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ABSTRACT: Pollution, accidents, and misinformation have earned the pharmaceutical and
chemical industry a poor public reputation, despite their undisputable importance to society.
Biotechnological advances hold the promise to enable a future of drastically reduced
environmental impact and rigorously more efficient production routes at the same time. This
is exemplified in the Baeyer−Villiger reaction, which offers a simple synthetic route to oxidize
ketones to esters, but application is hampered by the requirement of hazardous and dangerous
reagents. As an attractive alternative, flavin-containing Baeyer−Villiger monooxygenases
(BVMOs) have been investigated for their potential as biocatalysts for a long time, and many
variants have been characterized. After a general look at the state of biotechnology, we here
summarize the literature on biochemical characterizations, mechanistic and structural
investigations, as well as enzyme engineering efforts in BVMOs. With a focus on recent
developments, we critically outline the advances toward tuning these enzymes suitable for industrial applications.

KEYWORDS: Baeyer−Villiger, ketone oxidation, peroxyflavin, cyclohexanone monooxygenase, phenylacetone monooxygenase,
biocatalysis, protein engineering

■ INTRODUCTION

“The field of organic chemistry is exhausted.”1 This notion,
which many scientists later judged a fallacy,2 was not an isolated
opinion in the late 19th century3 from when the quote stems. It
is ascribed to chemist Adolf von Baeyer and was supposedly in
response to the success in synthesizing glucose,4 achieved by his
earlier student, Emil Fischer. While Fischer was said to share von
Baeyer’s confidence,3 their potential rush to judgment did not
prevent either of them to later be awarded the Nobel Prize. In
the wake of ever more discoveries being made, scientists today
largely refrain from such drastically exclusivistic statements and
rather call organic chemistry a “mature science”.5

In hindsight, the time of von Baeyer’s controversial statement
can in fact be considered as the early days of organic synthesis.
Chemistry only started to transform from an analytic to a
synthetic discipline after 1828,6 when Wöhler’s urea synthesis
was the first proof that organic compounds do not require a
“vital force”.7 Similarly to this paradigm shift in chemistry nearly
200 years ago, biology is currently at a turning point.6,8Although
bread making and beer-brewing can be considered biotechno-
logical processes invented thousands of years ago, the deliberate
creation of synthetic biological systems only succeeded in the
late 20th century. As much of modern research, biotechnology is
an interdisciplinary area,5 though, a particularly strong overlap
with organic synthesis occurs in the field of biocatalysis. One of
the main arguments for using enzymes for chemical trans-
formations is that even if inventions in organic chemistry will
never exhaustits major feedstock soon will. Considering the
continuing depletion of the world’s fossil fuel reserves, a major
contemporary challenge represents the switch to synthetic

routes starting from alternative building blocks. In the light of
the chemical industry and their supplier’s historically disastrous
impact on the environment,9 a second challenge is the transition
to what has been termed “green chemistry”:10 the choice of
building blocks from sustainable sources and the avoidance of
hazardous substances. Moreover, with the chemical industry
being the single most energy intensive industry sector
worldwide,11 strategies to increase efficiency of chemical
processes are urgently needed. Unfortunately, however, such
considerations find only reluctant implementation in practice.
Despite an increased public pressure due to the poor reputation
of the chemical industry,12 the market economy still nearly
irrevocably ensures the design of industrial processes by
economical considerations.13 In research, delaying factors
might include the hesitancy to rethink traditional approaches
and the fact that environmental considerations are often
inconspicuous on lab-scale or out of focus because of the
limited scientific prestige.12,13 In the meantime, biocatalytic
transformations have emerged as a profoundly different
alternative. Besides the prospect of inherently green catalysts,
a hallmark of biocatalysis is product selectivity, as enzymatic
reactions arguably allow total control over chemo-, regio-, and
enantioselectivity. This renders biocatalysis especially useful for
the preparation of pharmaceuticals, where isomeric impurity can
have dramatic physiological consequences.14 One of the biggest
assets of enzymes is the prospective of their targeted functional
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evolvability.15,16 Ever more sophisticated molecular biological
methods for DNA manipulation allow easy access to large
numbers of enzyme variants, which can be screened for desired
activities. Despite being one of the oldest techniques, random
mutagenesis libraries continue to be an extremely successful
enzyme engineering approach.15 On the other hand, more
rational approaches guided by structural and biochemical data in
combination with computational predictions have gained
popularity.17 Although still impractical in most scenarios, the
complete de novo design of enzymes has been demonstrated and
likely will become a key technology in the future.18

Although often seen as a limitation, the usually found
restriction of enzymes to aqueous systems and ambient
temperatures is also advantageous: these processes not only
abide by the principles of green chemistry; the consistency in
process conditions also facilitates the design of cascade
reactions, which circumvents the need to isolate intermediate
products. Cascades can be designed as in vitro processes, in
which chemoenzymatic strategies may combine the power of
chemo- and biocatalysis.19 With whole cells as catalysts being
the economically most attractive approach,20 another highly
promising procedure is to establish cascades fully in vivo. Recent
advances in genetic manipulation techniques greatly accelerated
metabolic engineering approaches, allowing the introduction of
foreign metabolic pathways into recombinant microbial hosts.
These pathways may be of natural origin, partially adapted, or
designed entirely de novo. Recent examples of the recombinant
production of natural products such as opiods21,22 or
cannabinoids23 have attracted considerable attention not only
in the scientific community. Artificial metabolic routes designed
in a “ bioretrosynthetic” fashion24 also allow diverse applications
ranging from novel CO2 fixation strategies25 to the production
of synthetic compounds such as the antimalarial drug
artemisinin.26 With research in this area of biotechnology
rapidly developing, it has been suggested to constitute a new
field, called synthetic metabolism.27

■ THE BAEYER−VILLIGER REACTION OF PEROXIDES
AND MONOOXYGENASES

Presumably, considerations of green chemistry were far from the
mind of the before-mentioned Adolf von Baeyer, when 110 years
ago, he and his disciple Victor Villiger were experimenting with
potassium monopersulfate. In honor of their discovery that this
and other peroxides can oxidize ketones to esters, we now call
this the Baeyer−Villiger reaction. Although it is a widely known
method in organic chemistry nowadays,28,29 several unsolved
difficulties reduce its attractiveness and thus applicability.
Especially on large scale, a remaining problem is the shock-
sensitivity and explosiveness of many peroxides.30 Commonly
applied peracids are prepared from their corresponding acids
using concentrated hydrogen peroxide. As these solutions in
high concentrations are prone to ignition and other forms of
violent decomposition,31 they have largely been withdrawn from
the market.32 Reactions with peroxides and peracids further-
more lead to stoichiometric amounts of hazardous waste
products. More promise lies in recent achievements of reactions
using directly hydrogen peroxide as the oxidant,33making use of
metal34 or organocatalysts.35 However, such processes also
require waste treatment, and the catalysts need to be prepared in
additional, often complex synthetic routes. In comparison to
other oxygenation reactions, examples of asymmetric Baeyer−
Villiger oxidations were noted to be scarce and to show limited
selectivities, reactivities, and scopes.33

Because of these reasons, biocatalysis offers a particularly
promising alternative and has attracted considerable attention.
So-called Baeyer−Villiger monooxygenases (BVMOs) use the
free, abundant, and green oxidant O2 and only generate water as
a byproduct. BVMOs were discovered in the late 1960s by
Forney and Markovetz, who were interested in the microbial
catabolism of naturally occurring, long-chain methyl ketones.
They noticed that the products generated from these
compounds by a Pseudomonadwere incompatible with terminal
methyl oxidation, which was previously assumed to be the only
degradation pathway.36 Subsequently, they were able to identify
the responsible enzymatic reaction as a Baeyer−Villiger
transformation, dependent onNADPH andmolecular oxygen.37

In parallel, Trudgill and co-workers were investigating micro-
organisms that are able to grow on non-naturally occurring
aliphatics. They identified an oxygen- and NADPH-dependent
enzyme from Acinetobacter calcoaceticus NCIMB 9871 involved
in the microbial metabolism of fossil fuel-derived cyclohexane
and suggested that it catalyzes the conversion of cyclohexanone
to ε-caprolactone.38 They confirmed their findings by isolating
the protein and established that the enzyme contains a flavin
adenine dinucleotide cofactor as prosthetic group.39 This
cyclohexanone monooxygenase (AcCHMO) quickly attracted
attention because of its broad substrate scope and because
caprolactone was already well-known as a precursor to nylon-
6.40,41

■ STRUCTURES

Over the decades, AcCHMO has come to be the number one
prototype BVMO, despite the failure to obtain its structure.
Only recently, in 2019, could a mutant finally be crystallized;42

however, it remains to be seen whether its structure can serve as
a good enough approximation to wild type, considering that it
contains 10 active-site substitutions. Fifteen years earlier, the
first BVMO crystal structure was solved for phenylacetone
monooxygenase (PAMO) from Thermobif ida fusca (Figure
1A),43 causing this thermostable enzyme to become a structural
prototype. The structure sheds light on a two-residue insertion
displayed by PAMO, which was found to be located in the active
site and subsequently called “the bulge” (Figure 1B). Eight other
BVMOs and various mutant structures followed (Table 1),
totaling to 38 structures at the time of writing. Mechanistic
insights have mostly been gained by structural studies on
CHMO from Rhodococcus sp. HI-31 (RhCHMO) and PAMO.
Overall, the structures of BVMOs are surprising similar, despite
sequence identities of often less than 40%.With the exception of
PAMO, many BVMOs are often rather unstable; however, no
obvious structural features could be identified as the origin of
this stability. A study that compared PAMO’s and AcCHMO’s
tolerance toward cosolventsa feature frequently shown to be
related to thermostability44suggested PAMO’s increased
number of ionic bridges would cause the lower solvent
susceptibility, as it could prevent damage to the secondary and
tertiary structure.45 The same reasoning was given for the higher
robustness of a recently crystallized CHMO from Thermocris-
pum municipale (TmCHMO).46 BVMOs display a multidomain
architecture consisting of an FAD-binding, an NADP-binding,
and a helical domain. The latter distinguishes BVMOs from
other class B flavoprotein monooxygenase families and causes a
partial shielding of the active site and the formation of a tunnel
toward it. Some BVMO subgroups contain N-terminal
extensions of varying length. The structure of such an extension
was established in PockeMO, where it forms a long helix and
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several loops that wrap around the enzyme.47 This enzyme is
more thermostable than most BVMOs, but it is unknown
whether the extension plays a role in that. Such a function was
suggested for 4-hydroxyacetophenone monooxygenase
(HAPMO), where deletion of the extension was not tolerated
when exceeding a few amino acids.48 Removal of only nine
amino acids already impaired stability and furthermore
decreased the enzyme’s tendency to dimerize. Besides FAD,
which is found in all BVMO crystal structures, the nicotinamide
cofactor is also found in many structures, in accordance with its
tight binding to the enzymes.49 A certain structural mobility of
cofactors and loops in BVMOs has been observed, and the
debate on its role in catalysis has recently been reviewed.50 The
determination of various BVMO structures has been instru-
mental for the investigation of their catalytic mechanism.

■ MECHANISM OF THE BAEYER−VILLIGER
REACTION

BVMOcatalysis (Scheme 1) is initiated byNADPHbinding and
subsequent flavin reduction, after which the nicotinamide
cofactor adopts a stable position.52,59 Because the stereo-
chemistry of the transferred hydride is in disagreement with the
nicotinamide orientation in the stable position, a potential
conformational change of NADPH during the reduction step is

currently under discussion.50 Flavoproteins allow detailed
mechanistic studies because of the characteristic absorption
spectra traversed by the flavin cofactor during the various states
of catalysis (Scheme 2). In BVMOs, a stable peroxyflavin was
identified to be the catalytically active species.62 Formed by the
radical reaction63 of two electron-reduced FAD with molecular
oxygen, this spectroscopically observable flavin intermediate was
already known from the flavin-dependent aromatic hydrox-
ylases64 and luciferases.65 The finding was perhaps rather
unsurprising, considering that the chemical Baeyer−Villiger
reaction is also afforded by peroxides. However, while with few
exceptions,29 the chemical reaction is acid catalyzed, thus
entailing a protonated peroxide, the catalytic flavin species
requires a deprotonated peroxy group.66While quickly decaying
in solution,67 some BVMOs stabilize this reactive species for
several minutes in the absence of a substrate, before its
decomposition forms hydrogen peroxide in the “uncoupling”
side reaction known to occur in all monooxygenases.68−71 The
exact factors flavoenzymes exert to influence the longevity of
both the protonated and unprotonated peroxyflavin are largely
unknown, despite reported lifetimes ranging from milliseconds
in some oxidases72 to several minutes or even hours in
FMOs73,74 and luciferases.75 In BVMOs and other class B
monooxygenases, NADP+ was, however, found to be critical for
intermediate stabilization, as a manifold increased peroxyflavin

Figure 1. Structures of BVMOs. (A) Crystal structure of PAMO shown as ribbons. FAD, NADP+, and an active-site ligand are shown as sticks with
yellow, green, and dark purple carbons, respectively. C-α carbons of residues targeted for engineering are indicated by a sphere. The sphere’s color is
graded gray tomagenta, reflecting the number of reportedmutants targeting that site. (B) Superimposition of CHMO and PAMO and close-up view of
the bulge, a two-residue insertion displayed by PAMO.
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decay was observed in the absence of the cofactor.62,66,76Crystal
structures and quantum mechanics calculations77 indicate that
theNADP+ amide oxygen establishes a crucial hydrogen bond to
the hydrogen of the flavin’s N5 (Scheme 3). It is assumed that
this stabilization prevents uncoupling by thwarting the otherwise

quickly occurring proton transfer to the peroxy group and
subsequent H2O2 elimination.78 An active-site arginine, whose
mutation abolishes Baeyer−Villiger activity,79 was shown to be
essential for the formation, but not for stabilization of the
peroxyflavin.76 The arginine ensures, however, peroxyflavin

Scheme 1. Overall Catalytic Cycle of BVMOs Involving Various Redox States of the Flavin and Nicotinamide Cofactorsa

aImportant atoms are marked by red (oxygen), blue (nitrogen), or gray (hydrogen) circles.

