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The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of

the main pro-survival receptors in B cells. Its function is impressively documented

in humans by a homozygous deletion within exon 2, which leads to an almost

complete block of B cell development at the stage of immature/transitional B cells. The

resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia,

and impaired humoral immune responses. However, different from mutations

affecting pathway components coupled to B cell antigen receptor (BCR) signaling,

BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore,

BAFFR deficiency in humans is characterized by very few circulating B cells, very low

IgM and IgG serum concentrations but normal or high IgA levels.

Keywords: BAFF - B-cell activating factor, TNFRSF13C, BAFF-R, BAFF-R deficiency, B cell, NF-k B, primary

immumunodeficiencies

BAFFR STRUCTURE AND EXPRESSION

Structurally, BAFFR is an atypical representative of the TNF-receptor super-family. Members of
this family are typically characterized by several extracellular cysteine-rich domains (CRDs), which
serve for ligand binding as well as for ligand-independent assembly of receptor monomers into
dimers, trimers or multimers (1–6). Unlike most other TNF-R family members, BAFFR contains
only a partial CRD which serves for ligand binding as well as for self-assembly (7).

B lymphocyte development in human bone marrow proceeds through successive stages that are
defined by the immunoglobulin gene rearrangement process. After the assembly and cell surface
expression of functional IgM molecules, immature IgM+ B cells are tested for their reactivity with
self-antigens, which eventually can be corrected by receptor editing. Then, transitional B cells with
low avidity to self-antigens can leave the bone marrow, enter the circulation, and migrate to the
spleen where they complete these early steps of B cell development [reviewed in (8)]. BAFFR
[BAFFR = B cell activating f actor of the TNF-f amily receptor (9); a.k.a. BR3, Bcmd (10–12)]
expression starts when the immature B cells develop to transitional B cells (13, 14), which then
receive BAFFR-dependent pro-survival signals to rescue them from premature cell death (15–17).
At protein level, the BAFFR is expressed on the surface of all human peripheral B cell subsets except
for plasma cells and for centroblasts located in the dark zone of germinal centers. Its expression is
upregulated after the expression of functional B cell antigen receptors (BCR) in response to tonic
BCR signaling, which enhances BAFFR expression by immature and transitional B cells (15, 18).
Although the induction of BAFFR expression seems to depend on the expression of functional B
cell receptors, it can bemaintained inmice after the ablation of SYK, a key element of BCR signaling
(19), as well as in cells which were depleted from Ig-α (CD79A), an essential BCR component (20),
supporting in both cases the survival of B cells with impaired BCR-signaling. Figure 1 summarizes
the development of immature/transitional B cells and the expression of receptors for BAFF in the
different subsets.
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FIGURE 1 | Expression of BAFFR. TACI and BCMA in B cell development. Critical developmental steps depending on BAFF and APRIL-induced signals are shown by

the presence of the respective ligand.

LIGAND BINDING

BAFFR binds the TNF-like molecule BAFF [BAFF = B cell
activating f actor of the TNF-f amily (21); a.k.a. BLYS (22), TALL-
1 (23), zTNF4(24)] as single ligand (9, 12, 25). In contrast,
the two other closely related, BAFF-binding receptors TACI (T
cell activator and calcium modulating ligand interactor) and
BCMA (B cell maturation antigen) (24) can additionally bind to
APRIL [a proliferation-inducing ligand, (26)], another member
of the TNF-α family, which supports the survival of plasma cells
(27). TACI is expressed by activated B cells, marginal zone B
cells, switched memory B cells and by plasma cells (24, 28–30).
Compared to BAFFR, TACI has different functions by serving
on the one hand as decoy receptor (31) while triggering, on
the other hand, immunoglobulin class-switch recombination
(32). Different from BAFFR and TACI, BCMA is upregulated
in activated B cells and expressed constitutively by long-lived
plasma cells supporting their survival (33). Both ligands, BAFF
(21, 22) and APRIL (26) are type II transmembrane proteins
forming homo- as well as heterotrimers (22, 34–36). BAFF is
expressed as membrane-bound ligand (see also contribution of
Kowalczyk-Quintas et al. to this Research Topic), which is then
processed by the membrane-bound protease furin resulting in a
soluble form. Soluble BAFF exists as trimer and can associate into
a virus-like capsid called 60-mer, composed of 20 trimeric units
(35, 37, 38). The assembly of 60-mers depends on trimer-trimer
interactions mediated by a small loop called the “flap” (34, 35).
Without the flap region BAFF can still assemble into trimers,

