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Abstract—Recent HMM-based approaches to handwritten
word spotting require large amounts of learning samples and
mostly rely on a prior segmentation of the document. We propose
to use Bag-of-Features HMMs in a patch-based segmentation-free
framework that are estimated by a single sample. Bag-of-Features
HMMs use statistics of local image feature representatives.
Therefore they can be considered as a variant of discrete HMMs
allowing to model the observation of a number of features at
a point in time. The discrete nature enables us to estimate a
query model with only a single example of the query provided
by the user. This makes our method very flexible with respect
to the availability of training data. Furthermore, we are able
to outperform state-of-the-art results on the George Washington
dataset.

I. INTRODUCTION

Word spotting methods aim at providing efficient access
to textual information without the need to exhaustively pro-
cess and recognize the whole document contents. They are
especially suitable for handwritten documents, for which text
recognizers do not yet achieve satisfactory transcription results.
Huge amounts of cultural information are still locked in image
libraries, because they cannot be efficiently exploited. This has
motivated the document analysis community to deal with the
handwritten word spotting problem for more than fifteen years.

Inspired by the handwriting recognition field, many hand-
written word spotting approaches take advantage of the se-
quential nature of handwritten text. They model word images
as a sequence of column-wise extracted features that are finally
matched by a sequence alignment technique. The most widely
used features in the literature are word profiles [1] or fea-
tures combining global and local information. Very prominent
representations have been proposed by Marti and Bunke [2]
and Vinciarelli et al. [3]. Regarding the feature alignment,
techniques such as dynamic time warping [1], Hidden Markov
models (HMM) [4], [5] or neural networks [6] have been used
for spotting purposes.

However, such techniques rely on preprocessing methods.
In the layout analysis step the document is usually segmented
at word or line level. In the normalization step unwanted
variabilities are removed. The major problem is that failures
in preprocessing regularly lead to failures in the recognition.
Especially, accurate word segmentations are difficult to obtain
in handwritten and degraded documents. For that reason, sev-
eral segmentation-free word spotting techniques have emerged.

The most common approach [7], [8], [9] is to use a patch-
based framework in which a window slides over the whole
document. In such a framework perfect segmentations are not
expected and elements from surrounding words will appear
within a patch. With respect to the normalization the most
common methods [2], [5] include binarization, skew and slant
correction, baseline height and word width normalizations.
Representations, like profile-based features, tend to be very
sensitive with respect to the successful application of these pre-
processing methods. Artifacts from the segmentation introduce
further variabilities. Therefore, they are hardly applicable in the
scenario considered here. In previous publications like [10],
[8], [11] it was proposed to use features from the object
recognition field as a basis for representing both handwritten
and typewritten words. For instance, the work of Rodrı́guez-
Serrano and Perronnin [10] was one of the first contributions
that proposed to use local gradient histogram features (SIFT-
like, cf. [12]) for word spotting. The results obtained clearly
outperformed profile-based features. A major advantage of
using these gradient statistics is that they usually do not
require extensive preprocessing. In [8] neither normalization
nor segmentation techniques have been applied.

In this paper we propose to use a Bag-of-Features repre-
sentation powered with SIFT descriptors [12] to feed an HMM
as previously proposed in [11]. The Bag-of-Features HMM is
a generative finite state machine. Its distinctive characteristic is
its output modeling. At each point in time it generates a Bag-
of-Features representation. In comparison to a discrete HMM
this can be interpreted as generating multiple instead of only
a single symbol with respective probabilities. These HMMs
are used in a patch-based framework in order to bypass the
segmentation step. The descriptors are directly computed on
the gray-scale document image, omitting any prior normaliza-
tion. Since HMMs encode the sequential information of the
extracted features as well, we obtain better results than just
applying a Bag-of-Features model as in [8].

Bag-of-Features and HMMs have not been used in an
integrated methodology for word spotting before. In our ap-
proach we are able to combine the advantages and avoid the
disadvantages of both techniques. In [8] it was shown that
Bag-of-Features representations can successfully be applied
in a segmentation-free word spotting scenario. As for visual
recognition in general (cf. [13]), these representations tend to
be very robust with respect to different variabilities. This is a



consequence of the properties of the SIFT descriptor (cf. [12])
and the clustering step necessary to obtain the features that
a Bag-of-Features model is built upon. Furthermore, they do
not encode any specific spatial information what makes them
also robust against larger transformations. However, it has
been shown that for visual recognition tasks the complete
lack of spatial information is not helpful. Capturing loose
spatial context is improving the results significantly (cf. [14],
[8]). For the majority of word spotting methods, on the other
hand, it is a standard approach to model spatial information
by sequences of feature vectors. As described before, these
features are usually very sensitive with respect to segmentation
errors and writing styles. Often this requires complex models
with a high number of free parameters that have to be estimated
from training samples. Given the sequential structure and high
variability of handwritten script we propose a method that
deals with both aspects by combining a statistical sequence
model with a statistical model of unordered local features.
Our HMMs are initialized and trained with standard algorithms
(Baum-Welch) although we only use a single sample. There-
fore, our method will profit immediately in scenarios where
more training material is available.