Scheme 2. Reaction Mechanism of BVMOsa

aThe flavin catalytic cycle consists of two half-reactions and ketone oxidation is catalyzed by a peroxyflavin, unless hydrogen peroxide loss causes an
uncoupled NADPH oxidation (gray dashed arrow). The transformation from a ketone to an ester traverses through a regioselectivity-determining
intermediate. Bond migration is dependent on the anti-periplanar alignment (indicated by thick bonds) of the migrating bond with the peroxy bond
and one of the lone pairs on the former carbonyl oxygen. While protonated in the chemical Baeyer−Villiger reaction, this oxygen is, however,
thought to be deprotonated in enzyme flavin intermediate (indicated in gray).

ACS Catalysis Review

DOI: 10.1021/acscatal.9b03396
ACS Catal. 2019, 9, 11207−11241

11211

http://dx.doi.org/10.1021/acscatal.9b03396


deprotonation, supported by a nearby aspartate that increases
the arginine’s nucleophilicity (Scheme 3).77 If a suitable ketone
substrate is available, the next canonical step is the nucleophilic
attack on the carbonyl group. In BVMOs, the proper positioning
of the substrate is thought to be aided by a hydrogen bond
between the 2′OH group of the NADP+ ribose and the carbonyl
oxygen (Scheme 3).77 The chemical Baeyer−Villiger reaction
was already for a long time assumed to proceed via an
intermediate whose nature initially caused some debate. Isotopic
labeling experiments80 eventually gave conclusive evidence for
the pathway suggested by Rudolf Criegee,81 in whose honor the
tetrahedral intermediate was subsequently named. Although not
directly observable, several computational studies support this
mechanism.82−85 Very recently, experimental evidence was
provided from a stereoelectronic trap for the intermediate, using
synthetic endocyclic peroxylactones.86 In BVMOs, a flavin
Criegee intermediate was also never observed, but in the absence
of any counter-evidence, it is generally accepted that here the
flavin and substrate also form an addition product, and

computational studies support this theory.77,87 The product
then results from a concerted subsequent migration step, in
which the weak O−O bond is heterolytically cleaved, while a
new C−O bond is formed. The rearrangement proceeds with
retention of configuration88,89 and is often rate-determining for
the chemical reaction, although both experimental29 and
theoretical82,90 evidence indicate that the kinetics can change
depending on the substituents, pH, and solvent. The
regioisomeric outcome of the reaction is generally predictable
and governed by a combination of influencing parameters. First,
because of the positive charge developing on the migrating
carbon in the transition state, the more electronegative carbon,
which is better able to accommodate this charge, is more apt to
migrate.91 Thus, carbons with electron-donating substituents
and those allowing resonance stabilization migrate better than
methyl groups and electron withdrawing substituents.29 Second,
the C−C bond migrates preferentially when it is anti-periplanar
to the peroxy O−O bond (Scheme 2), a condition known as the
primary stereoelectronic effect.92 Its influence on determining
migration is apparently more significant than the migratory
aptitude. This was concluded from the observation that a less-
substituted bond migrates when forced into an anti-periplanar
conformation in a restrained bicyclic Criegee intermediate.93 A
secondary stereoelectronic effect has also been postulated,
requiring that one of the lone electron pairs of the hydroxyl
group in the intermediate also needs to be anti-periplanar to the
peroxy O−O bond (Scheme 2).94 This effect only manifests in
certain substrates, where substituents can sterically hinder the
hydroxyl group rotation and presumably plays no role in enzyme
catalysis, where the hydroxyl group is assumed to be
deprotonated.77 Lastly, the arrangement can be influenced by
steric effects.95,96 These may furthermore already affect the
addition step, where the nucleophilic attack must occur from a
favorable angle.29,97 Steric control becomes most obvious in the
enzymatic reaction, where intermolecular steric restraints can
enforce an otherwise electronically prohibited pathway. It is for
that reason that BVMO catalysis allows the synthesis of
products, which are not accessible by chemical means (Figure
2).
While the peroxide-catalyzed reaction finishes under for-

mation of the corresponding acid, the flavin can pick up a proton

Scheme 3. Proposed Mechanism for Enzyme Catalyzed
Oxidationsa

aIn the canonical, nucleophilic mechanism, the peroxyflavin attacks
the substrate carbonyl. An active site aspartate increases the basicity of
a neighboring arginine, which thus ensures deprotonation of the
peroxyflavin. The arginine also activates the substrate ketone,
supported by the 2′ OH of the ribose of NADP+. In contrast, in
the electrophilic mechanism a supposed hydroperoxyflavin reacts with
the lone pair of a nucleophilic heteroatom.

Figure 2. Simplified energy diagram depicting the electronic and steric effects affecting regioselectivity in BVMO reactions. In the Baeyer−Villiger
reaction, an intermediate (I) is formed, which can undergo two varying migration pathways (Scheme 2), leading to two possible products (P1 and P2).
In chemical catalysis, the predominant factors can collectively be called electronic effects, and the difference they exhibit on the energy of the two
possible transition states, usually dictates the regioselectivity of the product (blue line). In enzyme catalysis, steric effects of active-site residues exhibit
an additional force contributing to the overall energy of the transition states which can override the electronically favored pathway (red line).
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to form a hydroxyflavin, whose spontaneous dehydration
reconstitutes the oxidized flavin.67 It was suggested that this
step is accelerated by a deprotonated active site residue with a
pKa of 7.3,

76 in line with the faster decay of this species at higher
pH and the decreased overall reaction rates at low pH.66,76

Before the enzyme can restart a new catalytic cycle, the oxidized
nicotinamide cofactor needs to be ejected, and this step (or an
associated conformational change) was found to be limiting to
the overall reaction rate in CHMO.66 In PAMO, the slowest
catalytic step was not unambiguously identifiable, but may
correspond to a conformational change prior to NADP+

release.76

These findings entail two important and possibly conflicting
conclusions: first, the two most detailed available studies on the
mechanism of BVMO catalysis suggest that the enzymatic
reaction is limited by a rate-determining step that is not involved
in the chemical part of catalysis and therefore possibly substrate-
independent. If this was generally the case, it could provide an
explanation for the rather narrow range of maximal turnover
rates observed for BVMOs with various substrates. Thus,
reaction rates that are orders of magnitude higher than the
currently known ones cannot be expected for any enzyme−
substrate combination. However, this assumption is put in
perspective by the second conclusion, which stems from the fact
that (at least) the rate-determining step of catalysis appears to be
nonidentical in CHMO and PAMO. If the two prototype
enzymes differ in this crucial aspect, one cannot rule out that
even other mechanisms dictate catalysis in other BVMOs. A
generalization, therefore, may not be possible, and is
furthermore impeded by the mechanistic variations in the
chemical part of the reaction specified above, which always have
to be considered to play a role on top of the enzymatic
peculiarities.

■ PROMISCUOUS CATALYTIC ACTIVITIES

In addition to the canonical ketone oxidation, BVMOs also are
able to perform a range of promiscuous catalytic activities
(Scheme 4). Well-established and mechanistically analogous to
the canonical reaction are BVMO oxidations of aldehydes,98−103

including furans.104 This reaction yields acids upon hydrogen
migration, or otherwise (often unstable) formates. Although
reactions with unsaturated ketones supposedly should also
proceed identical in mechanism, most BVMOs show no
reactivity with these weaker electrophiles. The transformation
is also challenging chemically, where side reactions such as
epoxidations frequently occur, and otherwise invariably enol
esters are formed (i.e. oxygen insertion occurs toward the double
bond).105 Recently, two bacterial BVMOs were reported that
can convert several cyclic α,β-unsaturated ketones.106 Interest-
ingly, the two enzymes reacted regiodivergently in some cases,
which allowed the selective synthesis of both ene- and enol
lactones. Although the crystal structure of the preferentially enol
ester-forming enzymea BVMO from Parvibaculum lavamenti-
voranshas recently been solved, a structural explanation for its
unusual reactivity has yet to be provided.60 Only two other
unsaturated ketones were reported to be accepted by BVMOs
before: a substituted cyclopentenone, converted to the
corresponding ene lactone by CPMO,107 and pulegone, a
cyclohexanone derivative with a double bond outside the ring on
the α carbon, for which activity was reported with monoterpene
ketone monooxygenase (MMKMO),108 and cyclopentadeca-
none monooxygenase (CPDMO).55 The three enzymes
involved in campher degradation in Pseudomonas putida2,5-

diketocamphane 1,2-monooxygenase (2,5-DKCMO), 3,6-dike-
tocamphane 1,6-monooxygenase (3,6-DKCMO) and
OTEMO109

were also reported to convert several cyclo-
pentenones and cyclohexenones. The results were questioned
by the Alphand group, however,106 although OTEMO’s natural
substrate is assumed to be a cyclopentenone derivative.109,110

Conversion of a linear α,β-unsaturated ketone to the ene ester
has been shown for the Baeyer−Villiger reaction-catalyzing
human FMO5.111 Oxidation of esters, which bear an even less
electrophilic carbonyl, has been reported for a single BVMO,
which is able to catalyze first the ketone oxidation and
subsequently further converts the ester to its carbonate.112

Similarly to peroxides,113 BVMOs were early found to
promiscuously catalyze heteroatom oxidations as well.98,114

Sulfoxidations are particularly well studied and many enzymes
produced sulfoxides with high enantioselectivity.103,115−125

Several existing patents describing the use of BVMOs for
selective sulfoxidations emphasize the commercial poten-
tial .126−128 Other reactions include oxidations of
amines,40,102,129,130 boron,98,131,132 and selenium.98,133,134 A
single report of phosphite ester and iodine oxidation yet awaits
further exploration,98 as do the few reports of epoxidations
catalyzed by BVMOs.135,136 An entirely different approach to
induce promiscuous catalytic activity is the use of BVMOs under
anaerobic conditions to prevent peroxyflavin formation. Recent
results with AcCHMO suggest that the so-stabilized reduced
flavin can catalyze reductions, allowing tunable, stereoselective
ketoreductase-like reactions.137

In contrast to the nucleophilic species required for the
Baeyer−Villiger reaction, S-, N-, Se-, P-, and I- oxygenation
require an electrophilic, protonated peroxyflavin. In line with the
mechanism found for class A flavoprotein monooxygenases,138

this hydroperoxyflavin was suggested to form in BVMOs, and an

Scheme 4. Non-Canonical Oxidation Reactions Catalyzed by
BVMOsa

aSolid arrows represent enzymatic catalysis; a dashed arrow indicates
spontaneous reaction.
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apparent pKa for the formation was determined to be 8.4 in
CHMO.66 However, as the protonated species in CHMO was
not able to perform sulfoxidations, the results are not fully
conclusive, and it was suggested that some protein conforma-
tional change is involved.139 For PAMO, sulfoxidation
enantioselectivity seems to depend on the protonation state of
the peroxyflavin and the crucial76,79 active site arginine;140 and
mutation of the arginine abolished both Baeyer−Villiger as well
as sulfoxidation activity.76 One study with CHMO, however,
seemed to indicate that its heteroatom oxidation activity does
not depend on the arginine, as the mutation to alanine or glycine
yielded variants with retained S- and N- oxidation activity.141 In
this scenario, the loss of arginine could have two counteracting
effects: as quantum mechanics studies suggest that a nearby
aspartate protonates the arginine and this stabilizes the
negatively charged, deprotonated peroxyflavin,77 the arginine
mutation could favor hydroperoxyflavin formation and thus the
electrophilic mechanism. Contrarily, arginine loss decreases the
overall reaction rate as the residue also promotes the reductive
half-reaction and the rate of (hydro)peroxyflavin forma-
tion.76,142 Interestingly, the substitution of a highly conserved
aromatic residue with arginine was found in two independent
studies that screened for variants with increased sulfoxidation
activity.42,127 In most BVMOs, this residue is a tryptophan that
hydrogen bonds to the 3′OH of the NADP ribose. Considering
the enzyme’s tolerance of other aromatic residues at this
position,143 this interaction is likely not influencing the
electronics at the 2′ OH, which critically hydrogen bonds to
the substrate carbonyl to activate it for nucleophilic attack
(Scheme 3).77 Rather, a mutation to arginine could push the
positively charged coenzyme, possibly causing a disruption of
the hydrogen bond to the substrate. Instead, the group might
come closer to the peroxyflavin and cause its protonation; this
mechanism would favor the electrophilic route and seems to be
the mode of action in the closely related N-hydroxylating
monooxygenases.144

■ VARIETY OF BVMOS

In the quest of discovering useful biocatalysts, many studies
aimed to identify enzymes displaying features such as high regio-
or enantioselectivity, showing a broad or a synthetically
interesting substrate scope, lacking substrate or product
inhibition and having high stability in typical process conditions.
The classic ways to obtain novel efficient biocatalysts are
mutagenesis on well-known catalysts and the exploitation of
genome sequence databases, which are a rich and largely
untapped resource for enzymes with attractive biocatalytic
characteristics and novel chemistries.
BVMO Classification. Considerable research has been

performed on BVMOs using comparative sequence analysis.
Using a curated, representative sequence set, one study
suggested that a BVMO gene was already present in the last
universal common ancestor.145 This study also found that there

is no conclusive evidence that phylogenetic BVMO subgroups
share biocatalytic properties, although this frequently has been
and continues to be suggested in literature.47,146,147 In the last
decades, many BVMOs, both prokaryotic and eukaryotic, have
been described, and approximately a hundred representatives
were cloned and recombinantly expressed. In many cases, the
natural role of those BVMOs could not be identified. In other
cases, BVMOs were shown to be involved in the biosynthesis of
secondary metabolites such as toxins,148−152 or antibiotics.153