which can bind to BAFFR but this form of BAFF does neither
initiate downstream signaling cascades nor does it support B
cell survival. Therefore, crosslinking of multiple BAFF-BAFFR
complexes via the flap-region is essential for BAFFR-dependent
B cell responses (39).

BAFF and APRIL are expressed by monocytes, macrophages,
dendritic cells, bone marrow stroma cells (21, 23, 40), and by T
cells (21, 41). The expression of both ligands increases under pro-
inflammatory conditions (42) and correlates inversely with the
expression of BAFFR and TACI (43).

BAFFR SIGNALING AND TARGET GENES

BAFF binding to BAFFR activates several downstream pathways
that regulate basic survival functions including protein synthesis
and energy metabolism required to extend the half-life of
immature, transitional, and mature B cells.

Like the TNF-receptor family members CD40, LTβR, and
RANK, BAFFR triggers the non-canonical NF-κB2-dependent
pathway (44, 45). NF-κB2 belongs together with NF-κB1, RelA,
RelB, and c-Rel to the group of NF-κB/Rel transcription factors
[reviewed in (46)]. Activation of NF-κB1 is a very rapid process
(47). UponMAP3K7 (TAK1)-dependent phosphorylation, IKKα,
IKKβ, IKKγ assemble into the inhibitor of kappa-B kinase (IKK)
complex and phosphorylate IkBα, the inhibitor of NF-κB1. This
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allows its proteasomal degradation and nuclear translocation
of NF-κB p50/relA and p50-c-rel heterodimers, which are
constantly generated by the association between the processed
form of NF-κB1/p105 and relA or c-Rel. In the nucleus, the
NF-κB heterodimers mainly act as transcriptional activators
regulating a plethora of target genes including the gene for
NF-κB2 (48).

Different from NF-κB1, the activation of the non-canonical
NF-κB2 pathway by BAFF is a slow and complex process (44)
which relies on the activation of the NF-κB inducing kinase NIK
(MAP3K14) (49, 50). In the absence of BAFF (or of other NF-
κB2-inducing factors), NIK binds TRAF3, which promotes the
proteasomal degradation of the kinase after its ubiquitinylation
by a complex with ubiquitin-E3 ligase activity composed of the
cellular inhibitors of apoptosis cIAP1 and cIAP2, TRAF2 and
TRAF3 (51). NIK degradation prevents the accumulation of the
kinase and the phosphorylation of NF-κB2 by IKKα (IKK1),
which itself is activated through phosphorylation by NIK (52).
When BAFF binds to BAFFR, it leads to the aggregation of BAFF
receptors which recruit TRAF3 to their intracellular part. This
allows the dissociation of the NIK-TRAF2/3-cIAP1/2 complex
(53–55), exposes the TRAF3 lysine residue K46 to ubiquitin
ligases and allows proteasomal degradation of TRAF3 (56).
By reducing the number of available TRAF3 molecules, newly
synthesized NIK can accumulate (53) and phosphorylate IKK1
(52). The active form of IKK1 then phosphorylates NF-κB2 p100
at the C-terminal serine residues 866 and 870 (50), which now
becomes a target of the E3 ubiquitin ligase βTrCP, which adds
ubiquitin to lysine residue K856. Ubiquitinylated NF-κB2 then
binds to the regulatory subunit of the proteasome (56) promoting
the cleavage of the p100 precursor into the active p52 form
which forms an heterodimer with relB and translocates into the
nucleus to regulate the transcription of NF-κB2 target genes.
The complexity of this multi-step reaction, which is dependent
on the relative concentration of TRAF and its association with
BAFFR (57) explains why BAFF-induced activation of NF-κB2
target genes is a slow process.

