversion of
steroids[10]. Two steroid monooxygenases performing

Baeyer±Villiger reactions have been purified and char-
acterized.[84,85] These SMOs from Cylindrocarpon radi-
cicola and Rhodococcus rhodochrous have different
substrate specificities. Whereas the Rhodococcus en-
zyme only catalyzes the esterification of the progester-
one side-chain towards testosterone acetate (Ta-
ble 1),[84] the fungal enzyme also catalyzes oxidative
lactonization of androstenedione to testololactone.[84] A
recombinant expression system for R. rhodochrous
SMO has been constructed in E. coli.[38] This resulted
in a 40-fold higher protein production compared to the
level in R. rhodochrous. Some biochemical character-
istics of SMO are listed in Table 1. Because no further
biocatalytic studies have been reported for this BVMO,
it would be worthwhile to test other substrates. While
SMO has evolved to catalyze oxidations of steroids, it
might also be able to convert compounds unrelated to its
physiological substrate as has been observed for
CHMO. Such promiscuity in substrate specificity has
also been found for another flavoprotein acting on
steroids: cholesterol oxidase from Rhodococcus eryth-
ropolis. This FAD-containing oxidase was found to be
able to performenantioselective oxidations of a range of
secondary alcohols.[86]

2.5 4-Hydroxyacetophenone Monooxygenase
(HAPMO)

Microbial Baeyer±Villiger oxidation of aromatic com-
pounds was first reported in themid 1970×s.[22] Several of
these aromatic degradation pathways involvingBaeyer±
Villiger oxidation have been elucidated which include
the catabolic routes for acetophenones,[21±24] 1-phenyl-
ethanol,[23] 4-ethylphenol,[20] and fluorene.[25] The first
purification of a BVMO active on aromatic compounds
was only described in 1999.[87] This enzyme, 4-hydroxy-
acetophenonemonooxygenase (HAPMO),was isolated
from Pseudomonas fluorescens ACB[24] growing on 4-
hydroxyacetophenone (Table 1). Recently, also a HAP-
MO homologue from Pseudomonas putida JD1, an
organism growing on 4-ethylphenol which is degraded
via 4-hydroxyacetophenone, has been purified and
characterized.[88] HAPMO from P. fluorescens ACB is
a homodimer of 145 kDa with each subunit containing a
tightly non-covalently bound FAD. In P. fluorescens
ACB, the enzymeoxidizes 4-hydroxyacetophenone to 4-
hydroxyphenyl acetate. The enzyme has a strong
preference for NADPHover NADH, as has been found
for all BVMOs described above, and is optimally active
around pH 8. In 2001, the HAPMO encoding gene
(hapE) was cloned which allowed overexpression of the
recombinant biocatalyst in E. coli.[39] The hapE gene is
the fifth gene in an operon encoding the genes involved
in the degradation of 4-hydroxyacetophenone in P. flu-
orescens ACB. The fourth gene (hapD) encodes the 4-
hydroxyphenyl acetate hydrolase.[39]
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Initially, it was found that the substrate specificity of
HAPMO covers a wide range of aryl ketones with a
preference for compounds bearing an electron-donating
substituent at the para-position of the aromatic ring.[39]

Further studies revealed thatHAPMO is also capable of
catalyzing the Baeyer±Villiger oxidation of a wide
variety of other ketones including several heteroaro-
matic and aliphatic compounds (Figure 1), while also
some sulfides were shown to be readily converted.[89]

Being the first recombinant BVMO that acts primarily
on aromatic compounds, HAPMO represents a promis-
ing biocatalytic tool as will be exemplified below.
Chemical synthesis of a phenol- or catechol-contain-

ing compound often requires protection of the hydroxy
group(s) to prevent oxidation reactions. For this, ethers
are the most widely used protective groups, while
esterification is an important alternative.[90] The HAP-
MO-catalyzed conversion of ring-substituted aryl ke-
tones into their corresponding phenyl acetates provides
a biocatalytic alternative for the synthesis of protected
phenols and partially protected catechols (Scheme 3).[91]

Substituted catechols are valuable precursors for the
synthesis of pharmaceutical compounds.[92±94] Synthesis
of these compounds requires the use of purified enzyme
because with whole cells, the presence of a highly active
esterase in P. fluorescens ACB prevents the accumula-
tion of the desired products. Alternatively, E. coli cells
that overexpress HAPMO can be used. 19F NMR
studies showed that the rate of the HAPMO-mediated
conversion of 4-fluoracetophenones is optimal at pH 8
but that the fluorophenyl acetates are better stabilized
at pH 6.[91]