While these enzymes often seem to be rather substrate specific,
several BVMOs from catabolic pathways, involved in the
degradation of cyclic aliphatics, for example,38,154−156 can
convert a larger range of substrates. Together with the
structurally very similar N-hydroxylating- and flavin-containing
monooxygenases, BVMOs have been classified as belonging to
the class B of flavoprotein monooxygenases.49 Recently, another
sister group has been addedYUCCAs,157 which are plant
enzymes involved in auxin biosynthesis and shown to catalyze a
Baeyer−Villiger-like reaction.158 Some FMOs, including the
human isoform 5,111were also found to catalyze Baeyer−Villiger
reactions,159 and it was suggested that these enzymes form a
particular subgroup, classified as class II FMOs.160 Their relaxed
coenzyme specificity161 enables interesting application oppor-
tunities.162 Structurally largely unrelated are a few Baeyer−
Villiger reaction-catalyzing enzymes found in class A163 and C
flavoprotein monooxygenases,164 which otherwise comprise the
aromatic hydroxylases and luciferases, respectively49(Table 2).
Cytochrome P450monooxygenases, of which some can catalyze
Baeyer−Villiger reactions,165,166 are entirely unrelated and
employ heme cofactors instead of flavins.
Many Baeyer−Villiger monooxygenases have been discovered

and characterized by genome mining.153,169−172 Instead of
trying to be comprehensive, this Review will focus on some
examples we believe are worthwhile to examine deeper (Figure
3, Table 3). From these proteins, most are type I BVMOs, which
are encoded in a single gene and belong to the class B
flavoprotein monooxygenases.49 Several residues in BVMOs are
highly conserved and useful for the identification of type I
BVMOs. There are two specific sequences described:
FxGxxxHxxxW[P/D]173 and [A/G]GxWxxxx[F/Y]P[G/M]-
xxxD.172 A modification to the short BVMO fingerprint was
suggested (FxGxxxHTxxW[P/D]);174 however, this consensus
proved to be only partially conserved in a more divergent data
set of sequences.145 These motifs are flanked by two Rossmann
fold domains harboring a GxGxx[G/A] motif required for tight
binding of the two cofactors. In some cases, minor deviations
from the consensus for the nucleotide binding sequence have
been reported (MoxY, CPDMO).155,175 Although the exact
functional role of the fingerprint residues is not completely clear,
the long consensus sequence entails the conserved active-site
aspartate, while the short fingerprint is related to the linker
connecting the FAD and NADP-binding domains.43,59 As a
common feature, type I BVMOs share the strict dependence on

Table 2. Classification of Baeyer−Villiger Biocatalysts

group flavoprotein subclass hydride donor prosthetic group componentsa prototype protein

type I BVMOs B NADPH FAD α PAMO43

type II BVMOs C NADH FMN (substrate) α + β 3,6-DKCMO167

type O BVMOs A NADPH FAD α MtmOIV168

type I FMOs B NADPH FAD α HsFMO5111

type II FMOs B NAD(P)H FAD α RjFMO-E160

a
α: Encoded by a single gene, α + β: Encoded by multiple genes (monooxygenase and a reductase component).
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FAD as a tightly bound prosthetic group and NADPH as
electron donor, with the exception of MekA from Pseudomonas
veronii MEK700, which seems to accept either NADH or
NADPH.176 The preferred host for producing recombinant
BVMOs, has been Escherichia coli, which does not contain a
native homologue itself. BVMOs can also be directly applied in
whole-cell conversions, as demonstrated in many reports
focusing on valuable bioconversions (see section ‘Biotechno-
logical application’), but more detailed characterizations such as
kinetic studies often use purified enzymes. Although some
homologues show very high expression levels, E. colimay not be

able to provide the cofactors in the necessary quantities,177

thereby negatively affecting stability.178 This effect is assumed to
be even more critical when BVMOs are to be applied in in vivo
cascades with other redox enzymes.179 An additionally
complicating factor in whole cell conversions is oxygen supply,
which limits the reaction at high biomass concentrations.180

When BVMO homologues with interesting biocatalytic proper-
ties were found to express poorly, several approaches to improve
functional expression and stability were explored. Besides
optimization of the expression conditions (cultivation temper-
ature and time, induction method) and the more and more

Figure 3. Cladogram analysis of BVMOs examples. The color of the clade represents the flavoprotein group to which the respective BVMOs belong
(cyan for type I BVMOs, yellow for type II BVMOs, orange for type O BVMOs, green for type I FMOs, and red for type II FMOs). A star indicates the
availability of crystal structures, in green for wild type and white for mutant. The bar chart shows the melting temperature. The outside rings represent
the acceptance for different ketone substrates. Note that this only represents substrates that have been tested, while the actual scope might be (much)
larger. The species and codes are listed in Table S1.
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Table 3. Prototype Reactions of Baeyer−Villiger Monooxygenases191192
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common use of synthetic genes with host-optimized codons,
fusion approaches with soluble tags are popular counter-
measures. One study also coexpressed molecular chaperones
with a BVMO from P. putida and found that optimal results rely
on their distinct expression levels.181

Eukaryotic Type I BVMOs.Baeyer−Villiger oxidations have
frequently been demonstrated in physiological studies.196−200

BVMO genes were described as scarce in microorganisms,173

though in fact they exhibit an uneven genomic distribution.201

While bacterial BVMOs are most abundantly found in
actinomycetes, there is also a high prevalence in some
filamentous fungi. Particularly, BVMOs were found in
Basidiomycota, Zygomycota, and the Ascomycota, where they
are especially abundant in the Aspergillus genus.145,146 Until
recently, most of the research with isolated enzymes investigated
prokaryotic BVMOspossibly because of the easiness to work
without the splice components of eukaryotes or to avoid
problems with rare codons. One of the first type I BVMOs
obtained from a fungus was steroid monooxygenase from
Cylindrocarpon radicicola ATCC 11011 (CrSTMO), which was
purified from cells grown in the presence of progesterone.202

Although several fungi with Baeyer−Villiger activities were
described, it was only in 2012 when the first recombinant fungal
BVMO was expressed by the group of Bornscheuer.186 This
enzyme comes from the same ascomycete as CrSTMO. This
fungus is also described tometabolize cyclohexanone as a carbon
source, and this ability was linked to the presence of a second
BVMO, identified as cycloalkanone monooxygenase (CAMO).
CAMO shows 45% sequence identity with AcCHMO and
exhibits a broad substrate scope, among which cycloaliphatic
and bicycloaliphatic ketones showed the highest activities.
However, its thermostability is quite poor, and with 28 °C, the
temperature for 50% residual activity after 5 min of incubation is
considerably lower than that of AcCHMO (36 °C).203

BVMOAf1 from the fungus Aspergillus fumigatus Af293 was
described one year later.204 This BVMO stems from a
pathogenic organism that is known to be a source of
biocompounds such as helvolic acid and fumagillin, in whose
biosynthesis the enzyme could be involved. Its activity was
found to be relatively low, with maximal rates of catalysis around
0.5 s−1; however, high enantioselectivities in the oxidations of
thioanisole, benzyl ethyl sulfide and bicyclo[3.2.0]hept-2-en-6-
one were observed. This enzyme exhibits relatively high
thermostability: while the highest activity was recorded at 50
°C, the Tm was 41 °C. In addition, after 1 h of incubation in
buffers containing 5% of various cosolvents, its activity remained
without significant loss. Four other enzymes were discovered
from A. f lavus NRRL 3357 (BVMOAfl210, 456, 619 and
838).205 From those, BVMOAfl838 displayed a high conversion
of aliphatic ketones, but it was unable to convert most of the
cyclic ketones tested. BVMOAfl838 later was the first reported
crystal structure of a fungal type I BVMO.51The enzyme showed
an optimal temperature of approximately 40 °C, but was rapidly
inactivated at that temperature, displaying a half-life of only 20
min. The structure could not be cocrystallized either with the
nicotinamide cofactor or with the substrate and showed a global
fold similar to other described BVMOs. Near to the supposed
substrate entry channel is a mobile loop that presents a lysine
(K511). This residue was suggested to be proximal to the 2′-
phosphate of NADPH, and the K511A mutant exhibited a
higher uncoupling. Later, more BVMOs from Aspergillus were
characterized: BVMOAfl706 and BVMOAfl334 (∼45% amino
acid sequence identity), which converted a range of cyclic and

substituted cyclic ketones and showed the highest conversions
and kcat values of 4.3 s−1 and 2 s−1 for cyclohexanone,
respectively.206 Interestingly, no substrate inhibition was
observed for BVMOAfl706 with cyclohexanone using concen-
trations up to 30 mM. In contrast, AcCHMO, shows a Ki of
approximately 35 mM207,208 Subsequently, a study tried to
exploit BVMOAfl706 in a cascade reaction for the lactonization
of cyclohexanone, but the enzyme seemed to be responsible for
the formation of an undesired side product.209 The last fungal
example is polycyclic ketone monooxygenase (PockeMO) from
the thermophilic fungus Thermothelomyces thermophila, which
was discovered and crystallized.47 This fungus is known to
efficiently degrade cellulose and derivatives from plant biomass.
This enzyme presented high enantioselectivity for
bicyclo[3.2.0]hept-2-en-6-one and displayed an unusually
broad activity on several polycyclic molecules, hence its name.
PockeMO exhibited the highest activity at 50 °C and a melting
temperature (Tm) of 47 °C. As metabolically observed for
fungi196 and as was described for CrSTMO202 and CPDMO,210

PockeMO is able to regioselectively catalyze the D-ring
oxidation of steroid substrates producing the normal lactone.
Later, de Gonzalo analyzed the applicability of PockeMO for the
synthesis of optically active sulfoxides and showed full
conversion of thioanisole into the (R)-sulfoxide with excellent
selectivity, while for other alkyl phenyl sulfides, a decreased
activity and selectivity was observed.117 Thermostable enzymes
have also been found in photosynthetic organisms: CmBVMO
from the red algae Cyanidioschyzon merolae and PpBVMO from
the moss Physcomitrella patens.187 They showed high thermo-
stability, in particular CmBVMO, which displayed aTm of 56 °C,
whereas PpBVMO’s Tm was 44 °C. Although their activity was
comparatively low, with kcat values in the 0.1−0.3 s

−1 range, they
could achieve modest conversions of cyclohexanone.

Prokaryotic Type I BVMOs.Among themany bacterial type
I BVMOs described in the last years, there are several
homologues of AcCHMO, as one goal was to identify a similar
but more stable biocatalyst. One particular example is
TmCHMO, which shows 57% sequence identity with
AcCHMO.46 This enzyme stems from Thermocrispum munici-
pale DSM 44069, a thermophilic microorganism isolated from
municipal waste compost. TmCHMO was described to
efficiently convert a variety of aliphatic, cyclic, and aromatic
ketones and was also able to oxidize prochiral sulfides.
Interestingly, TmCHMO exhibits a Tm of 48 °C and presents
stability against high temperatures and the presence of
cosolvents. However, as AcCHMOs, this robust enzyme showed
inhibition with high substrate concentrations.208,211 Another
newly described BVMO is BVMO4, identified from the genome
of Dietzia sp. D5. This enzyme phylogenetically clusters with
cyclopentadecanone monooxygenase (CPDMO).212 BVMO4
displayed a broad substrate scope accepting different ketones
and sulfides but showed low activity. Although BVMO4
converted alicyclic and aliphatic ketones only moderately, it
was also studied for its activity with phenyl group-containing and
long aliphatic aldehydes. With respect to the latter, BVMO4
showed high regioselectivity with for example octanal, decanal,
and 3-phenylpropionaldehyde, and preferentially synthesized
the respective carboxylic acid over the formyl ester. Albeit with
rather poor selectivities, this was the only reported BVMO able
to convert a 2-substituted aldehyde to the respective acid, which
is a precursor of ibuprofen and derivatives.185 An effort to
improve the activity of BVMO4 with cyclohexanone by site
saturation mutagenesis over 12 described hot spots was
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reported.213 Its activity was successfully increased against cyclic
ketones and the oxidation of cyclohexanone was improved. A
thorough biochemical characterization was described for a
BVMO active on small substrates, acetone monooxygenase
(ACMO) from the propane-metabolizing organism Gordonia
sp. TY-5.184 ACMO converts small ketones such as acetone and
butanone with kcat values between 1.4−4.0 s−1; but shows only
modest stability, losing over 60% of the activity after 1 h
incubation at 25 °C in buffer. This enzyme displayed a weaker
affinity for bulkier substrates and NADPH. The latter was
suggested to be caused by a diminished electrostatic interaction
between the 2′-phosphate of the coenzyme and the protein due
to a substitution of a usually conserved lysine79 by histidine.
Additionally, a monooxygenase from Leptospira bif lexa that was
phylogenetically distant from other well-characterized BVMOs
was described by the group of Rial in 2017.214 LbBVMO showed
a broad substrate scope for acyclic, aromatic, cyclic, and fused
ketones and allowed the highly regioselective conversion of
aliphatic and aromatic ketones. For Rhodoccocus jostii RHA1, 22
BVMOs were found in the genome, which showed a diverse
scope when tested against a large set of potential substrates
including different ketones and sulfides.147,172 From these
enzymes, at least two are quite promiscuous regarding their
substrate scope (RjBVMO4 and RjBVMO24), accepting the
majority of the 25 tested compounds.
Furthermore, there a few well-described BVMOs from

Pseudomonads, like HAPMO and OTEMO, from P. f luorescens
ACB and P. putida NCIMB 10007, respectively.110,188 The
former has 30% sequence identity with AcCHMO and was
studied for the oxidation of a wide range of acetophenones, such
as 4-hydroxyacetophenone, 4-aminoacetophenone, and 4-
hydroxypropiophenone. For these substrates, HAPMO has kcat
values between 10 and 12 s−1. This enzyme has also been
reported to catalyze the oxidation of fluorobenzaldehydes, aryl
ketones, and sulfides.100,118,215OTEMO, conversely, is involved
in the metabolic pathway of camphor and was described to
oxidize the cyclopentanone derivative 2-oxo-Δ3-4,5,5-trimethyl-
cyclopentenylacetyl-CoA.While it exhibits a rate of 4.8 s−1 for its
natural substrate, the free acid shows a rate 30 times lower than
for the CoA ester.57 OTEMO has been mostly studied for the
conversions of substituted cyclohexanones, bicyclic ketones and
terpenones.57,109,216 Another BVMO from Pseudomonas is
PpKT2440-BVMO from P. putida KT2440.217 This enzyme
showed acceptance for aliphatic ketones but exhibited low
conversions for cyclic and aryl ketones. The highest levels of
oxidation were reported for 2-, 3-, and 4-decanone (93−99%
conversion using resting cells). Later, this enzyme was
engineered for the whole cell biotransformation of ricinoleic
acid into a precursor of polyamide-11 (nylon-11), achieving
conversions of 85% and a product concentration of up to 130
mM.218,219

The latest example is a BVMO from Rhodoccocus pyridinivor-
ans DSM 44555.189 RpBVMO exhibited affinity for aliphatic
methyl ketones and the highest activity on 2-hexanone (kcat = 2
s−1). RpBVMO was able to regioselectively convert hexanones,
octanones, and methyl levulinate. The latter is a 2-ketone
derived from renewable levulinic acid gained from biomass.
Interestingly, the biocatalyst was used to fully convert 200 mM
of this substrate to methyl 3-acetoxypropionate with a space-
time yield of 5.4 g L−1 h−1. The hydrolyzed product, 3-
hydroxypropionate is a platform chemical used as sugar-derived
building block for biodegradable polymer polyester synthesis

and is an important intermediate in the nonpetrol-based
production of a variety of bulk chemicals.220