Downstream of NF-κB2 several target genes have been
identified. These include ICOSL, a co-stimulatory ligand for
ICOS, which is expressed by activated T cells, provides co-
stimulatory signals, and promotes the development of follicular
T-helper cells (58). Analysis of B cells fromNIK-deficient patients
underlines the role of NIK and NF-κB2 in activating ICOSL
expression as NIK-deficient cells do not upregulate ICOSL in
response to CD40L (59).

As pointed out above, BAFF binding to BAFFR recruits
TRAF3 to the receptor reducing the concentrations of available
TRAF3. This allows—similar to the accumulation of NIK—the
accumulation of the transcriptional regulator “cAMP response
element binding protein” CREB, which in resting cells is
initially complexed to TRAF3 inducing its ubiquitinylation and
degradation. Accumulation of CREB increases the expression
of its target gene Mcl-1 (60), a Bcl-family member with
powerful anti-apoptotic activity, which acts by stabilizing the
mitochondrial outer membrane (61). The deubiquitinating
enzyme OTUD7B represents another NF-κB2 target gene (62).
Activation of BAFFR increases OTUD7B expression and the

newly synthesized deubiquitinase then binds to TRAF3 resulting
in the formation of a high molecular weight complex including
OTUDB7, TRAF3, TRAF2, and cIAP1/2. This leads to the
deubiqutinylation and stabilization of TRAF3, which now can
bind and inactivate NIK again resulting in the downregulation of
BAFFR signaling. Thus, OTUB7 acts as negative regulator of the
NF-κB2 and limits BAFFR-dependent cellular activation (62).

In addition to NF-κB2 signaling, binding of BAFF to BAFFR
activates the phosphoinositide-3-kinase-dependent signaling
cascade. An elegant series of experiments carried out in mice
demonstrated that activation PI3K pathway by BAFFRmakes use
of components belonging to the B cell antigen receptor pathway
(63, 64). Similar to the B cell receptor (65), BAFFR-induced
signals remodel the cytoskeleton by interacting with a network
which includes the tetraspanin CD81, the co-receptor CD19
and the Wiscott-Aldrich syndrome interacting protein WIP (66).
This suggests that BAFFR seems to be part of a large complex
of transmembrane and membrane-associated proteins using
common signaling components that are activated in a context-
dependent manner. Downstream of PI3K, the AKT/mTOR axis
initiates the metabolic reprogramming of B cells resulting in
an increased cellular fitness and lifespan [reviewed in (67)]. In
mice, BAFF induces the PI3K-depenent phosphorylation of AKT
at both Ser437 and T308 (68, 69) allowing the phosphorylation
of downstream substrates including GSK3β, the transcription
factor FOXO, the small ribosomal subunit protein S6 and the
translation inhibitor 4EBP1. Since phosphorylated S6 activates
while non-phosphorylated 4EBP1 inhibits translation, BAFFR
is an important regulator of protein synthesis. In addition
to protein synthesis, BAFFR-dependent activation of the PI3K
pathway stabilizes MCL-1 by phosphorylating GSK3β and PIM2
(61, 68, 69), leading to enhanced mitochondrial function and
an increase in ATP production. Figure 2 summarizes essential
features of BAFFR signaling.