HAPMO is also able to perform a Baeyer±Villiger
oxidation of 4-hydroxybenzaldehyde. Only the ester is
formed indicating that, as observed for the conversion of
aryl ketones, the aromatic ring is the migrating group.
Enzymatic or chemical hydrolysis of the substituted
phenyl acetates formed by HAPMO oxidation of aryl
ketones or benzaldehydes gives access to substituted
phenols and dihydroxybenzenes. This biocatalytic route
can be exploited for producing 18F-fluorophenols from
the corresponding 18F-labeled aldehyde or ketone
precursors. These fluorinated phenols find applications
as radiotracers for positron emission tomography
(PET).[95] Substituted phenols obtained by chemical
Baeyer±Villiger oxidation of aromatic aldehydes can
also be used as building blocks for the synthesis of
coumestans, which are biologically active flavonoids.[96]

Furthermore, hydrolysis of 4-hydroxyphenyl acetate

affords hydroquinone which is, like other dihydroxy-
benzenes, an important intermediate of organic syn-
thesis.[97] Because chemical methods to synthesize
hydroquinone use volatile and carcinogenic benzene
as starting material, there is a growing interest in
alternative routes to produce hydroquinone.[98]

It has also been found that HAPMO can be used to
produce chiral sulfoxides. Enantiomerically pure sulf-
oxides are of high interest for synthetic chemists as they
influence the stereoselectivity of reactions at nearby
centers.[99] HAPMO performs highly enantioselective
oxidation of methyl phenyl sulfide (10) and methyl p-
tolyl sulfide.[89] Interestingly, compared to CHMO and
CPMO,HAPMO shows a better performance inmethyl
p-tolyl sulfide oxidation (Table 2).
In contrast to CHMO,[74] HAPMO displays no regio-

selectivity during conversion of racemic bicyclohept-2-
en-6-one (1). Low ee values have been obtained for the
different lactones. On the other hand, HAPMO prefers
(1R,5S) bicyclohept-2-en-6-one above the (1S,5R) enan-
tiomer exhibiting anE-value of 20. Therefore, HAPMO
can be used for a kinetic resolution to obtain the (1S,5R)
enantiomer.[89]

As discussed above for CHMO, several strategies of
cofactor regeneration can be employed. In biocatalytic
applications using isolated enzymes, recycling is com-
monly achieved by using a dehydrogenase. Unfortu-
nately, most of these dehydrogenases are only active
with NADH. Clearly, a BVMO that would accept
NADH as electron donor would be highly interesting
for isolated enzyme applications. Furthermore, even
thoughwhole cells can beused to circumvent the need of
a coenzyme recycling system, the rate of cellular
NADPH recycling might still limit efficient catalysis.
A change in specificity towards NADH could also be
beneficial for biocatalytic applications using whole cells
as NADH levels in the cell are relatively high.[100,101] For
several flavoproteins a switch in coenzyme specificity
has been achieved by enzyme engineering[102±104] but no
Baeyer±Villiger monooxygenase has been engineered
for this purpose. Recently, we have identified several
amino acid residues of HAPMO that are involved in the

Scheme 3. Biocatalytic production of protected catechols
using HAPMO.

Table 2. Enantiomeric excess of sulfoxides produced by
different BVMOs.

Substrate HAPMO[89] CHMO[128] CPMO[a],[77]

methyl phenyl sulfide

�99% (S) 99% (R) 100% (S)

methyl p-tolyl sulfide

�99% (S) 37% (S) 84% (S)

[a] Experiments performed with whole cells.
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recognition of the 2�-phosphate moiety of NADPH. By
changing one of these residues a shift in coenzyme
preference towardNADH could be established. (manu-
script in preparation,[105]) However, the observed
NADH affinity of the engineered HAPMO variant is
still not satisfactory. Clearly, more residues need to be
changed to improve the NADH specificity in terms of
catalytic efficiency. For engineering a more effective
NADH-specific BVMO, a crystal structure of HAPMO
or any other homologous BVMO would be desirable.