Type II BVMOs. Type II BVMOs are categorized as class C
flavoprotein monooxygenases, which are two-component
monooxygenases. During the catalytic cycle, one component
reduces FMN using NADH or NADPH as hydride donor. The
flavin is then transferred by free diffusion to the second
component, which uses reduced FMN as cosubstrate for oxygen
activation.221 This is biochemically interesting because the free
reduced FMN could lead to nonselective reactions with
molecular oxygen inside the cell.222 This group is less studied
than type I BVMOs, perhaps because of the higher convenience
to work with only one component. In addition to the early
confusion with the actual prosthetic group, it was previously
mistakenly believed to be a flavoprotein using tightly bound
FMN as a coenzyme and that was reduced in situ in the active
site by NADH.223 There are some examples of type II BVMOs
related to the metabolic pathway of the racemic monoterpene
camphor. In particular, the enzymes involved are 2,5- and 3,6-
diketocamphane monooxygenases (2,5-DKCMO and 3,6-
DKCMO). These proteins are encoded on the linear inducible
CAM plasmid from P. putida ATCC 17453 and were named
after their natural substrates.223 The presence of two isoforms in
the same plasmid was described for 2,5-DKCMO, one being
localized 23 kb downstream and encoded on the opposite
strand.164 It was suggested that the high sequence identity
between them is the result of a gene duplication event and a
sequence divergence in the case of 3,6-DKCMO. 2,5-DKCMO
and 3,6-DKCMO oxidize the third metabolic step of the
catabolism of rac-camphor and are specific toward one
enantiomer. They specifically act on 2,5 and 3,6-diketocam-
phene, respectively. In recombinant cells expressing the
oxygenating subunit of 2,5 or 3,6-DKCMO, activity without a
recombinant FMN reductase component was noticed, which
was explained by the activity of native reductases from the
host.109 Later, Fred, a homodimeric reductase encoded in the
chromosomal DNA of P. putida was suggested to be the bona
fide reductase component for the three DKCMOs (3,6- and 2
isoforms of 2,5-DKCMO).164 The complexes were tested
against several substrates, exhibiting exclusive specificity for
the natural substrate. Later, the structure of the oxygenating
component of 3,6-DKCMO was solved in complex with FMN
and showed a fold most similar to the bacterial luciferase-like
superfamily.167 The structure was somewhat controversial
because of experimental discrepancies.222,224 Other members
of the type II BVMOs are luciferases from Photobacterium
phosphoreum NCIMB 844 and Vibrio f ischeri ATCC 7744.225

These two-component bacterial luciferases catalyze Baeyer−
Villiger reactions of 2-tridecanone, monocyclic and bicyclic
ketones. In addition, it was suggested that an NADPH-
dependent 6-oxocineole monooxygenase of Rhodococcus sp.
C1 could also be part of this class.226

Type O BVMOs. The best-studied BVMO of the type O
for atypical or “odd” BVMOsis MtmOIV from the soil
actinomycete Streptomyces argillaceus ATCC 12956. The
enzyme is a homodimer involved in the biosynthesis of
mithramycin, an aureolic acid-like polyketide studied as an
anticancer drug and calcium-lowering agent.163,227 This enzyme
does not have significant sequence identity with other well-
described BVMOs, does not display the consensus motifs for
type I BVMOs, and bears no structural resemblance with type I
or type II BVMOs. This monooxygenase catalyzes the Baeyer−
Villiger oxidation of one of the four rings of premithramycin B,

ACS Catalysis Review

DOI: 10.1021/acscatal.9b03396
ACS Catal. 2019, 9, 11207−11241

11218

http://dx.doi.org/10.1021/acscatal.9b03396


forming the lactone, which is later converted to mithramycin
DK. As other BVMOs, MtmoIV uses NADPH and FAD as
hydride donor and prosthetic group, respectively. The enzyme
belongs to the class A flavoprotein monooxygenases, and it has
been suggested that their reaction requires a peroxyflavin
intermediate for nucleophilic attack, even though class A
flavoprotein monooxygenases classically form a hydroperoxy-
flavin and proceed through an electrophilic attack.49 The crystal
structure was solved in complex with FAD, and the active site
contains an arginine residue (R52) over the isoalloxazine ring,
which presumably stabilizes the negatively charged peroxyflavin
and Criegee intermediates.168 While classic BVMOs contain a
positively charged arginine on the re side of the flavin,
MtmOIV’s R52 is on the si side. Structurally, MtmOIV is
most similar to para-hydroxybenzoate hydroxylase as well as the
glucocorticoid receptors (GR2) subclass of FAD-dependent
enzymes.168,228 Unsurprisingly, as MtmOIV catalyzes the
oxidation of a bulky tetracyclic polyketide with deoxysugar
modifications, it has a large binding pocket for the substrate,
which may interact mostly by van der Waals and hydrophobic
interactions.195 Concerning the kinetic parameters, this enzyme
displays relatively low activities in the presence of the natural
substrate. Despite this, MtmOIV is interesting to investigate, as
it might be a useful biocatalyst for the oxidation of analogues of
premithramycin B and allow a synthetic route to new drugs.
Flavin-Containing Monooxygenases. Flavin-containing

monooxygenases (FMOs), like type I BVMOs, are part of the
class B flavoprotein monooxygenases and are described to
catalyze the oxidation of “soft” nucleophilic heteroatoms in a
broad spectrum of substrates.229 FMOs are single-component
enzymes, contain FAD as a prosthetic group, and have a
preference for NADPH over NADH as FAD-reducing
coenzyme.49 For FMOs, two types have been described: type I
FMOs are identified by the motif FxGxxxHxxx[Y/F], which is
similar to the short consensus motif of type I BVMOs.
Mammals, including humans, express five transmembrane
FMO isoforms in a developmental-, sex-, and tissue-specific
manner.230 These enzymes are involved in the metabolism of
xenobiotics such as drugs, pesticides, and certain dietary
components.111 While this group is described to oxidize mainly
nitrogen and sulfur atoms, exceptions to this rule have been
identified early on: for example, isoform FMO1 from pig liver
was able to catalyze the Baeyer−Villiger oxidation of
salicylaldehyde to pyrocatechol.231 In addition, the human
isoform FMO5, which expresses mostly in the small intestine,
the kidney, and the lung and has been described to exhibit poor
activities on classic FMO substrates, is also able to catalyze
Baeyer−Villiger oxidations. The enzyme was recombinantly
expressed, and converted preferentially aliphatic ketones, but
also aldehydes and cyclic ketones with varying regioselectiv-
ity.111Consequently, it was proposed that HsFMO5 could act as
a possibly undescribed detoxification route in human metabo-
lism. In this regard, it is remarkable that the enzyme can convert,
for example, nabumetone and pentoxifylline (two ω-substituted
2-ketone drugs) and also a metabolite of E7016a potential
anticancer agent.194 On the other hand, HsFMO5 was also
described to have a high uncoupling rate, constituting for 60% of
the activity. This phenomenon was ascribed to a low C4α-
(hydro)peroxyflavin stabilization because of a weaker inter-
action with NADP+. Another group among the type I FMOs is
formed by the YUCCAs,145 which have a key role in the
physiology of monocots and dicots plants. These enzymes
catalyze a rate-limiting step in de novo auxin biosynthesis, an

essential growth hormone and development regulator.157,232

Notably, 11 of the 29 putative FMOs in Arabidopsis thaliana
belong to the YUCCA family, and one of them, AtYUC6, was
described to catalyze the decarboxylation of indole-3-pyruvate
to the auxin indole-3-acetate.158 A sequence similarity network
shows that YUCCAs are more related to FMOs than to BVMOs,
even though the predicted mechanism is more related to the
latter. As in the reaction of BVMOs, catalysis proceeds through a
Criegee intermediate with a nucleophilic attack by the C4α-
(hydro)peroxyflavin followed by a decarboxylation step
producing the auxin. For AtYUC6, as for HsFMO5, a short-
lived C4α-(hydro)peroxyflavin intermediate was meas-
ured.111,158 Additionally, a few enzymes that constitute the
novel subclass of type II FMOs have been discovered in recent
years. As the type I FMOs, this group can catalyze both
heteroatom oxidations, as well as Baeyer−Villiger oxidations.
Unlike the type I BVMOs, these enzymes cannot be identified by
the long fingerprint sequence but contain two Rossman fold
motifs and exhibit the type I FMOmotif FxGxxxHxxx[Y/F][K/
R] with a few substitutions: a histidine instead of [Y/F] and
aspartate, proline, valine, or glycine instead of [K/R].160,233 It
was reported that these enzymes are promiscuous for the
hydride donor, accepting either NADH or NADPH. This
feature is attractive because the change of specificity for the
cofactor of NADPH-dependent BVMOs is not a trivial task, as
has been seen in studies of BVMO variants generated to identify
residues related to the specificity for NADPH and the
improvement of NADH catalytic efficiency.79,234,235 At present,
there are some attempts to investigate this new group in more
detail. Enzymes from Pseudomonas stutzeri NF13 (PsFMO),
Cellvibrio sp. BR (CFMO), and Stenotrophomonas maltophilia
PML168 (SmFMO) were studied. Although the kinetic
parameters, conversion yields, enantioselectivities and substrate
scope turned out to be poor, SmFMOdisplayed similar activities
either with NADH or NADPH. For SmFMO the Km for the
prototypic substrate bicyclo[3.2.0]hept-2-en-6-one was 40
times lower with NADH than with NADPH, and the conversion
of the substrate was also considerably higher (90% vs 15%,
respectively).159 SmFMO was cocrystallized in complex with
FAD, and it was suggested that the promiscuity is linked to the
replacement of Arg234 and Thr235 as occurring in MaFMOa
related type I FMO fromMethylophaga aminisulf idivoransby
a glutamine and a histidine (Gln193 and His194). However, the
double mutant did not radically affect the cofactor specificity in
SmFMO, but the single mutant H194T caused a switch in
cofactor preference from NADH to NADPH (mostly by
reducing the Km,NADPH).

236 This effect was suggested to be
related to the interaction of T235 with the ribose 2′-phosphate
oxygen in MaFMO. Later, two novel proteins were found with
variations of MaFMO’s R234 and T235: CFMO and PsFMO,
which share 58% and 61% sequence identity with SmFMO,
respectively.237 These enzymes were also described to accept
NADH as a cofactor but were mostly studied for asymmetric
sulfoxidations. Another subgroup of type II FMOs, which
features sequence alterations like an extension in the N-
terminus, showed higher conversions and broader substrate
scope for ketones. These include the FMOs from R. jostii RHA1,
RjFMO-E, F and G,160 and PsFMO-A, B and C from
Pimelobacter sp. Bb-B.233 RjFMO-E, F, and G were found to
be able to convert the classic substrate bicyclo[3.2.0]hept-2-en-
6-one and cyclobutanones, but displayed only modest
enantioselectivities and performed poorly in catalyzing the
oxidation of phenylacetone. RjFMO-E displayed a higher affinity
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for NADPH, but also the affinity for NADH is in the micromolar
range. Interestingly, the kcat for bicyclo[3.2.0]hept-2-en-6-one
with NADH is higher than that with NADPH (4.3 vs 2.7 s−1)
and almost 80 times higher than the reported kcat for
SmFMO.159,160 Finally, PsFMO A-C, three enzymes from a
hydrocarbon-degrading bacterium were studied. These proteins
show a sequence identity of 29−35% with RjFMO-E. PsFMO-A
displayed the widest substrate scope, and like the FMOs from R.
jostii, the highest activities were obtained with the ketones
camphor and bicyclo[3.2.0]hept-2-en-6-one. High conversions
were observed, but the enantioselectivities were only high for the
normal lactone (>99% ee for the normal lactone and 57% ee for
the abnormal lactone).More studies are expected for this class of
enzymes, as their cofactor promiscuity constitutes a big potential
in future biocatalysis. It remains unknown whether or not
NADH can fulfill the dual catalytic role described for NADPH in
classical BVMOsas hydride donor and stabilizer of the
hydroperoxide flavin.

■ ENZYME ENGINEERING

Besides the usefulness in gaining mechanistic insights, muta-
genesis in BVMOs has been used to deliberately alter various
enzyme properties. A large body of work has focused on altering
substrate scope and selectivities. These studies have often
focused on what have become the two prototypes, AcCHMO
and PAMO. The two enzymes can be seen as the “yin and yang”
of BVMO research: AcCHMO was discovered early on, but no
structure was available until very recently a 10-fold mutant was
crystallized; it acts on a broad range of substrates and often
shows high stereoselectivity, but with a Tm of 37 °C,182 it is
marked by poor stability. On the contrary, PAMO was
discovered much later, but the crystal structure was solved
immediately; its substrate scope is limited to aromatic
compounds, and its stereoselectivity is often poor, but with a
Tm of 61 °C,

238 it is very stable. For these reasons mutagenesis in
PAMO focused on substrate selectivity engineering and in
AcCHMO at manipulating product specificity and thermo-
stability.
Efficient protein engineering of BVMOs became possible after

recombinant strains of E. coli239 and yeast240 were available. In
the absence of a crystal structure, early mutagenesis experiments
focused on investigating the functional role of conserved
residues (Figure 4).173,188,241 In recognition of their potential
for application, one of the first attempts of rational protein
engineering in BVMOs was targeting their dependency on
NADPH, which is more costly and less stable than NADH. By
changing conserved basic residues close to the Rossmann motif,
a lysine in 4-hydroxyacetophenone monooxygenase (HAPMO)
was identified to strongly determine NADPH specificity.79

Mutagenesis to phenylalanine decreased the Km for NADH ∼5-
fold, while mutagenesis to alanine in AcCHMOdecreased it∼2-
fold. A later study in PAMO did not observe the same effect
upon mutating the corresponding residue, but identified a
nonconserved histidine, whose mutation to glutamine decreased
the Km for NADH ∼4-fold.235 More recently a larger set of
mutations was probed in AcCHMO, but the best mutant
decreased the Km,NADPH only ∼2.5-fold.234 The mutations of the
various studies also increased the maximal turnover rate with
NADH, leading to a moderate increase in catalytic efficiencies,
and decreased the specificity for NADPH (Table 4). The latter
effect was especially dominant in AcCHMOwhen a substitution
of a conserved [S/T] with glutamate was combined with
targeting the previously found lysine. The resulting mutant was

still so poor with NADH, however, that bioconversions of 5 mM
of AcCHMO’s native substrate, cyclohexanone, was only
possible when using stoichiometric amounts of the cofactor.234