BAFFR PROCESSING

Besides the activation of several downstream signaling pathways
BAFF binding to BAFFR causes the shedding of the extracellular
part of BAFFR (70). The proteolytic cleavage of BAFFR is
catalyzed by the metalloprotease ADAM10 and requires the
co-expression of TACI. Since TACI is expressed by marginal
zone and by switched memory B cells, BAFFR shedding by
ADAM10 in response to BAFF binding affects mainly these
B cell subsets. After the extracellular part of BAFFR has been
released, its transmembrane part and the cytoplasmic domain
are internalized and translocated to lysosomes where they are
most likely degraded. Thus, BAFFR processing differs from the
shedding of TACI, which is cleaved constitutively by ADAM10
in the absence of ligand. Processing of TACI removes its
extracellular domain, which can act as decoy receptor for both
BAFF and APRIL (31). Similar to TACI, BCMA is also processed
constitutively, not by ADAM proteases but by γ-secretase (71).
As it has been described for Notch, γ-secretase also cleaves the
part of TACI which remains in the plasma membrane after the
extracellular part has been shed by ADAM10 (31), but it remains
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FIGURE 2 | BAFFR-induced intracellular signaling. Without BAFF, NIK is complexed to TRAF3 and degraded in the proteasome. BAFF binding to BAFFR recruits

TRAF3 to BAFFR and stabilizes NIK while TRAF3 is degraded by the proteasome. NIK activates the non-canonical NF-κB2 signaling pathway and allows nuclear

translocation of NF-κB2 p52/relB heterodimers. BAFF binding also activates the PI3K pathway, which shares common components with BCR signaling. The exact

mechanisms leading to PI3K activation are still not understood.

to be shown if the released intracellular form of TACI has a
biological function analogous to the intracellular part of Notch,
which participates directly in the transcriptional regulation of
target genes (72).

Since BAFFR shedding is induced by ligand binding to
BAFFR, the released extracellular domain of BAFFR is most
likely still complexed with BAFF preventing its function as
soluble decoy receptor like soluble TACI or BCMA. If BAFF
dissociates from soluble BAFFR, the soluble form of BAFFRmost
likely also looses its ligand binding activity, which also argues
against its decoy receptor function. As a result of the constitutive
shedding of TACI and BCMA, the surface expression levels of
both receptors are rather low (31, 71), and differs from BAFFR
expression levels, which are high on all B cell subsets except for
germinal center B cells (70).

Germinal center B cells undergo proliferation, somatic
hypermutation and immunoglobulin class-switch recombination
in the dark zone, from where they migrate to the light zone,
where they are selected by their affinity to their cognate antigen
into the switched memory B cell and long-lived plasma cell pool
(73). While light zone B cells express close to normal levels of
BAFFRs which are not bound to BAFF, BAFFRs expressed by
dark zone B cells are heavily loaded with BAFF inducing BAFFR-
dependent survival signals as well as BAFFR processing by
ADAM17. Thus, while BAFF-induced BAFFR processing limits
initial survival signals for dark zone cells (70), the survival of
light zone B cells is regulated by the affinity of their surface

immunoglobulins, which has to be above the thresholds set by
interacting T-follicular helper cells and by the competing IgG and
IgA antibodies secreted by plasma cells surrounding the B cell
follicle (74).