In summary, the main contribution of this paper is the pro-
posal of a segmentation-free word spotting method that inte-
grates the Bag-of-Features principle with a statistical sequence
model. In addition, the statistical model is estimated only
from the query itself. In that sense the method is completely
unsupervised as it does not need any prior word transcription.

II. BAG-OF-FEATURES HMMS FOR SEGMENTATION-FREE

WORD SPOTTING

In a query-by-example word spotting scenario we have
to query a document collection with a sample word image.
Our proposed method can be divided into three parts. First,
the document images must be represented by local feature
representatives (Section II-A). In the second step a query
model is created by estimating a Bag-of-Features HMM. Only
the provided sample is used for that purpose. The model is
initialized and trained on the sequence of Bag-of-Features
representations obtained from the bounding box around the
query word image (Section II-B). In the last step the model
is decoded on the complete document collection. In order to
bypass the segmentation step, patches are densely sampled
from all pages. For each patch the maximum probability of
generating the respective Bag-of-Features sequence is com-
puted (Section II-C). For the final word retrieval, we order the
patches with respect to their scores and evaluate the method’s
performance. Figure 1 shows an overview of the depicted
process by visualizing the respective steps on a small section
from a document of the George Washington dataset (cf. [1]).

A. Document image representation

A Bag-of-Features representation is a histogram of features
that are representative for the problem domain. The first
step for obtaining those features is to densely extract SIFT
descriptors on each page of the document collection. The
descriptors are located on a regular grid of 5 × 5 pixels and
have a uniform scale of 40 × 40 pixels. Please note that no
scale space is involved. Given the nature of handwritten script,
it is also important to set the descriptor orientation to zero (cf.

[8], [11]), since we want to discriminate between horizontal
and vertical pen strokes. Figure 1 (1, 2) shows a section of
a document and the dense grid of SIFT descriptors. In the
next step, we can estimate features that are representative for
the document corpus. Therefore, the Generalized Lloyd [15]
clustering algorithm is applied on randomly sampled 5% of all
the extracted descriptors in order to build the codebook. After-
wards, we quantize each descriptor in the document collection
with respect to the most similar feature representative. In our
experiments we choose a codebook size of 4096. Figure 1
(3) exemplarily visualizes the quantization result. Each dot
corresponds to a descriptor location. Their colors indicate the
respective representatives from the codebook. Please note the
similar color patterns in visually similar parts of the document.
The choice of the parameters is derived from prior experiments
based on [8].

B. Model estimation

A query is defined by a bounding box around a word in
the document image. In Figure 1 (4) this is exemplarily shown
for the word the. The objective is now to estimate a Bag-of-
Features HMM that encodes its sequential visual appearance.
The description of the visual appearance is already given by
the features that are located within the query bounding box. In
order to reduce noise caused by the adjacent upper and lower
text lines, only features not extending farther than the upper
and lower boundaries of the query are used. On the other hand,
features overlapping with the left and right query boundaries
are kept. This way the beginning and ending of the word can
be modeled. The sequential visual appearance is then created
by sliding a window over the feature grid. For each position,
a Bag-of-Features histogram is computed from the features
within the window, in the following referred to as term vector.
Additionally, the term vector is normalized to unit length. This
is important for the integration with a probabilistic model.

For estimating the HMM, only the query’s term vector
sequence is used. We use a linear topology which only allows
transitions to the same and the successive state. The first step
in the initialization process determines the number of states
with respect to the length of the sequence. Then, the term
vectors are linearly mapped to the states. Transition and output
probabilities are defined for each state i. Let Ni be the number
of associated term vectors. The probabilities for self-transition
and transition to the successive state j are given by

aii =
Ni − 1

Ni

, aij =
1

Ni

(1)

Thus, a probabilistic process depending on Ni activations of
state i is described. Finally, for Ni associated term vectors fn

the output probability vector ci for feature representatives in
state i is given by

ci =
1

Ni

Ni−1∑

n=0

fn (2)

The output coefficients ci are, therefore, obtained by averaging
the observed term vectors. After initializing the model, it can
be refined with Baum-Welch training [16]. In this process
the model’s probability of generating the query’s term vector
sequence is optimized by an iterative maximum-likelihood



Figure 1. Overview of the proposed segmentation-free word spotting method. In the upper part of the Figure the document image representation is visualized.
In the lower part the estimation of a query model and the patch-based decoding with respect to that model are shown. Patch-based representations are evaluated
at each grid point. The scores obtained are visualized by interpolating them over the document image indicating low to high responses with blue to red colors.
Best viewed in color. Based on image from the George Washington dataset [1].

procedure. Figure 1 (4) visualizes the estimated model exem-
plarily. The color distributions indicate the feature probabilities
in each state. Please note that the described estimation process
can directly be adapted to cases where multiple training
samples are available. The number of states is then calculated
with respect to the shortest observed term vector sequence.
After initially associating each sample’s term vectors with the
respective states, the transition and output probabilities are
computed analogously.