The fact that the switch of cofactor specificitywhile often
successful in other enzyme classes242,243was largely un-
successful in BVMOs, highlights the complex role of NADP in
class B monooxygenases. It is now well-known that NADP
fulfills at least a dual function in catalysis: flavin reduction and
peroxyflavin stabilization.50 In doing so, the cofactor likely
undergoes conformational changes whose stabilization and
interchange need to be in a balance that is easily impaired by
mutagenesis. Though unclear, it seems likely that the same or
similar considerations apply to Baeyer−Villiger reaction-
catalyzing FMOs, where an example of the reverse engineering
from NADH to NADPH has been described for an FMO from
Stenotrophomonas maltophilia.236 While the wild-type enzyme
accepts both cofactors with slight preference for NADH, a
mutant with a ∼5-fold higher catalytic efficiency with NADPH
was generated, and its structure was solved.
An even more important factor for application is catalyst

stability. For many enzymes, the main focus of attention is
operational stabilityas storage stability is more easily
addressed, because most enzymes can be kept frozen in solution
for up to years or otherwise be kept as lyophilized powders. For
BVMOs, one study found that lyophilization in the presence of
sucrose aids in preserving catalytic activity.244 In the course of
this work, the generally very poor stability of AcCHMOwas also
quantified: upon storage at 4 °C, the enzyme lost half of its
activity after 72 h. Being a well-known phenomenon, the
challenge of overcoming its instability has been an aim of a
number of studies. Assessing their successes, however, is
complicated because of the use of nonstandardized assays, and
a certain lack of agreement in the field on how thermostability

Figure 4. NADPH specificity. Top: the weblogo shows the sequence
conservation at relevant residues (numbering of AcCHMO), high-
lighted with a green box. Bottom: all available structures of BVMOs
superimposed, and the residues surrounding the phosphate group of
NADPH are shown (corresponding to the highlighted residues in the
top part). Residues are shown as sticks, α carbons are marked as a ball,
and the coloring of carbons is according to the color scheme in the top.
Hydrogen bonds are shown as yellow dotted lines.
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best is measured and compared. Symptomatically, when a recent
study looked at literature data on the half-life of wild-type
AcCHMO at 25 °C, it was noted that the reported values span
more than an order of magnitude.178 In analogy to the
uncertainties associated with assays determining temperature-
dependent enzyme activities,245 the authors argue that the
commonly used spectrophotometric cuvette assays are prone to
produce unreliable results. Applying the assay nonetheless, this
study subsequently investigated the effects of additives on
AcCHMO’s stability and linked it to cofactor concentration and
presence of reactive oxygen species (ROS). Specifically, a high
excess of NADPH, but not NADP+ increased the enzyme’s half-
life, and so did addition of FAD and ROS-scavenging enzymes.
As of now, it remains unclear if and how these observed effects
can be exploited practically; however, the results corroborate the
advantageous use of whole cell catalysts. While further research
will hopefully also allow to understand these results mechanis-
tically, this work clearly emphasizes the shortcomings of
comparisons across independent studies. For these reasons, we
refrain in the following from comparing absolute values and
focus on relative improvements when kinetic stability data
such as half-livesare concerned. A parameter to reliably
measure in a reproducible manner, however, is thermodynamic
stability, which is indicated by a Tm, defined as the midpoint of a
melt curve reflecting the unfolding of a protein ensemble.246,247

This parameter is convenient in initial screens, as it requires little
amount of sample, is nonlaborious and quick, and can easily be
employed in a semihigh-throughput manner. For BVMOs, a
method exploiting flavin fluorescence termed ThermoFAD
allows Tm determination without the usually required addition
of dyes.246

To improve the poor stability of AcCHMO, several groups
have employed enzyme engineeringa task that has been
complicated by the absence of a crystal structure. The first report
of a more stable AcCHMO mutant targeted the oxidative
stability of the enzyme, rationalizing that the hydrogen peroxide
side product could inactivate the enzyme through oxidation of
sulfur-containing residues.248 By mutating all cysteines and
methionines to amino acids found in homologous BVMOs,
several positions were identified to increase substrate con-
versions in the presence of hydrogen peroxide and at elevated
temperatures. The best variants of the subsequently generated
combinatorial mutants showed a strongly increased hydrogen
peroxide tolerance and a 7 °C upshift of the temperature at
which 50% of activity remained. With the aim of increasing the
thermal stability of AcCHMO, two parallel studies later created
a homology model of the enzyme and used computational
prediction to design stabilizing disulfide bridges. The first study
reported an increase in Tm of 6 °C and a >10-fold increase in
half-life at 37 °C for the best mutant, which interestingly was a
disulfide bridge that spans only a single residue.182 Combining
several disulfide bridges led to strongly reduced expression
levels, however. The second study tested four disulfide bridge
designs and found an increase in Tm of 5 °C for the best
variant.183 Upon finding that the stabilization occurs even

though the disulfide bridge does not form in solution, the
individual mutations were tested, and the effect thus traced to a
single threonine to cysteine exchange. This variant had a 6 °C
higher Tm, and a ∼ 15-fold increase in half-life. Stabilization
upon cysteine introduction is a surprising result, seemingly in
contradiction to the earlier study that aimed to remove sulfur-
containing residues. Although no clear explanation exists, the
oxidation by hydrogen peroxide in this particular area of the
protein may not negatively affect protein stability and act as a
scavenger of reactive oxygen species. Recently, an effort was
made to combine AcCHMO’s most promising stabilizing
mutations by adding the single residue-spanning disulfide bridge
to the two mutants with highest oxidative stability.209 Although
no Tm was reported, the resulting variants were tested for their
efficiency in ε-caprolactone production in a converging cascade.
Surprisingly, the combinatorial mutant performed inferior to
wild-type AcCHMO. Even after a design of experiments (DoE)
to optimize the process toward optimal reaction conditions for
the best-performing mutant, no more than 21 mM of ε-
caprolactone was obtained. Although autohydrolysis of the
lactone contributed to decreased yields, the mutant was
apparently unable to outperform wild-type AcCHMO, which
the same group previously optimized for the same reaction using
a biphasic system.249 Acknowledging the difficulties in engineer-
ing AcCHMOwithout a crystal structure, one recent study used
as an alternative scaffold CHMO from Rhodococcus sp. HI-31,
which is similar to AcCHMO with respect to both activity and
stability.250 In this work, a previously developed computational
approach called FRESCO was used to predict stabilizing point
mutations. After identifying several stabilizing hits on single
mutant level, a combinatorial mutant with eight amino acid
substitutions and a Tm of 49 °C was obtained, which amounts to
an increase of 13 °C over wild type. Although the mutant
displayed a slightly reduced maximal activity, it still had an
approximately 2.5 fold higher kcat for cyclohexanone than the
naturally more thermostable TmCHMO. Currently, the
RhCHMO 8-fold mutant and TmCHMO appear to be the
most promising biocatalysts for applications targeting cyclo-
hexanone or its derivatives. However, a thorough comparison of
all available variants using a standardized assay and optimized
reaction conditions would be desirable.
As none of these enzymes reach the stability levels of PAMO,

which has a Tm of 61 °C238 and does not lose activity for several
days when stored at room temperature,169 alternative strategies
used PAMO as the engineering scaffold. Where the long-studied
AcCHMO’s catalytic properties were often found to be
excellent, PAMO mostly proved to be a relatively poor catalyst
for synthetically interesting reactions. The biggest weaknesses
were the limitation of the substrate scope to small aromatic
ketones and PAMO’s inactivity on cyclohexanone, which
prevent an application in biotechnological nylon production.169

However, engineering of PAMO could finally be based on
rational considerations because the enzyme was crystallized
right after its discovery and this represented the first structure of
a BVMO (Figure 1A).43

Table 4. Enzyme Variants Generated to Switch Cofactor Specificity

enzyme mutation(s) fold increase kcat,NADH fold decrease Km,NADH fold increase kcat,NADH/Km,NADH fold decrease NADPH/NADH ref

HAPMO K439F 1.4 4.8 6.7 410 79

PAMO H220Q 6.9 3.7 3.3 8.6 235

AcCHMO K326A 0.4 1.8 0.7 58 79

AcCHMO S186P/S208E/K326H 3.1 2.5 8 1900 234
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In six separate studies, the group of Reetz aimed at
engineering PAMO toward activity with cyclohexanone and its
derivatives (Scheme 5). Upon noticing that PAMO differed
from CHMOs by a two-residue insertion in an active-site loop,
this so-called “bulge” was deleted in the first PAMO engineering
study251 and subjected to random mutagenesis in the second
(Figure 1B).252 Although it was shown that either deletion or
mutation increased PAMO’s activity on cyclic ketones, the

generated mutants were still limited to substrates containing the
phenyl moiety. When the randomized region was then expanded
to include additionally a subset of active-site residues, several
multiple mutants with activity on 4-(bromomethylidene)-
cyclohexanone emerged.253 However, in a library targeting the
other subset of active-site residues in addition to the bulge, the
only mutations that emerged were single exchanges on the
bulge.254 Therefore, the authors decided to change strategy and

Scheme 5. Substrates Reported for PAMO and Its Mutantsa

aSubstrates are framed to indicate (overlapping) categories. Aromatic compounds are highlighted by a dashed line. Substrates for which activity was
only reported with mutants are shown with brown carbons.
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targeted two conserved proline residues in the vicinity of, but not
directly shaping the active site. Substitution of the proline
directly adjacent to the bulge turned out to strongly increase
enzymatic activity with a range of 2-substituted cyclohexanone
derivatives that did not need to contain the phenyl group.254

Concluding that successful proline mutagenesis may act by
influencing conformational changes involved in catalysis, the
authors expanded their investigation toward a proline found
behind a loop they assumed to be critical for domain
interaction.255 Mutagenesis of this residue and a neighboring
glutamate again increased the activity with cyclohexanone
derivatives harboring substituents on C2 or C4. Interestingly, a
strong cooperative effect of the mutations was observed: only a
double mutant (Q93N/P94D) accepted these substrates, while
none of the single mutants did. With these residues being far
away from the active site, the authors suggested that they
induced an allosteric effect that enables domain movements
favoring the catalytic activity. In their most recent study, the
authors eventually combined the previous hotspots and
randomized the bulge residues, while fixing the mutations of
the two proline residues and one neighbor.256 This final mutant
that contained two additional substitutions on the bulge showed
for the first time an activity with cyclohexanone, although the
low rate (kcat = 0.3 s−1) only allowed the conversion of 2 mM.
Most recently, a different group achieved conversions of 10

mM of cyclohexanone by combining the mutation of the
conserved proline with a mutation of the active-site isoleucine
identified as a hot spot by the Fraaije group.257 This residue
emerged in a study in which they designed mutations on the
basis of a structural comparisons with a model of another
promiscuous BVMO, cyclopentanone monooxygenase from
Comamonas sp. NCIMB 9872 (CPMO). Using site-directed
mutagenesis, 15 PAMO residues were mutated in order to map
out crucial residues in the active site.258 In another report they
identified an active-site methionine mutant (M446G) that
improved the activity with aromatic compounds and increased
the heteroatom oxidation activity.102 Interestingly, this mutant
was able to produce indigo by converting indole through an
apparent N-oxidation mechanism. The Gotor group and others
subsequently characterized the substrate scope of this variant
extensively and demonstrated its usefulness as a catalyst for the
often enantioselective conversion of various compounds, most
no t ab l y a roma t i c k e tone s 2 5 9− 2 6 3 and he t e roa -
toms.115,131−133,264,265 The crystal structure of the mutant was
also solved, and the same study also reported the first crystal
structures of PAMO with a substrate analogue in the active site,
which allowed to further narrow down the residues important
for substrate binding.59 With this combined insight, 11 residues
were then chosen for simultaneous randomization.193 A screen
for enzymatic activity on cyclopentanone and cyclohexanone
was conducted for 1500 clones, which still represented only a
fraction of the statistically possible mutant combinations,
however. A single clone containing four substitutions was
identified in this screen that had activity on cyclopentanone.
One mutation targeted a bulge-adjacent residue that also
emerged in the Reetz libraries,256 and three mutations occurred
in residues located slightly further up the tunnel leading toward
the active site. The biochemical characterization of this mutant
showed that it had a strongly expanded substrate scope and
accepted various aliphatic ketones. A theoretical study then used
MD simulations to rationalize the selectivity alterations and
found that the tunnel mutations cooperatively led to active-site
rearrangements that stabilized the binding of the aliphatic

substrate.266 When a recent study also found indications for an
important role of the substrate tunnel by identifying in it a stable
binding site for ligands, a drastic engineering attempt was
conducted: to establish whether the tunnel might be the true
determinant of substrate specificity, two mutants were created,
which switched the entire tunnel (25 mutations) or the tunnel
and the active site (38 mutations) for the residues found in a
CHMO.56 This attempt turned out to be unsuccessful,
howeveralthough the mutants could be produced and
bound FAD, barely any catalytic activity with a range of
substrates remained. A similarly drastic approach was conducted
in a study employing subdomain shuffling, which resulted in the
creation of enzyme chimera.238 Exchange of PAMO’s C-
terminus, which harbors the active site bulge and a large, mobile
loop suspected to influence catalysis50 resulted in chimeric
variants with altered, but mostly PAMO-like activity. Collec-
tively, these studies have generated hundreds of mutants with
altered substrate and selectivity profiles. The mutants and their
explored substrates were collected in an extensive table (see
Supporting Information). As most studies compared mutant
activities to the wild type, the substrate scope of native PAMO is
now well explored. We found close to 90 compounds that were
reported to be substrates of PAMO and a similar number
reported for the M466G mutant (Scheme 5). Although PAMO
clearly prefers aromatic compounds, it is rather substrate
promiscuous among those. Considering that benzene is the
single most common functional group in pharmaceuticals,267

this may also be seen as an asset.
Domain movement may play a more important part in

substrate acceptance than anticipated so farin AcCHMO,
mutations in the hinge region connecting the FAD and NADP
domain had a profound effect on catalytic activities.268 Since the
enzyme is already naturally promiscuouswith the number of
reported substrates in the hundreds201,269,270only few other
studies aimed at altering its substrate scope.With CHMO’s main
limit being substrate size, these efforts were often with a
commercial interest, aiming to generate highly evolved variants
optimized for a specific bulky targetcommonly pharmaceut-
icals. A prominent example was the development of mutants
with high sulfoxidation activity on the precursor of esomepra-
zole.42,271 In another report, novel activities on exo tricyclic
ketones was discovered for mutants originally evolved to switch
product specificity.272 Conversion of steroids is also of potential
pharmaceutical interest, but engineering of CHMO is less
appealing, as there are several BVMOs available that naturally
accept steroids.47,210,273 In these cases, the main challenge for
biotechnological application is the poor water solubility of the
substrates, highlighting the need for robust variants with good
thermo- and solvent stability.
A number of stereoselectivity engineering examples are found