BAFFR AND B CELL SURVIVAL

From the analysis of the BAFFR encoding Bcmd mutation
discovered in the A/WySnJ mouse strain (10, 11) and after the
identification of BAFF as pro-survival cytokine for B cells (21, 75)
it became clear that both proteins form a ligand-receptor pair
which is essential for B cell survival (9, 12). Of interest, the
different mouse models revealed that not all B cell subsets are
equally dependent on BAFFR-induced survival signals. While
Baffr-deficient A/WySnJ or Baff- and Baffr-KO mice had much
less follicular and marginal zone B cells (B2 B cells) than the
corresponding controls, the inactivation of the Baff or Baffr
genes did not affect the population of peritoneal B1 B cells
(11, 25, 76). In the mouse, B1 cells form a distinct, innate-like
B cell subset, which develops before and shortly after birth and
is maintained by self-renewal through limited proliferation but
not, as follicular and marginal zone B cells, by de novo generation
from hematopoietic precursor cells [reviewed in (77, 78)]. Apart
from differences in CD5 expression, B1 B cells can be separated
into two subsets by the expression of plasma cell alloantigen
(PC1; a.k.a ectonucleotide pyrophosphatase phosphodiesterase 1;
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ENPP1). PC1low B1 cells develop from early B1 precursor cells
during fetal life and differentiate in the gut into IgA secreting
plasma cells (79). Interestingly, Baff - and Baffr-deficient mice as
well as BAFFR-deficient humans have decreased titers of serum
IgG and IgM but not of IgA (11, 25, 76, 80), which may be
due to the differentiation of BAFF-independent PC1low B1 cells
developing in the gut into IgA secreting plasma cells. Similar
to genetic ablation of BAFF and BAFFR expression, injection
of anti-BAFF (81) or anti-BAFFR antibodies (82) or of TACI-
Ig (83, 84) resulted in the depletion of transitional-2, follicular
and of marginal zone B cells but spared pro- and pre-B cells,
immature, and transitional-1 B cells. In addition, these depletion
experiments showed that switched memory B cells and plasma
cells can survive after depleting BAFF or blocking BAFF-BAFFR
interactions. Thus, the development and maintenance of the
follicular and marginal zone B cell pool strongly depends on
BAFF and BAFFR, whereas B1 B cells and switched memory B
cells can survive without BAFF, although they express similar
levels of BAFFR as the BAFF-dependent subsets. Future studies
have to reveal, why BAFFR is expressed on these cells and if it has
any function.

THE ROLE OF BAFFR IN B CELL
SELECTION AND AUTOIMMUNITY

BAFFR expression starts in the bone marrow when B cells
become IgM+ immature B cells, which undergo negative
selection for autoreactive B cells. Since BAFFR-dependent signals
prolong the survival of B cells, it was of interest to analyze
if BAFF binding to BAFFR plays a role in the selection of B
cells into the pool of mature B lymphocytes. Using a rearranged
immunoglobulin V-gene knock-in mouse model (18), R. Pelanda
and her group demonstrated that IgM+ IgD− autoreactive B
cells with low IgM surface expression express low levels of
BAFFR and do not respond to BAFF-induced survival signals.
In contrast, non-autoreactive IgM+ IgD− B cells expressing
more IgM on the cell surface also expressed, proportional to
IgM, more BAFFR and developed into IgM+ IgD+ CD21+

CD23− transitional-1 B cells. These cells respond to BAFFR
by developing into IgM+ IgD+ CD21+ CD23+ transitional-
2 cells and later into mature B lymphocytes as it had been
shown before in other mouse models (76, 81). A similar
conclusion was reached by the group of Rolink (85) by carefully
analyzing RAG-2 expression and B cell receptor editing by
mouse and human IgM+ immature B cells from bone marrow.
They found that BAFFR surface levels correlate directly with
IgM but inversely with RAG-2 expression and receptor editing.
Interestingly, anti-IgM treatment downregulates BAFFR on the
surface of immature and transitional B cells while it enhances
its expression on the surface of mature B cells (85). Since
the inactivation of two Rho-GTPase encoding genes Rac1 and
Rac2 does not only abolish BCR-induced intracellular calcium
flux and the activation of the PI3K pathway but also BAFFR
expression (86), BCR-dependent activation of Rac GTPases
seems to induce the transcription of the Baffr gene in immature
B cells.