3 Genome Harvesting of Novel Baeyer±
Villiger Monooxygenases

As described above, the recent effort to discover new
Baeyer±Villiger biocatalysts has resulted in the identi-
fication and sequencing of a number of BVMO genes.
Without exception, all novel BVMOs could be classified
as Type IBVMOsbased on their biochemical properties
(intracellular, soluble, FAD-containing, NADPH-de-
pendent, specific activities around 10 U mg�1, subunits
of typically ~60 kDa) (Table 1). In addition, the se-
quence information of these novel BVMOs allowed a
sequence comparison study of Type I BVMOs.[106] This
revealed thatType IBVMOsarepart of a superfamily of
sequence-related flavin-dependent monooxygenases.
Enzymes belonging to this flavoprotein superfamily
typically contain two dinucleotide binding sequence
motifs (GxGxxG/A) which are involved in binding of
the cofactor FAD and the coenzyme NAD(P)H. All
characterized members of this flavoprotein superfamily
have indeed been shown to be dependent on FAD and
require NAD(P)H as electron donor. Based on se-
quence homology, three monooxygenase subfamilies
can be recognized within this novel superfamily: (1) the
so-called flavin-monooxygenase (FMO) family mainly
consisting of heteroatom-oxidizing monooxygenases
from eukaryotic origin, (2) a family of bacterial amine-
hydroxylating monooxygenases (NMOs), and (3) a
family of Type I BVMOs. Interestingly, sequences
belonging to the BVMO subfamily could specifically
be recognized by a strictly conserved sequence motif
(FxGxxxHxxxW(P/D))which is not present inmembers
from the other two subfamilies.[106] A site-directed
mutagenesis study of HAPMO showed that residues
conserved within this sequence motif are critically
involved in catalysis. Replacing the strictly conserved
histidine in HAPMO by an alanine resulted in an
inactive protein while mutagenesis of the conserved
tryptophan resulted in impaired protein folding.[106]

Except for the identification of residues that are of
importance to catalyze a Baeyer±Villiger reaction, the
BVMO-specific fingerprint sequence also helps to
identify new BVMO sequences and thereby allows
efficient harvesting of novel biocatalysts from se-
quenced genomes. For example, genome sequences

can be searched for the presence of Type I BVMO
sequences. By performing a pattern-hit search via the
PEDANT database (http://pedant.gsf.de), each availa-
ble genome can be probed for the occurrence of BVMO
genes (Table 3). Using this search tool we have found
that Type I BVMO genes are present in approximately
15%of all sequencedmicrobial genomes. The common-
ly used hosts for protein expression, E. coli and S. cer-
evisiae, do not contain any Type I BVMO gene. This
confirms the suitability of these microbial hosts for
recombinant BVMO production as they exhibit no
competingBVMOactivity. BVMOgenes are frequently
found in genomes from pathogenic bacteria including
Mycobacterium tuberculosis which contains 6 putative
BVMO sequences. One of these putative BVMOs has
recently been reported to be a FAD-containing mono-
oxygenase that is responsible for activation of antitu-
bercular drugs by catalyzing a sulfoxidation reaction.[107]

We have shown that this enzyme is also able to perform
Baeyer±Villiger oxidations, suggesting that it indeed
catalyzes a Baeyer-Villiger reaction in vivo (Fraaije
et al., manuscript in preparation). This is in line with the
observation that Mycobacteria catalyze a variety of
Baeyer±Villiger reactions.[108,109] Occurrence of BVMOs
is not restricted to bacteria as also some BVMO
sequences could be identified in genomes from eukary-
otic microorganisms like Aspergillus parasiticus. In line
with this, a Baeyer±Villiger oxidation step has been
observed in the biosynthesis of aflatoxin by this
fungus.[110] So far, no Type I BVMO has been found in
genome sequences fromArchaea. This can be explained
by the fact that Archaea live in extreme environments
were oxygen is often not available. Furthermore, no
BVMO could be identified in the available plant
genomes or the human genome.
To perform a sequence motif based trawl of multiple

genomes, the BVMO-identifying sequence motif can be
used for a pattern-hit initiated (PHI) BLAST search.[111]

With such an approach, protein sequences are retrieved
that share sequence similarity with known BVMO
sequences while they also contain the sequence motif.
The latter effectively prevents false hits excluding
members of the FMO orNMO families. A PHI-BLAST
search (http://www.ncbi.nlm.nih.gov/BLAST/) per-

Table 3. Occurrence of Type I BVMOs in some selected
microbial genomes.

Organism Total number
of genes

Number of Type I
BVMO genes

E. coli 4289 0
M. tuberculosis H37Rv 3924 6
M. leprae TN 1605 1
S. coelicolor A3(2) 7512 2
P. aeruginosa PAO1 5565 3
S. cerevisiae 6449 0
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formed on December 2nd 2002 yielded a set of 68
putative microbial BVMO sequences. This set of
sequences, including all cloned BVMOs described
above, mainly consisted of uncharacterized putative
BVMO genes. This indicates that a large pool of
unexplored BVMOs is available for biocatalytic explo-
ration.