in the literature, and dedicated reviews exist.274,275 Many
beneficial mutations have been identified by random muta-
genesis, and a successful technique to reduce screening effort
was the creation of focused libraries that target residues close to
the active site.16,276 A popular class of BVMO substrates are
substituted cyclohexanones. For example, building on the
previously discovered PAMO mutants with activity on such
compounds, the Reetz group used iterative saturation muta-
genesis to develop mutants for stereoselective lactone
production.253 Using a small set of appropriate substrates,
they could introduce high regio-, enantio- as well as
diastereoselectivity for the two best variants. Using a similar
approach with a thermostable CHMO as the catalyst, a
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stereoselectivity switch from S to R was achieved with 4-
methylcyclohexanone.277 In AcCHMO, a single mutation from
phenylalanine to serine was found to be enough to completely
reverse enantioselectivity of 4-hydroxycyclohexanone.278 The
result was rationalized in a theoretical study, which proposed
that the reaction outcome is governed by the substrate’s
conformation and that the serine−substrate hydrogen bond
allows an R product-favoring equatorial arrangement.87 The
same mutant also showed a drastic increase in R-selectivity for
the sulfoxidation of thioether, but other mutations were found to
lead to catalysts with higher activity, and somemutants were also
found with reversed enantioselectivity.125 In PAMO, directed
evolution induced a selectivity switch from 90% S to 90% R in a
variant with four mutations.279 Interestingly, the four respective
amino acid exchanges barely had an influence on selectivity as
single mutations, indicating a high degree of mutational synergy.
As oxygen insertion can occur on either side of the carbonyl

group, the Baeyer−Villiger reaction can also afford two
regioisomeric products (Scheme 2). Regio- and stereoisomer-
ism is often intimately connected in Baeyer−Villiger reactions
e.g., with prochiral 4-substituted cyclohexanones where no
stereocontrol can distinguish substrate enantiomers, but the side
of oxygen insertion (i.e., regioselectivity) still determines the
product enantiomers.275 As specified before, the regioselective
outcome is dictated by various effects, which lead to a
predictable bond migration in chemical transformations, while
often resulting in the noncanonical products by enzyme catalysis
(Figure 2). In this case, the resulting ester has been referred to as
“abnormal”, while canonical bond migration affords the
“normal” ester. In the case of cyclic substituted ketones, it was
suggested to avoid ambiguity by using the terms “distal” and
“proximal” lactones instead.280,281 Although originally proposed
for cyclic ketones with a substituent on the α carbon,280 it has
become more common for ketones with substituents further
from the carbonyl.282 Another interesting point is the often
observed regiodivergent conversion of chiral racemic ketones,
where the regioselectivity of the reaction differs for each

enantiomer. This effect has frequently been observed to yield
both regioisomers in a reaction, where each is produced
enantiomerically pure or enriched. This behavior can be
assessed with substrates such as rac-bicyclo[3.2.0]hept-2-en-6-
one. This bicyclic ketone has become a model substrate211

because it was first used to demonstrate BVMO-mediated
asymmetric synthesis;283 and an industrial, BVMO-catalyzed
process has been established.284 Being of a rather unpredictable
outcome, the specificity of a large number of BVMO variants
with countless substrates have been collected in extensive
reviews.269,270,282,285 Before the availability of crystal structures,
the site-specificity of BVMOs has been the subject of
controversial debate, and it has been tried to use in mapping
the active site of AcCHMO based on the selectivity with various
structurally restrained substrates.286,287 While the models were
still refined after the PAMO structure was available,288 the
subsequent RhCHMO structures and technological develop-
ment led to an increased use of computational methods.
Considering the complexity of the reaction mechanism and the
partial uncertainty concerning conformational changes, how-
ever, it is maybe no surprise that most protein engineering
studies still largely rely on random or semirandom libraries and
use computational tools analytically rather than predictively.
A case of more targeted engineering was a BVMO involved in

the Streptomyces arenae biosynthesis of pentalenolactone D
(Scheme 6).289 While this antibiotic features an abnormal
lactone moiety, it was found that a homologous strain produces
the metabolite as the normal isomer.170 A few differing residues
were identified by sequence alignment of the responsible
homologous BVMOs and a single amino acid exchange in PntE
was sufficient to completely inverse the selectivity of the
abnormal lactone-forming enzyme. The opposite mutation in
the natively normal lactone-forming enzyme did not cause
abnormal product formation, however, and the enzyme was
moreover largely expressed in inclusion bodies. The unique
ability to deliberately produce abnormal esters is one of the
synthetically most interesting features of BVMOs. Yet, also most

Scheme 6. Engineering of BVMOs To Change Regioselectivitya

aMutants are highlighted in red.
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other regioselectivity engineering studies reported a switch of
selectivity toward the normal ester. The prevalence of this kind
of “demolishing” of regioselectivity is likely because abnormal
migration needs to be strictly enforced by the active site through
steric control, while normal migration occurs also in the absence
of a strict restraint via electronic control. Besides following the
logic that the flavin intermediate underlies the same chemical
principles as any other reactant, this notion was also
substantiated by combined QM/MM studies55,143 and an
unusual experimental approach: upon cumulatively removing
all active-site residues involved in substrate-binding, it was
observed that the regioselectivities of a CHMO approached the
ratios obtained with chemical catalysts.56 A popular target
molecule has been the terpene trans-dihydrocarvone, a 2- and 5-
substituted cyclohexanone derivative with two chiral centers
that many BVMOs can convert with high selectivity (Scheme
6).290 In a traditional alanine-scanning mutagenesis experiment
for the active-site residues of a CHMO, the Bornscheuer group
already noted that exchange of one particular residue led to a
switch in regioselectivity from fully abnormal to mostly normal
lactone.291 After two additional alanine mutations were
introduced based on the alanine-scanning result and a docking
experiment, the resulting mutant produced exclusively the
normal lactone. Interestingly, all targeted residues were
phenylalanines. The authors successfully transferred the
mutations to AcCHMO, where the effect prevailed. When
they later probed the mutations in OTEMO, they discovered
that a single substitutioncorresponding to the mutation
showing the strongest effect in CHMOwas sufficient to
induce exclusive production of the normal lactone in
OTEMO.292 The results were subsequently rationalized in a
study from Scrutton and co-workers, who introduced the same
mutations in another CHMO, solved the crystal structure of the
mutant, and performed computational analyses.55 As expected
from three phenylalanine to alanine mutations, it appears that
the mutations removed steric restraints exhibited by the wild
type, thus inducing the reaction fate to be determined by the
lower energy barrier associated with normal lactone production.
Although the mutations proved to be mostly transferable among
enzyme variants, they did not exhibit the same effect on other
substrates. For example, the triple alanine mutant produced only
slightly more than the 50% of normal lactone seen in
conversions of (−)-bicyclo[3.2.0]hept-2-en-6-one with
OTEMO, while a double valine substitutions achieved 95%
normal lactone.292 Surprisingly, the authors could not reproduce
the result when using purified enzymes instead of whole cells,
although they could partially restore selectivity by adding FAD
to the purification buffer. This effect was, however, not observed
for another mutant, already known earlier to influence
selectivity,53 in which a conserved tryptophan to alanine
mutation caused 95% abnormal lactone production. Muta-
genesis-induced activity increase toward abnormal esterthe
more interesting, though, more challenging taskis commonly
only observed sporadically. For example, the PAMO M446G
mutant was found to convert 1-indanone and its derivatives to
the abnormal lactone.259,262 Targeted engineering of abnormal
product formation has been attempted in several studies for 2-
butanone (Scheme 6). The reaction is of synthetic interest, as
the abnormal product, methyl propanoate, can be converted to
methyl methacrylate, an acrylic plastic produced industrially on
megaton scale annually.293 An initial screen of several BVMOs
showed moderate activities with most BVMOs, and the best
enzyme, AcCHMO, produced approximately 25% abnormal

product.294 A small library based on structure-inspired rational
design was then tested for improvement, and a double mutation
identified, which increased the yield and produced 43% of the
abnormal product.295The fact that a full switch was not achieved
reflects the apparent difficulty in engineering a preferred
migration of the least favored substituent, the methyl group.
Recently, this was nevertheless achieved with even more
demanding substratesaromatic ketones in which the energeti-
cally least-favored methyl group competes with phenyl
substituents (Scheme 6)by screening larger libraries and
several rounds of directed evolution.143

■ BIOTECHNOLOGICAL APPLICATIONS

Biotechnological Application: Obstacles. The applica-
tion of BVMOs is partially characterized as troublesome because
of a number of important limiting factors, including enzyme
expression,219 enzyme stability,248 NADPH-dependence,296,297

oxygen-dependence,180 and substrate and product inhibition.208

However, depending on the specific BVMO, there will be
specific obstacles; for example, some BVMOs have good
expression, yet poor stability, or vice versa. In this subsection,
we will discuss each of these limitations and refer to studies that
have addressed them. First of all, the application of BVMOs can
be carried out in four different forms: with isolated enzymes,
with immobilized enzymes, with crude/cell-free extract, or with
whole cells. Most commonly, application-oriented reactions
applied whole cells, as they provide a number of advantages: (1)
improved stability of the enzymes due to the cellular
environment,20 (2) no addition of NADP(H) is needed, (3)
coexpression of other enzymes can facilitate cofactor recycling
or cascade reactions, (4) no cell lysis and enzyme purification
steps are needed, and (5) it allows for continual expression of the
enzyme(s). However, there are also some disadvantages with
whole cells, such as (1) mass balance issues and product
removal,298 (2) problematic oxygen supply to the cells,180 (3)
plasmid stability with requirement of antibiotic,299,300 and (4)
limited transport of substrates/products in and out of the cell.301

In addition, a study on a cascade reaction in vivo, where a kinetic
model was used to analyze performance, revealed that cofactor
concentrations in the cell were limiting the reaction rate.179

Possibly, this challenge could be addressed through metabolic
engineering or the use of a different host. Still, each of the ways
to apply BVMOs has trade-offs, and it will be case-specific
whether one is more suitable than the other. A recent minireview
addresses some of these aspects that are relevant for the
development of a biocatalytic (industrial) process.302

Industrial Demand, TTN, and Stability. Most studies on
BVMOs describe reactions on small lab-scale. Yet, to meet the
demands of an industrial process, the limiting factors presented
above need to be addressed. Specifically, to produce low-priced
compounds, such as building blocks for polymers, a ratio of
2000−10000 g of product/g of (immobilized) enzyme (also
referred to as “biocatalyst loading”) should be met in order to be
an economically viable process.20 To illustrate, assuming a 100 g
mol−1 product and a 50 kDa enzyme, 20−100 mol of product/g
of enzyme, the demanded ratio translates to 1 × 106 − 5 × 106

total turnovers (TTN) per enzyme. Because of these numbers,
many BVMOs are still excluded from industrial application,
unless the target product is of high value, as is the case for
pharmaceuticals, or if effort is invested to improve the
biocatalyst and the process. In particular, improvement of the
stability of the biocatalyst is needed inmany cases, as is discussed
in the subsection of Enzyme Engineering of this Review.
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Moreover, an important issue for both the metric “total turnover
number” (TTN) and “stability” is their inconsistent use in
studies so far. Many studies refrain from determining the TTNs,
and stability is often described in different ways, such as melting
point and half-life, which makes it difficult to compare data. In
addition, the stability of an enzyme in an industrial setting could
be different compared with the lab setting. What could help the
field of BVMO biocatalysis in general is if studies provided data
for these characteristics, or at least a clear description of
biocatalyst loading because this metric gives an impression of the
efficiency and stability of the biocatalyst, whether it is whole cells
or isolated enzymes.
NADPH Recycling. While expression and stability are more

related to enzyme engineering, the efficient use of NADPH is
primarily determined by the way the BVMO is applied. The
dependence of BVMOs on NADPH is an important challenge,
since the cofactor is expensive: around 1800$/5 g, compared to
280$/5 g for NADH.303 Therefore, it is necessary to minimize
the amount of NADPH that is used. One way to address this
challenge is to devise a set of reactions that are in redox balance.
This can be achieved by combining an oxidation reaction, in
which the reduced cofactor is formed, with the BVMO reaction,
in which the reduced cofactor is oxidized again.304 A typical
example of such a redox-neutral reaction is the combination of a
BVMO with an enzyme that can catalyze the oxidation of a
sacrificial substrate (e.g., glucose dehydrogenase).296,297 Alter-
natively, whole cells can be used for internal cofactor
regeneration,305,306 as well as nonenzymatic ways.307 Nicotina-
mide cofactor regeneration strategies have been extensively
reviewed elsewhere.297 Another type of a redox-balanced pair of
reactions are cascade reactions, where the product of the first
reaction is the substrate for the second reaction.308 One
advantage of cascade reactions is that the isolation of
intermediate products is not needed, as can be the case in
other synthesis routes. In general, there are quite well-studied
solutions to the challenge of cofactor recycling, with examples
given in the next subsection.
Oxygen Supply. Another degree of complexity of industrial

application is oxygen supply. Because a stoichiometric amount
of oxygen is needed for the typical BVMO reaction and aqueous
solutions contain about 0.25 mM of oxygen at 25 °C, effective
oxygenation of the reaction mixture is needed to convert higher
concentrations of substrate. However, supplying pure oxygen
directly can be dangerous because of the risk of explosion.
Studies that describe the oxygen limitation for biocatalytic

oxidations include a study on whole cells expressing AcCHMO
to convert bicylco[3.2.0]hept-2-en-6-one.180 The authors
observed a limitation of oxygen at a particular cell density (>2
gcdw/L), above which the reaction rate was decreased. In this
regard, it seems that the use of whole cells can be a disadvantage
compared with isolated enzymes because cells seem inefficient at
taking up oxygen.180 To improve cellular concentrations of
oxygen and study the effects, BVMO reactions were tested in
whole cells coexpressing a bacterial hemoglobin gene.309 It was
observed that the presence of the bacterial hemoglobin gave a
43% improvement compared with the control, conversion of
cyclohexanone by CHMO.
To address the limitation of oxygen for larger scale reactions,

one can employ devices that can effectively transfer oxygen to a
reactor.310,311 A recent study described a strategy to monitor the
oxygen concentration of a reaction, providing accurate values,
despite the presence of multiple phases (such as biphasic
systems).312 Although typically the subject of oxygen limitation
is addressed at the process stage of a BVMO application, oxygen
monitoring technologies can help identify oxygen limitation at
an early stage, such that a solution can be prepared before scaling
up.