B cells undergo a second phase of selection in germinal
centers. Since excess of BAFF promotes the development of
autoreactive B cells (75), BAFF-induces signals which interfere
with mechanisms regulating the selection of B cells in the
germinal center and with the equilibrium between BAFF-induced
survival of dark zone B cells and affinity-based selection of
centrocytes in the light zone. Genome-wide genetic association
studies carried out with samples from multiple sclerosis (MS)
and systemic lupus erythematosus (SLE) patients now provide
evidence that genetically encoded changes of BAFF levels result
in increased concentrations and correlate with the increased
risk of developing autoimmunity (87).The genetic change results
from a small deletion within the 3’UTR of BAFF mRNA.
The deletion creates a new polyadenylation site allowing the
premature termination of BAFF transcription. This shorter
version of BAFF mRNA lacks an important regulatory sequence
containing the binding site for miRNA-15a. This prevents micro-
RNA directed control of excessive BAFF mRNA resulting in 1.5
to 2-fold increase in BAFF levels in a gene-dosage dependent
manner. Like in the BAFF-transgenic mice, higher BAFF levels in
humans increase the numbers of circulating B cells, promote the
development of plasma cells, and result in higher serum IgG and
IgM concentrations in homozygous carriers of this TNFSF13B
variant (87).

Ablation of TACI expression or function not only cause
immunodeficiency but also increases the risk of developing
autoimmunity (88–90). The autoimmunity is now best explained
by the decoy receptor function of TACI. In humans, the TACI
variants C104R or C104Y, which reside in the second CRD
abolish ligand-binding activity of TACI without preventing
cell surface expression of the receptor. ADAM10-induced
processing therefore sheds soluble forms of TACI, which cannot
serve as decoy receptors to neutralize excessive BAFF levels.
Therefore BAFF levels are increased in TACI-deficient patients
(43) enhancing the risk of developing autoimmunity and
lymphoproliferation, two characteristic features described in
TACI deficiency in humans (89, 90) and mice (12, 88, 91).

However, point mutations or ablation of TACI expression
also causes immunodeficiency. This can be best explained by the
role of TACI in supporting T-independent immune responses
(32, 92–95) and the survival of plasma cells (28, 30).

BAFFR DEFICIENCY IN HUMANS

In humans, only two cases of BAFFR-deficiency resulting from
complete inactivation of the BAFFR encoding gene TNFRSF13C
have been described so far. In both cases, the autosomal-
recessive, homozygous 24bp in-frame deletion (80) removes the
codons of highly conserved eight amino acids (LVLALVLV)
from the transmembrane region of BAFFR, which extends
from residues (76–98). The truncated BAFFR protein is highly
unstable although in silico modeling predicts that the mutant
BAFFR protein would be able to form a new transmembrane
region between the resulting residues (70–92), which partially
overlaps the TM region of the wild type protein. The lack of
BAFFR expression causes an arrest of B cell differentiation at
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the transition from CD10+ immature/transitional 1 B cells to
transitional 2 / naïve and marginal zone B cells. The homozygous
mutation has full penetrance whereas the heterozygous deletion
is phenotypically indistinguishable from healthy donors. Many of
the immunological characteristics of human BAFFR deficiency
have been described in Baffr-/- mice. The common features
include very low numbers of circulating B cells, low IgM
and IgG antibody titers but increased levels of serum IgA.
Nevertheless, there are some clear differences between BAFFR-
deficient humans andmice. First of all, inactivation of the BAFFR
encoding Tnfsf13c gene in mice still allows normal development
of B1 B cells, whereas in BAFFR-deficient humans have neither
B1 B cells nor any other B cell subset, which would resemble
B1 B cells. However, if B1 B cells would develop in humans as
in mice from precursor cells during embryonic life and persist
by homeostatic proliferation (78, 96, 97), they might have been
disappeared in the BAFFR deficient patients like they also can
disappear in old mice. On the other hand, the severe block in the
development of follicular and marginal zone B cells might have
createdmore space for the expansion of B1 B cells which then also
would have had the chance to compensate the lack of these B2 B
cell populations and to develop into IgA secreting plasma cells in
the gut as it has been observed in mice (79). Interestingly, both
BAFFR deficient patients have an effective output of immature B
cells from bone marrow resulting in high numbers of transitional
B cells, which are comparable to much younger adults. Different
from Baffr-/- mice, both BAFFR-deficient humans suffered from
severe lymphopenia. This difference might also be age-related or
it might depend on differences regulating the size of the B cell
pool, which are not well understood but known to vary between
different individuals (98–100). Since IgM+ CD27+ marginal
zone B cells control infections with encapsulated bacteria (101),
the absence of marginal zone B cells resulted in defective T-
independent vaccination responses against Pneumovax, which
consists of a mixture of 23 different S.pneumoniae cell wall
polysaccharides. Notably, the low but detectable IgG response
against the T-dependent antigen tetanus toxoid, the high IgA
serum concentrations and the presence of IgA+ plasma cells in
the lamina propria of the small intestine showed that BAFFR-
deficiency does not completely exclude the development of B cells
into plasma cells. Similar results were observed in in Baffr−/−