In the model estimation a number of parameters have
to be defined. The sliding window width is set to 5 pixels
and the window shift to 2 pixels based on the feature grid
resolution and prior experiments from [11]. The effect of
pruning boundary features in the query bounding box, the
number of HMM states and the number of Baum-Welch
training iterations are thoroughly studied in Section III.

C. Model decoding

After the model is estimated, the document collection can
be queried in a patch-based approach. From each page in the
document collection patches of the same size as the query
are sampled. For efficiency reasons the patch shift is 50% of

the patch size. Figure 1 (5) illustrates this for the example
document section. In order to decode the query model with
the Viterbi algorithm, a term vector sequence is obtained from
each patch. As these vector sequences have always the same
length, scores can directly be compared with each other when
computing the optimal path probability. For further detail on
how to obtain the output probability given an observed term
vector, refer to [11]. An interpolated map of probabilistic
scores is shown in Figure 1 (6). Given the probabilistic scores,
the query results can be retrieved. For that purpose overlapping
patches are eliminated by non-maximum-suppression. Finally,
the remaining top 200 patches per page are returned.

III. EVALUATION

As in [8] and [9] we evaluate our method on the George
Washington dataset [1]. The document collection contains 20
handwritten pages with available annotations for 4860 words.
All these words are used as queries without any further ground
truth modifications, like stemming or stopword filtering. Our
results are reported in terms of mean average precision (mAP)
and mean recall (mR). For a single query we, therefore, order
all retrieved patches from all pages with respect to their
Viterbi scores. A patch is considered relevant if it overlaps



with a positive patch from the ground truth by more than
20%. The overlap is measured as fraction of the intersecting
area and the enclosing area spanned by the two patches. The
considered overlap threshold is the only difference in the
evaluation protocol compared to [8], [9]. This is due to the
larger patch shifts for larger query words (cf. Section II-C).
For a comparable threshold (of 50%) the ground truth is often
not hit as precisely as necessary. As this can be seen as a
limitation on the one hand, it emphasizes the robustness of
our method on the other hand. Achieving high mean average
precision scores is more difficult if relevant patches do not
overlap as much with the actual word in the document image.
Please note that as in [8], [9] the query itself might be among
the retrieved patches. No filtering as e.g. in [1] is applied.

In our experiments we focus on the evaluation of parame-
ters for modeling queries with HMMs. As discussed in Section
II-B, features have to be selected in the bounding box of the
query word image. The term vector sequence obtained with a
sliding window is then modeled by a number of HMM states.
Finally, the model is optimized with Baum-Welch training. In
the evaluation only one parameter is varied at once. In Tables
I, II and III the respective best observed reference scores and
their parameters are marked in bold. In the following we will
discuss the effect of different parameters on the mean average
precision. Effects on the mean recall are not as evident and
behave consistently over the experiments.

Table I shows results for different feature selection
schemes. No feature pruning refers to the scheme where all
features located within the query’s bounding box are used
in the term vector computation. Vertical pruning refers to
selecting only those features whose local image descriptors
do not extend beyond the lower or upper query boundary.
Horizontal and vertical feature pruning finally refers to the
scheme where feature descriptors are not allowed to extend
beyond any query boundary. The results clearly show the
benefit of pruning features at the top and bottom. This way
the noise resulting from the adjacent text lines can be be
reduced. The mean average precision drops by an absolute
4.7% when additionally pruning features at the sides. Figure
2a shows that this is due to the decreased performance of
shorter words. These are very likely to appear within longer
words. For instance, the can be found in they, them, other etc.
It is, therefore, especially important to model those words’
contexts in the sentence. For longer words Figure 2a shows
the importance of feature pruning. The more characters a query
contains the more context from the upper and lower text line
is encoded in the model, otherwise.