Product and Substrate Inhibition. Because product
inhibition appears to be a general issue for CHMOs, a few
studies addressed this specific aspect. In one case, AcCHMO
was subjected to mutagenesis to make variants which suffer less
from product inhibition.313 In this study, 4200 clones were
screened, resulting in 6 hits, with the best mutant displaying a 2-
fold higher resistance compared with wild-type CHMO at 600
mM ε-caprolactone. Engel et al. recently characterized a BVMO
from Aspergillus f lavus, which had no sign of inhibition from
substrate or product using concentrations up to 100 mM and
compared conversions with a few CHMO variants.209 In other
studies,179,207 the authors sought to minimize inhibition by
optimizing cascade reactions through computational simula-
tions, combined with in vitro experiments. The computational
simulations incorporate many variables, such as the kinetic
properties of the enzymes and then predict the course of the
reaction. In principle, the use of a cascade reaction with an
alcohol dehydrogenase, starting from cyclohexanol, will keep the
cyclohexanone concentrations low, thereby addressing some
substrate inhibition. Nevertheless, it is a delicate task to optimize
all parameters, such as the rate of substrate feeding, and reliable
data of kinetic parameters is very important in order to make
accurate predictions. When substrate and/or product inhibition

Table 5. Preparative-Scale Reactions with BVMOs

product
product concentration (g/L) +

isolated yield enzyme
biocatalyst yield
(gproduct/genzyme) TTNb ref

esomeprazole 50 (∼151 mM) 87% yield (28.7 g) AcCHMO (multiple mutant) 50 8841 271

bicyclo[3.2.0]hept-2-en-6-one lactone 4.5 (∼41 mM) 55% yield (0.49 kg) AcCHMO 3a n.a.
(wc)

284

(Z)-11-(heptanoyl-oxy)undec-
9-enoic acid

41 (132 mM) 68% yield (75 g) Pseudomonas putida BVMO
(E6-BVMO C302L)

1.6a n.a.
(wc)

218

3,3,5-trimethyl-caprolactone 24.4 (∼156 mM) 76% yield
(1.9 kg)

TmCHMO 0.6a n.a.
(wc)

314

6-hydroxy-hexanoic acid 20 (∼151 mM) 81% yield (8.1 g) AcCHMO C376L/
M400I/T415C/A463C

0.7a n.a.
(wc)

315

lactone of (2R, 5R, 6R)-6-
methyldihydrocarvone

0.82 (4.5 mM) 90% yield (49 mg) CHMO_Phi1 6.7 2250 295

precursor of Nylon-9 8 (70 mM) 70% yield (33 g) CPDMO 2.3a n.a.
(wc)

316

agproduct/gcdw = gram product per gram cell dry weight, and gproduct/gcww = gram product per gram cell wet weight. TTN = total turnover number,
representing the amount of molecules converted per molecule of enzyme. bTotal turnover number. wc = whole cells.
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are observed, the approach of kinetic modeling could be valuable
to pinpoint bottlenecks, and help to choose the right solution.
Alternatively, new enzyme variants or mutants could be
identified, which address this important shortcoming.
Biotechnological Application: Scaled-Up Applica-

tions. Until now, only a few examples of industrial-scale
applications of BVMOs are known (Table 5). One actual
industrial process involves a CHMO variant for the
enantioselective sulfoxidation of pyrmetazole, to produce
esomeprazole.271 Initially, the wild-type CHMO from Acineto-
bacter had barely any activity on the substrate. After 19 rounds of
evolution, partially random and partially rational, the biocatalyst
had several improved features: high activity (∼140 000 fold
improvement in productivity over wild-type), enantioselectivity
(>99% ee), low percentage of overoxidation to sulfone, and high
cofactor efficiency (less NADP+ was needed). After process
optimization, reactions at 50 g/L substrate could be performed,
resulting in a yield of 87%, with 99.9% ee and 99% purity (based
on HPLC). Although total turnover numbers are moderate
(Table 5), they are acceptable for such a high-value product. The
flipside of this example is that most research groups and
companies do not have the means (in terms of equipment and/
or financial) to perform 19 rounds of evolution and to do this
kind of process optimization. Although studies are finding
promising results, the academic route of biocatalyst develop-
ment is comparatively slow, which partially explains the lack of
industrial application of BVMOs.
Another BVMO-based application that has been studied to

bring to industrial scale is the regioselective oxygenation of long-
chain fatty acids into esters. These ester products can
subsequently be hydrolyzed to obtain valuable medium-chain
acid products, including ω-hydroxycarboxylic acids, α,ω-
dicarboxylic acids, and ω-aminocarboxylic acids.317 Interest-
ingly, activity on such substrates is the primary function of many
BVMOs in nature, as they are often coexpressed with esterases
that catalyze subsequent hydrolysis of the esters. Several
BVMOs have been identified that can act on long-chain fatty
acids, in particular BVMOs from Pseudomonas species,217,318,319

such as PaBVMO from Pseudomonas auruginosa, and
PpKT2440-BVMO from Pseudomonas putida.217 The PaBVMO
was recently characterized and is able to produce the abnormal
ester products from long-chain aliphatic keto acids (C16−C20),
whichafter hydrolysisyielded α,ω-dicarboxylic acids that
are otherwise difficult to produce.319 The PpKT2440-BVMO
could be applied in combination with an ADH fromMicrococcus
luteus to convert ricinoleic acid to (Z)-11-(heptanoyloxy)undec-
9-enoic acid. However, this BVMO was difficult to express in E.
coli, and to improve expression, several strategies were explored,
including the use of chaperones,181,320 enzyme fusion,320,321

polyionic fusion tag engineering, and the use of a constitutive
promotor.219 Through the polyionic tag and constitutive
promotor, the reaction could reach a product concentration of
21.9 g/L on a 70 L scale. To further improve the whole cell
application for the conversion of ricinoleic acid, and other long
chain fatty acids, more strategies were applied: coexpression
with the fatty acid transporter FadL,320,322,323 stability engineer-
ing of the BVMO,218,324 glucose feeding for improved metabolic
stability,218 and use of a stable plasmid system.324 Through the
stability engineering and glucose feeding, a product concen-
tration of 41 g/L (132mM)within 8 h could be achieved (on 3 L
scale). Recently, an overview of enzymatic fatty-acid trans-
formations was published, including many cases that involve
BVMOs.325 These studies illustrate the work that is needed to

bring lab-scale biocatalysis of BVMOs to an industrial
bioprocess. Key obstacles in the case of PpKT2440-BVMO
were expression and stability.
Because some BVMOs are able to produce lactones from

cyclic ketones, which can be used to make various polyester
materials, studies have looked into scaling up the production of
lactones with BVMOs. The Mihovilovic group could demon-
strate the production of a Nylon-9 monomer on 40 g scale,
employing CPDMO in whole cells and carefully addressing
substrate and product inhibition through substrate feeding and
product removal (Table 5).316 An incomplete conversion of
around 75% could be reached, which was attributed to the
particular reactor at hand, which could not ensure proper mixing
of the ketone substrate. The authors recommend future studies
to monitor the reaction through off-gas measurements, similarly
to Meissner et al.312 To explore the synthesis of branched
polyesters from biobased sources, Delgove et al. investigated the
biotransformation of a set of seven substituted cyclic ketones
with three self-sufficient BVMO fusions.326 The abnormal
lactone products, which can be formed by some BVMOs, could
represent novel building blocks for polyester synthesis.
Conversion was demonstrated for four of the cyclic ketones,
two of which resulted in mixtures of normal and abnormal
product. In subsequent work, the authors upscaled the
transformation of 3,3,5-trimethylcyclohexanone. TmCHMO
was used as biocatalyst because of its stability and solvent
tolerance and was paired with PTDH as a fusion for cofactor
recycling.327 Crucially, some strategies were used to overcome
substrate inhibition and product solubility. By employing slow
substrate feeding, methanol as cosolvent, and a biphasic system
with toluene as second phase to sequester the product, a
respectable space-time yield (STY) of 1.2 g L−1 h−1 could be
reached. In a similar study, TmCHMOwas used in combination
with a separate GDH as recycling enzyme, and in a setup with
continuous substrate feeding, a STY of 1.35 g L−1 h−1 was
reached.328 One approach to greatly enhance the total turnover
number of a biocatalyst is through immobilization and reuse of
the immobilized biocatalyst. The same target reaction was also
studied with immobilized TmCHMO.329 GDH was either
coimmobilized or individually immobilized and added sepa-
rately to the reactions. The coimmobilized enzymes could be
reused while maintaining full activity for five rounds and beyond
that gradually decreased, obtaining 60% conversion after 14
reuses. Immobilization of enzymes for this conversion was
recently optimized, by applying a different GDH, and testing
different supports. Compared with the soluble TmCHMO and
GDH, the immobilized forms had a 3.6-fold and 1.9-fold
improvement, respectively, in terms of the biocatalyst yield
(37.3 g g−1 for TmCHMO and 474.2 g g−1 for GDH).330 To
investigate the relevance of these biocatalytic studies on 3,3,5-
trimethylcyclohexanone conversion in terms of applicability and
environmental impact, a life-cycle analysis (LCA) was done.314

The biocatalytic process327 was compared with a chemical
synthesis route, and no clear difference in climate change impact
was found between the two routes. However, the environmental
impact of the biocatalytic process would be lower compared
with the chemical route when solvents and enzyme are recycled.
The study details what factors to consider when developing a
biocatalytic process, and the LCA approach can provide useful
insight into the feasibility of a potential process.314 A very recent
study looked to scale up the reaction on 3,3,5-trimethyl
cyclohexanone, with TmCHMO and GDH. First, the authors
tested four different formulations: cell-free extract, whole cells,
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fermentation broth, and sonicated fermentation broth. For
TmCHMO, the untreated fermentation broth was chosen for
performance, and least amount of costs, and GDH was added
separately. On a 100 L scale, the 2.58 kg obtained material
contained 84.5% product, and the final yield was 76%.331

Although the biocatalyst yield (gram product per gram enzyme/
cells) seems much lower compared with the same reaction with
immobilized enzyme,330 it is actually difficult to compare these
values, since a lot of costs go into the preparation and
immobilization of the enzymes, in contrast to the fermentation
broth used in this study.331 This demonstration is a great
example of how to reach large scale production with a BVMO
reaction by addressing important challenges, in particular the
oxygen limitation through careful supply of pure oxygen.
Despite the success, it would be interesting to see whether the
low levels of cofactor in the cells affected this particular reaction,
as was described by Milker et al.179

The low number of preparative-scale applications (Table 5)
can be explained by considering the obstacles that arise from
upscaling. Oxygen limitation and substrate inhibition have been
successfully addressed in recent demonstrations,316,331 although
one could argue that oxygen supply remains suboptimal with
respect to using whole cells.180 On the other hand, obstacles
such as enzyme stability and product inhibition are not easy to
solve in any general way, since these will be case specific due to
the use of different BVMOs and different products. A recent
review on preparative-scale biotransformations with redox
enzymes states that a better characterization of BVMOs,
together with addressing oxygen mass transfer, will bring more
applications in the future.332 Yet, we want to emphasize that the
characterization of BVMOs, or development of BVMO variants,
that meet the requirements of an industrial application (high
expression, high stability, low inhibition, high enantioselectivity)
is a major challenge. From the examples (Table 5), we can
conclude that scaling up a BVMO reaction typically demands
(1) resources, such as time to engineer the biocatalyst218,271 and
the process, and (2) facilities, such as proper reactors with
equipment to control oxygen levels.316,331 Successful industrial
implementation of BVMO-processes will rely on companies that
can bring together expertise in enzyme and process develop-
ment.
Biotechnological Application: Examples of Cascade

Strategies and Novel BVMO Applications. Over the past

decades, some progress was made in optimizing large-scale
reactions, employing strategies such as biphasic systems,333

whole cell conversions,305 and enzyme immobilization.329,334,335

Reviews focusing on biocatalysis with BVMOs from prior years
are referred to for a broader overview.201,336−338Alongside these
developments, several groups have explored different reactions
and combinations of reactions with BVMOs, of which we
present an overview, focused on studies from recent years. In
particular, these combinations of reactions include cascades, as
well as chemoenzymatic routes.
To facilitate cofactor recycling, an elegant strategy is to use a

cascade reaction. For BVMOs, a frequently researched example
is the cascade reaction with CHMO and an alcohol dehydrogen-
ase (ADH), starting from cyclohexanol (Scheme 7, blue box).
The alcohol oxidation generates NADPH and cyclohexanone,
which is then oxidized by CHMO to ε-caprolactone. Several
groups investigated and developed this cascade reac-
tion.208,315,339 Initially, problems were encountered concerning
substrate and product inhibition. Higher levels of conversions
could be achieved by keeping the substrate concentration low,
through slow feeding, and removal of the lactone product by a
subsequent polymerization/hydrolysis using a lipase such as
CAL-A (Scheme 7).340 This biocatalytic route was recently
applied in whole cells that coexpress CHMO and ADH on a 0.5
L scale, feeding of cyclohexanol, and addition of a lipase for
hydrolysis of caprolactone to 6-hydroxyhexanoic acid (Table
5).341 After optimization, the process at 0.5 L scale could reach a
product titer of 20 g L−1, with an isolated yield of 81% of 6-
hydroxyhexanoic acid.
To address the cofactor balance, a different kind of cascade

reaction was developed by Hollmann and Kara.249 With the
production of lactones in mind, an alcohol oxidation reaction of
a linear diol was run in parallel in one pot with a Baeyer−Villiger
reaction on a cyclic ketone catalyzed by CHMO (Scheme 7, red
box).249 As alcohol oxidation by an alcohol dehydrogenase
(ADH) depends on NAD(P)+ and produces NAD(P)H,
combining this reaction with a BVMO or FMO reaction brings
a redox balance. When one alcohol group of a linear diol
becomes oxidized, the molecule undergoes cyclization to the
hemiacetal or lactol. This lactol can be oxidized again to form a
lactone (Scheme 7, red box). However, since the ADH generates
twomolecules of NAD(P)H in the conversion of one diol to one
lactone, the substrate concentrations should be 2:1 of FMO