mice in which BAFFR-deficient B cells were found to complete
the germinal center reaction (102) and to develop into switched
memory B cells and plasma cells which survive without BAFFR
(103). Upon depletion of BAFF by BAFF-neutralizing treatment
with anti-BAFF monoclonal antibodies (Belimumab, Benlysta)
or with soluble TACI-Ig (Atacicept), BAFFR-independent long-
term survival of memory B cells has also been detected in SLE
patients. These clinical studies show the strong (>75%) decline
of naive B cell numbers that is followed by an increase in
switched memory B cells (104, 105). Similar to the numbers of
switched memory B cells, IgG antibody concentrations, which
were build-up before starting the BAFF-neutralizing therapy,
remained constant whereas the increase of antibody titers against
neoantigens from influenza virus was significantly lower in
belimumab-treated patients than in controls (106). In a similar
study, the population of switched memory B cells did also not

decrease within a half year treatment of rheumatoid arthritis
patients with TACI-Ig fusion protein atacicept (107).

In addition to the BAFFR deletion, different missense
mutations have been described for BAFFR. The mutants
were found in patients suffering from common variable
immunodeficiency (CVID), the most frequent form of primary
immunodeficiency which is characterized by low or absent IgM,
IgG, and IgA serum titers, low numbers or absent circulating
switched memory B cells and the absence of circulating plasma
cells (108, 109). The BAFFR missense mutations change amino
acid residues in the extra- or intracellular part of BAFFR (110–
112) but they do interfere with B cell development or survival
in a way which would be comparable to the BAFFR deletion
mutant. Therefore, their contribution to the development of
CVID and antibody deficiency remains to be shown. In
this context, the P21R BAFFR variant, which is encoded
by a frequent single nucleotide polymorphism (rs77874543),
represents one exception. The proline 21 is located in a small loop
directly preceding the BAFF binding domain. Functional and
biochemical studies showed that this small loop region is essential
for ligand-independent association of BAFFR polypeptide chains
into multimers. It therefore represents the pre-ligand assembly
domain of BAFFR (7). Although the P21R-related defect in
BAFFR clustering reduces the number of BAFF molecules able
to bind BAFFR on the surface of B cells by at least 50%,
it does not interfere with the development of transitional B
cells to naive mature B cells. Since BAFFR multimerization
strongly enhances BAFF binding, B cells carrying the P21R
mutation develop less efficiently into IgM secreting plasmablasts.
Moreover, the homozygous P21R variant is completely resistant

TABLE 1 | Comparison between human and mouse BAFFR.