Table II shows the influence of different model lengths on
the retrieval performance. As described in Section II-B, the
number of states in the HMM is estimated based on the number
of frames, i.e. different sliding window positions, within the
query’s bounding box. The respective parameter is given as a
percental value of the frame number. As can be seen in Figure
2b, a 3% scaling factor works best for long queries and a
scaling factor of 17% works best for short queries. The values
have been determined in prior experiments. However, the best
overall performance was achieved with a linear combination of
the two variants. The considerable difference in mean average
precision between a uniform and a query length dependent
scaling theme clearly demonstrates the importance of this

Table I. INFLUENCE OF QUERY FEATURE PRUNING

Query feature pruning mAP mR

No feature pruning 58.2% 94.5%
Vertical feature pruning 61.1% 95.5%
Horizontal and vertical feature pruning 56.4% 95.2%

Table II. INFLUENCE OF THE NUMBER OF MODEL STATES

Model states scaling mAP mR

3% of query frame number 52.9% 92.9%
17% of query frame number 49.1% 93.8%
Linear combination (17% − 3%) 61.1% 95.5%

parameter. It controls how much of the query word is modeled
by a single state. The smaller the modeled segments, the
more accurate the HMM representation. Generally, a trade-off
between specificity and generality must be found. In our given
experimental scenario, we can observe (see Figure 2b) that a
higher scaling factor works well for short queries and that
performance decreases once the queries get longer. This can
be explained with our patch-based configuration (cf. Section
II-C). For efficiency reasons the patch shift is proportional
to the patch size. Longer words are, therefore, often not
aligned with the patches. By reducing the number of states
the representation does not enforce a strict sequence of term
vectors. We rather model the possible occurrence of different
term vectors in fewer states. This gives us the flexibility of
generating high scores even though only a part of a queried
word is observed. Adapting the state number with respect
to the query length allows us to address both requirements.
Figure 2b shows how the scores obtained with the linear
combination match the performances for short and long query
words obtained with the respective uniform scaling approaches.

Table III shows the effect of Baum-Welch training. In the
training process the probability of observing the query’s term
vector sequence is optimized. Similarly, as for the number of
model states a compromise between specificity and generality
must be found. For the considered benchmark on the George
Washington dataset it is found after three iterations.

Finally, Table IV shows a performance overview of other
state-of-the-art word spotting methods. The work of Rath and
Manmatha [1] is often considered as a baseline experiment.
However, we cannot directly compare it to our method due to
the different prerequisites and the different dataset configura-
tions. A comparison against the other two methods [9], [8] is
possible, because here these requirements are met. Regarding
the evaluation, we almost use the same protocol. Relative
improvements of 12.3% [9] and 101.0% [8] clearly show how
our proposed method outperforms the state-of-the-art results.
The difference is especially noticeable for shorter words. The
proposed strategy shares the Bag-of-Features application with
[8] and the query-size dependent patch-based framework with
[9]. The results are therefore suited to demonstrate the benefit
of using Bag-of-Features HMMs in a segmentation-free word
spotting scenario.

IV. CONCLUSION

In this paper we proposed a novel method for segmentation-
free word spotting. With our Bag-of-Features HMMs we were
able to outperform state-of-the-art methods on the George
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(a) Influence of feature pruning for different word lengths
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(b) Influence of the number of HMM states for different word lengths

Figure 2. Plots 2a and 2b show the effect of feature pruning and the number of HMM states with respect to different word lengths. Markers are used to
visualize mean average precision scores for different parameterizations and discrete numbers of characters. Dashed lines are only drawn for an easier visual
comparison. The red diamond markers indicate the configuration for the overall optimal scores found in the evaluation. Please note that the 100% mean average
precision for 14 characters word length can be considered an artifact. Only a single word exists in this category. Generally, the average character number is 4.4
leading to a respective influence of words in that order of length when computing the mean average precision over all queries. Best viewed in color.

Table III. INFLUENCE OF BAUM-WELCH TRAINING

Baum-Welch iterations mAP mR

0 59.5% 95.1%
1 60.3% 95.3%
3 61.1% 95.5%
5 60.5% 95.5%
7 59.0% 95.3%

Table IV. COMPARISON OF STATE-OF-THE-ART WORD SPOTTING

RESULTS FOR THE GEORGE WASHINGTON DATASET

Method GW dataset configuration mAP

Rath and Manmatha [1] 10 pages, 2381 queries 40.9%

Proposed 20 pages, 4860 queries 61.1%
Almazán et al. [9] 20 pages, 4856 queries 54.4%
Rusiñol et al. [8] 20 pages, 4860 queries 30.4%

Washington dataset. In comparison we could demonstrate that
the retrieval performance for shorter words has been improved.
This can be regarded as especially challenging. In addition,
we only need a single sample for estimating our query model.
Continuous HMMs, in contrast, require substantial amounts of
training data. Future research could investigate to which extent
word spotting performance can be improved when estimating
Bag-of-Features HMMs based on a set of training samples.
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