Scheme 7. Overview of Biocatalyst Combinations for Cascades Involving Cyclohexanol and CHMOa

aBlue box: redox-neutral cascade from cyclohexanol to ε-caprolactone. Red box: ADH conversion of 1,6-hexanediol, which can be combined with
cyclohexanone conversion by CHMO to recycle NADPH.249 A cascade starting from cyclohexane involving a P450 monooxygenase was
described.342 Unsaturated cyclic alcohols or unsaturated cyclic ketones can be used with ene-reductase (ER) cascades, to make chiral
lactones.343,344.
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substrate to ADH substrate. This approach was termed
convergent cascade, since two different substrates converge to
the same product; the lactone. The Kara group later made an
analogous combination, to produce γ-butyrolactones using
RjFMO-E (Scheme 8b).162 An interesting aspect of that study is
that the FMO that was used to perform the Baeyer−Villiger
reactions could accept NADH, making it a more feasible process
compared to an NADPH-dependent reaction, considering the
higher cost of NADPH303 and its inferior stability.345

A related strategy is to create a fusion of a cofactor recycling
enzyme with a BVMO. This approach enables coexpression of
both enzymes (as a fusion enzyme) and simplifies purification,
whole cell conversions, and coimmobilization. Enzyme fusions
with BVMOs have been reviewed recently346 and thus will only
briefly be discussed here. One recent study looked at fusions of
three cofactor-regenerating enzymes with TmCHMO: glucose
dehydrogenase (GDH), phosphite dehydrogenase (PTDH),
and formate dehydrogenase (FDH).347These were compared in
conversions and tested with various substrates and cosolvents,
including a deep eutectic solvent (DES). One particularly
efficient setup consisted of a natural DES (NADES) with
glucose and the GDH-TmCHMO fusion, in which the NADES
enables higher substrate loading, while also containing excess
glucose to push NADPH recycling by GDH. Recently, following
up on the convergent cascade (Scheme 8b),162 fusions of the
ADH and FMO were created to produce γ-butyrolactone in an

unusual setup, using organic solvent.348 Studies in the past have
found that enzymes can actually be more stable and active in an
organic solvent, though the use was limited to lipases and
esterases.349 However, the ADH-FMO reaction is more
challenging as it relies on NADH, which is why the authors
chose to fuse the two enzymes. Cell-free extract from cells
expressing the enzyme fusion was lyophilized and subsequently
added to organic media with 5% (v/v) water, to which the two
substrates (diol and cyclic ketone) were added.348 Although the
yield was limited (27%), the fusion enzyme was able to perform
the cascade reaction in this microaqueous media, and out-
performed the combination of the separate enzymes. Moreover,
no external NADH was added, which is appealing in terms of
applications.
The approach of enzyme fusion is also very suitable for

multienzyme cascade reactions. In some cases, the fusion
outperforms the combination of separate enzymes, which is
linked to an effect of the proximity of the enzymes called
substrate channeling.350−352 In 2013, Jeon et al. developed
fusions of ADHs with BVMOs to convert hydroxy fatty acids
into esters, in whole cells expressing the fusion enzyme (Scheme
8a).321 The authors could demonstrate that the fused enzyme
had a higher level of conversion for the cascade reaction. A
similar pair of ADH with TmCHMO was fused to produce ε-
caprolactone from cyclohexanol.353 Although the fusion was
more productive than the separate enzymes, substrate feeding

Scheme 8. Examples of Cascade Reactions Involving BVMOsa

a(a) Conversion of hydroxylated long-chain fatty acids to produce esters.181,218,219,320−323 The cascade could also start from an unsaturated
precursor with a hydratase to make the hydroxyl group320 or with a P450 to perform hydroxylation. (b) Convergent cascade analogous to the
reaction displayed in Scheme 7, red box.249 This particular cascade relies on NADH, through the use of RjFMO-E.162 The same reaction was also
used with fused enzymes in organic solvent.348 (c) Cascade from 2-butanol to methyl propionate (the first product, abnormal), a precursor for
methyl methacrylate.82,83 (d) Various monoterpenoid ketones can be transformed to obtain chiral lactones, through ene-reduction by an ene-
reductase (ER) or old-yellow enzyme (OYE) followed by lactonization by CHMO.355−357 (e) A chemoenzymatic route that starts with Baeyer−
Villiger oxidation, which is enantioselective (> 99% ee), and is followed by a SmI2−H2O mediated radical cyclization reaction.358 The cyclization is
completed by the third step, which is an alcohol oxidation by DMP (Dess−Martin periodinane) in dichloromethane. The two chemical steps
maintained the chirality of the CHMO product, and the final products could be obtained with >99% ee.
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and product removal through a lipase were needed to obtain full
conversions, as was described previously (Scheme 7).340 This
fusion of an ADHwith TmCHMOwas also applied for a process
to convert 2-butanol to methyl propionate (Scheme 8c), which
is a precursor for the plastic feedstock methyl methacrylate.354

Prior to that study, TmCHMO was engineered to give higher
conversion and a higher ratio of the abnormal product.295

Another study fused CHMO with an ene-reductase to enable
cascades starting from an unsaturated cyclic ketone, or
unsaturated cyclic alcohol by including an alcohol dehydrogen-
ase as third enzyme, to make chiral lactones (Scheme 7 and
Scheme 8d).344

Other groups have also explored the potential of applying
BVMOs for the production of lactones, in this case from
monoterpenoid ketones, and followed-up with the polymer-
ization of the products. In one study, a novel CHMO was
applied, after characterization, crystallization, and engineering to
steer the regioselectivity.55 The CHMO_Phi1 structure was
then used to perform modeling and simulations to explain the
change in regioselectivity of the mutant. For menthone and
dihydrocarvone, biocatalytic conversion could be demonstrated
as well as polymer synthesis. In another study, analogues of (R)-
(−)-carvone were used as precursors for a reduction reaction
with Old-Yellow Enzymes (OYEs), and subsequent Baeyer−
Villiger oxidation by CHMO_Phi1 (Scheme 8d).355 Reactions
could be scaled up to 100 mg, demonstrating preparative
biocatalytic synthesis of chiral caprolactones (Table 5).
Dihydrocarvide was also produced through a whole cell
conversion by incorporating a BVMO and OYE, alongside a
limonene synthesis pathway.356 This proof-of-principle study
demonstrated the production of a renewable bioplastic
monomer starting from glucose, through precise expression of
the required enzymes. An important aspect of the conversion of
monoterpenoid ketones by BVMOs is the chirality of the
substrate and/or product. This was demonstrated in a study
which used combinations of enoate reductases and various
BVMOs in cascade reactions to convert (+)- and (−)-carvone to
six different carvo-lactone stereoisomers (Scheme 8d).357 In a
study by Stamm et al., a specific polyester with a ring was
targeted, and using retrobiosynthesis, a chemoenzymatic route
was devised to obtain the needed lactone from pinene.359 For
the BVMO step in that route, the biocatalyst was engineered in
order to accept the substrate. Recently, an overview of
(chemo)enzymatic routes for (lactone) monomer production
was published, including several examples of BVMO reac-
tions.360

Since the BVMO-catalyzed Baeyer−Villger oxidation is often
very selective, it can be a synthetically useful way to access chiral
precursors for various synthesis routes. One example is a
chemoenzymatic approach where chiral lactones are produced
with AcCHMO, which are then converted to cycloheptanols and
cyclooctanols through a radical cyclization reaction involving
SmI2−H2O (Scheme 8e).358 The products from this approach
contain structural components that are present in certain
anticancer and antibacterial drugs. In another chemoenzymatic
approach, Zhang et al. devised a cascade reaction starting with a
photocatalyzed reaction, of which the product was subsequently
converted with BVMOs, among other enzymes.361However, the
two catalysts were incompatible, and higher conversions were
obtained when the two steps were done separately. The
challenges for applying such chemoenzymatic cascade reactions
were discussed in a recent minireview.362 Another chemo-
enzymatic route involving a BVMO to produce (R)-Taniguchi

lactone was recently studied.216 Two novel BVMOs were used,
and the authors describe several other cyclic ketones that can be
converted with these biocatalysts, with varying degrees of regio-
and enantioselectivity. These recent examples show that
BVMOs can be useful in particular synthesis routes and allude
to a broader range of possible applications with these
biocatalysts.
The development of strategies, like enzyme fusion, use of

cosolvents, and cascade reactions have shown to be meaningful
steps on a path toward biotechnological application. However, it
is a path that still needs further exploration in order to meet the
demands of an industrial process. The studies from the recent
years show the variety of products that can be accessed through
BVMOs. Given the limited turnover numbers that are reached in
these studies, we conclude two things: (1) with the current state
of BVMOs, any industrial application can only be economically
feasible if the products are of high value (such as
esomeprazole271), and/or through thorough optimization of
the biocatalyst and process. (2) For the application of BVMOs
for bulk chemicals (e.g., monomers) there are some
examples,316,331 though more work needs to be done with
respect to biocatalyst loading (in other words: operational
stability and activity). So far, some studies have moved in the
direction of biotechnological application and have applied
BVMOs for the synthesis of various compounds (Table 5). As
BVMOs become more suited, reliable, and recognized for
biocatalytic application, it is likely that more groups and
companies will look to harness the utility that these biocatalysts
can provide. Though, to realize scaled-up applications, joint
efforts will be needed that bring together different expertise,
ranging from enzyme engineering to process development, to
effectively tackle the specific challenges.

■ CONCLUSIONS AND FUTURE DIRECTIONS

Biotechnology is at an exciting crossroad where ever more
discoveries lead to the developments of applications in the
various subdisciplines that have (e)merged. Biocatalysis is
maturing to a serious alternative to classical chemical trans-
formations and this hopefully can contribute to a greener
industry and new products at the same time. Baeyer−Villiger
monooxygenases are intriguing catalysts for a demanding
reaction that allow unrivaled control of the reaction selectivity.
Numerous variants have been described that feature activities
suitable for countless reactions of synthetic value. Limitations,
such as cofactor dependency, limited stability, and undesired
specificities are clearly identified and active research is making
progress in overcoming these. A suitable tool to that end is
enzyme engineering, and directed evolution has been most
effective in altering undesired enzyme properties. Computa-
tional design has a great potential, but needs to become more
reliablea task that will not least be facilitated by unravelling
the last remaining mechanistic open questions of BVMO
catalysis.
Themost important open questions lie in the mechanism, and

they may or may not all be connected to each other. The
uncertainty about the kinetic step of BVMOs found to be rate-
limiting needs to be resolved. If it turns indeed out to be a
conformational change, its nature (side-chains, loops, cofactors,
domains?) needs to be elucidated. In relation to that,
uncertainties in the exact position of the substrate during
catalysis must be clarified.50 Only if these uncertainties are
dispelled can computational analyses be taken fully seriously and
used in a predictive way. This will hopefully largely reduce the
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workload currently required to engineer desired activities and
allow the design of tailor-made mutants for specific substrates.
Similarly, the puzzle of substrate promiscuity will then need to
be connected to these insights. Possibly related is another
mechanistic open questionthe reduction of the flavin by
NADPH. The incoherency of the stereochemistry of hydride
transfer with the sliding mechanism is not just a curiosity,50 it
will also be essential in enabling the engineering of true
dependency on the dephosphorylated cofactor.
Next, the issue of substrate and product inhibition has been

largely unaddressed. The reason may be that so far, the low
stability often has masked this limitation. However, with new
homologues and engineered variants, this issue has become and
will be the more important new bottleneck. Also here, an
approach aiming to tackle the underlying cause, and not just the
symptoms would be desirable. However, until cleverly designed
experiments are able to establish the mechanism of inhibition
and protein engineering can be applied to overcome it, another
focus will lie in process design and engineering. Chemo-
enzymatic systems employing (co)solvents and cascade
reactions have already become popular and many more
examples are expected to be developed in the future.
An extended knowledge will also be valuable for stability

engineering, where seemingly distant mutations can sometimes
abolish activity.250,268Although the stability of BVMOs has been
tackled, it can be doubted that this is enough to reach a broad
application. However, with so many thermo- and hyper-
thermostable enzymes known from other enzyme families,363

it seems fair to speculate that it is only a matter of time until a
BVMO representative will be discovered as well. Other
approaches such as ancestral sequence reconstruction364,365

could also create thermostable BVMOs that likely show a broad
substrate scope.
Lastly, the stability of the peroxyflavin should be better

investigated, as uncertainties about variations in the mode of
uncoupling exist.178 While the influencing factors are largely
unknown and of academic interest, improvements in oxygen-
ation coupling will also make biotechnological BVMO reactions
more reliable, efficientand thusrealistic.
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(229) Romero, E.; Goḿez Castellanos, J. R.; Gadda, G.; Fraaije, M.
W.; Mattevi, A. Same Substrate, Many Reactions: Oxygen Activation in
Flavoenzymes. Chem. Rev. 2018, 118, 1742−1769.
(230) Henderson, M. C.; Siddens, L. K.; Morre,́ J. T.; Krueger, S. K.;
Williams, D. E. Metabolism of the anti-tuberculosis drug ethionamide
bymouse and human FMO1, FMO2 and FMO3 andmouse and human
lung microsomes. Toxicol. Appl. Pharmacol. 2008, 233, 420−427.
(231) Chen, G.-P.; Poulsen, L.; Ziegler, D. Oxidation of aldehydes
catalyzed by pig liver flavin-containing monooxygenase. Drug Metab.
Dispos. 1995, 23, 1390−1393.
(232) Zhao, Y. Auxin biosynthesis and its role in plant development.
Annu. Rev. Plant Biol. 2010, 61, 49−64.
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(296) Hummel, W.; Gröger, H. Strategies for regeneration of
nicotinamide coenzymes emphasizing self-sufficient closed-loop
recycling systems. J. Biotechnol. 2014, 191, 22−31.
(297)Wang, X.; Saba, T.; Yiu, H. H.; Howe, R. F.; Anderson, J. A.; Shi,
J. Cofactor NAD(P)H Regeneration Inspired by Heterogeneous
Pathways. Chem. 2017, 2, 621−654.
(298) Doig, S. D.; Avenell, P. J.; Bird, P. A.; Gallati, P.; Lander, K. S.;
Lye, G. J.; Wohlgemuth, R.; Woodley, J. M. Reactor Operation and
Scale-Up of Whole Cell Baeyer-Villiger Catalyzed Lactone Synthesis.
Biotechnol. Prog. 2002, 18, 1039−1046.

(299) Sieben, M.; Steinhorn, G.; Müller, C.; Fuchs, S.; Chin, L. A.;
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