BAFFR Human Mouse

Expression starts in immature IgM+

D− bone marrow B cells

+ +

Low expression during receptor

editing

+ +

Expression induced by BCR signaling + +

Supports survival of transitional,

follicular and marginal zone B cell

+ +

BAFFR-independent survival of

switched memory and plasma cells

+ +

BAFFR-independent survival of B1 B

cells

B1 B cells not found +

High IgA levels in BAFFR deficiency + +

BAFF-induced BAFFR processing by

ADAM10

+ Not analyzed

ADAM17-dependent BAFFR

processing in dark zone GC B cells

+ Not analyzed

BAFFR-induced NIK-dependent

activation of NF- κ B2

+ +

BAFFR-induced activation of PI3K + (B lymphoma cells) +

BAFFR-induced activation of ERK + (B lymphoma cells) +

Autoimmunity induced by high BAFF

concentrations

Genetic association

with SLE and MS

+
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against BAFF-induced processing of BAFFR by ADAM10 (70):
The mutation seems to compensate its reduced ability to bind
BAFF. This feature may mask in part the impaired differentiation
of P21R+ B cells into IgM secreting plasmablasts and prevent the
development of overt immunodeficiency. Table 1 summarizes
the main differences in the studies of BAFF and BAFFR in
humans and mouse models.

PERSPECTIVES AND CONCLUSIONS

Studying the roles of BAFF and BAFF-receptors in experimental
systems allowed the development of drugs which are now used
to treat autoimmunity. So far, the BAFF-neutralizing monoclonal
antibody belimumab is the only FDA- and EMA-approved
biological drug for the treatment of patients with active refractory
SLE. Application of the anti-BAFF antibody leads to a persistent,
50% improvement in about half of the SLE patients as reflected
by lower anti-dsDNA titers, less corticosteroids, less cutaneous
manifestations and less flares, while its adverse effects are
similar as but less severe than the defects observed in BAFFR-
deficiency and include respiratory, digestive and urinary tract
infections [reviewed in (113)]. However, because of the lack
of matched control groups, the efficacy of belimumab is still
not completely clear. A second anti-BAFF antibody (tabalumab
or LY2127399) has been tested in phase III studies and had
similar effects like belimumab with an increase in complement
activity and a decrease of anti-dsDNA IgG titers and B cell
numbers leading to a mild clinical improvement in about
35% of patients treated in response to high dose treatment
(114). The combination of tabalumab and bortezomib in a
phase II study with multiple myeloma patients did not improve
progression-free survival of the patients indicating that BAFF
plays little or no role in disease progression (115). Similar
to SLE, hyperactivated B cells are also discussed to play an
important pathological role in the Sjögren’s syndrome (116).
Although in a trial study the treatment with the B cell-depleting
anti-CD20 antibody did not lead to any improvement (117),
new clinical trials with a novel BAFFR-specific monoclonal

(ianalumab/VAY736/NOV-5) just have started. Since increased
BAFF levels correlate with the risk of developing multiple
sclerosis (87), new clinical trials withMS patients with tabalumab
are now being performed (118). However, it should be kept
in mind that treatment of MS patients with atacicept resulted
in severe adverse effects, suggesting that in MS the blockade
of BAFF and APRIL removes B cells with regulatory and
immunosuppressive function and spares the pathological cells
(119, 120).

In summary, switched memory B cells can perfectly survive
without receiving BAFFR- or TACI-dependent pro-survival
signals and develop into IgA secreting plasma cells. Different
from B1 B cells and from switched memory B cells, the survival
of transitional, follicular and marginal zone B cells as well as the
differentiation of transitional B cells into follicular and marginal
zone B cells depends essentially on BAFFR-induced survival
signals, which increase the life span of these cells by stabilizing
mitochondria and by enhancing protein synthesis. Since IgA-
secreting plasma cells can develop even in the absence of BAFFR,
BAFFR-deficiency does not become manifest as dramatically as
NIK or NF-κB2 deficiency, which both strongly impair B and
T cell responses. Since BAFFR, TACI and BCMA play different
but critical roles in regulating B cell development and survival,
analysis of coupled signaling pathways, of processing reactions
affecting the half-life of surface BAFFR, TACI and BCMA and
of their protein interaction partners will provide deep insights
into the mechanisms regulating B cell selection, autoimmunity
and aging.
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