4 Alternative Baeyer±Villiger Biocatalysts

Except for Type I and Type II BVMOs, a small number
of other enzymes has been shown to catalyze Baeyer±
Villiger reactions. One example is the conversion of
aromatic aldehydes into the corresponding formate
esters by a pig liver enzyme.[112] This enzyme was found
to belong to the above-mentioned FMO family and
therefore is related to Type I BVMOs.[106] As described
above, these FMOs share several properties with Type I
BVMOs. They contain FAD as redox cofactor, use
NADPH for activity, and are able to catalyze a multi-
tude of oxygenation reactions. Similar to BVMOs,
FMOs use the oxygenated flavin as the reactive species
during catalysis. In mammals FMOs are primarily
involved in converting amines and other heteroatom-
containing compounds and serve a role in detoxification
similar to cytochrome P450.[113] While Baeyer±Villiger
reactions have only been observed for an FMO from pig
liver, other FMOs might also be capable of catalyzing
Baeyer±Villiger reactions. A genome search using a
FMO specific fingerprint sequence[106] revealed that
FMO genes are abundant in eukaryotic genomes while
their number is low in bacterial genomes. Plants contain
a relatively large number of FMOs and therefore might
represent a promising source for interesting oxygen-
ating biocatalysts. Interestingly, Baeyer±Villiger oxida-
tion steps have been noted in plants[12,13] but it is
unknown by which enzyme(s) these reactions are
catalyzed.
Another enzyme that has been shown to catalyze

Baeyer±Villiger reactions is the NADH- and FMN-
dependent luciferase from the light-emitting bacterium
Vibrio fischeri. This enzyme catalyzes the in vivo
oxidation of aldehydes into their acids with the con-
comitant production of light. The mechanism for this
oxidation reaction was proposed to be similar to a
Baeyer±Villiger reaction, with formation of a perox-
yhemiacetal upon the attack of the peroxyflavin on the
substrate.[114] Instead of the Baeyer±Villiger rearrange-
ment, a chemically initiated electron luminescence
(CIEEL) mechanism has been proposed.[114] Nonethe-
less, the enzyme is able to convert bicycloheptenone via
a Baeyer±Villiger type of reaction.[115] Being dependent
onFMNandNADHVibrio fischeri luciferase resembles
the few characterized Type II BVMOs. Whether these
BVMOs are related to luciferasewill be clarified as soon
as the first Type II BVMO gene sequence is obtained.

Baeyer±Villiger steps have also been reported in the
synthesis of polyketides in Streptomyces species.[116,117]

Recently, a gene from Streptomyces has been identified
to catalyze the oxidative cleavage of the premithramy-
cin B at the expense of NADPH and oxygen to form the
antitumor drug mithramycin. This ring cleavage reac-
tion is thought to proceed via a Baeyer±Villiger
mechanism suggesting that the enzyme involved is a
BVMO. Interestingly, the sequence of the respective
enzyme does not contain the Type I BVMO motif and
does not share significant sequence similarity with any
known Type I BVMO. However, it displays some
similarity with members of another flavoprotein family
consisting of FAD-containing hydroxylases.[118,119]Mem-
bers of this family of monooxygenases also rely on the
formationof aperoxyflavin intermediate for performing
monooxygenation reactions. A major difference with
Type I BVMOs is the different way of binding their
NAD(P)H coenzyme.[120,121] Another characterized
BVMO that cannot be classified as a Type I or Type II
enzyme is the cyclohexanone monooxygenase isolated
from a Xanthobacter sp. as it is FMN- and NADPH-
dependent.[122] These examples hint to the existence of
classes of BVMOs that do not fall into the groups of
Type I or Type II BVMOs.

5 Conclusions and Outlook

BVMOs are extremely useful enzymes for the environ-
mentally friendly synthesis of esters and lactones. The
recent characterization of several new BVMOs has
expanded the range of enzymatic Baeyer±Villiger
reactions. Among these enzymes, HAPMO is par-
ticularly useful for the conversion of aromatic ketones
and sulfides, allowing the synthesis of a wide range of
phenyl acetates or substituted phenols and enantiomeri-
cally pure sulfoxides. The recently identified BVMO-
specific sequence motif is a powerful tool to find new
BVMOs in the rapidly growing collection of sequenced
genomes. With the discovery of new BVMOs, new
substrates will appear. Combined with the rapid devel-
opment in technologies like high-throughput screening,
construction of recombinant production organisms and
fermentation technology the development of new
Baeyer±Villiger biocatalysts will be greatly facilitated
in the near future.[123]

Unfortunately, no BVMO three-dimensional struc-
ture is known to date, preventing a knowledge-based
site-directed mutagenesis approach to re-engineer the
biocatalytic properties of a specific BVMO. Nonethe-
less, successful application of random mutagenesis
techniques has already been reported for a flavoprotein
monooxygenase for which structural data are lacking
[124,125]. Therefore, the availability of sequence-related
BVMO genes will allow fine-tuning of catalytic proper-
ties by exploiting random mutagenesis and gene shuf-
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fling methods. Success of such a random enzyme
engineering approach relies on efficient screening of
mutant libraries. For this, a recently reported BVMO
specific activity assay can be used.[126] Taken together,
the above-mentioned recent developments will enable
strategies to design tailor-made Baeyer±Villiger bioca-
talysts in the near future.
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