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Abstract

This paper explores a simple and efficient baseline

for person re-identification (ReID). Person re-identification

(ReID) with deep neural networks has made progress and

achieved high performance in recent years. However, many

state-of-the-arts methods design complex network structure

and concatenate multi-branch features. In the literature,

some effective training tricks are briefly appeared in sev-

eral papers or source codes. This paper will collect and

evaluate these effective training tricks in person ReID. By

combining these tricks together, the model achieves 94.5%

rank-1 and 85.9% mAP on Market1501 with only using

global features. Our codes and models are available at

https://github.com/michuanhaohao/reid-strong-baseline

1. Introduction

Person re-identification (ReID) with deep neural net-

works has made progress and achieved high performance

in recent years. However, many state-of-the-arts methods

design complex network structure and concatenate multi-

branch features. In the literature, some effective training

tricks or refinements are briefly appeared in several papers

or source codes. This paper will collect and evaluate such

effective training tricks in person ReID. With involved in al-

l training tricks, ResNet50 reaches 94.5% rank-1 accuracy

and 85.9% mAP on Market1501 [24]. It is worth mention-

ing that it achieves such surprising performance with global

features of the model.

For comparison, we surveyed articles published at EC-

CV2018 and CVPR2018 of the past year. As shown in Fig.

1, most of previous works were expanded on poor base-

lines. On Market1501, only two baselines in 23 baselines

surpassed 90% rank-1 accuracy. The rank-1 accuracies of

four baselines even lower than 80%. On DukeMTMC-reID,

all baselines did not surpass 80% rank-1 accuracy or 65%

mAP. We think a strong baseline is very important to pro-

mote the development of research. Therefore, we modified

∗Equal contributions. This work was partially done when Hao Luo and

Xingyu Liao were interns at Megvii Inc.
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Figure 1. The performance of different baselines on Market1501

and DukeMTMC-reID datasets. We compare our strong baseline

with other baselines published in CVPR2018 and ECCV2018.

the standard baseline with some training tricks to acquire a

strong baseline. The code of our strong baseline has been

open sourced.

In addition, we also found that some works were unfair-

ly compared with other state-of-the-arts methods. Specif-

ically, the improvements were mainly from training trick-

s rather than methods themselves. But the training tricks



were understated in the paper so that readers ignored them.

It would make the effectiveness of the method exaggerated.

We suggest that reviewers need to take into account these

tricks when commenting academic papers.

Apart from aforementioned reasons, another considera-

tion is that the industry prefers to simple and effective mod-

els rather than concatenating lots of local features in the in-

ference stage. In pursuit of high accuracy, researchers in the

academic always combine several local features or utilize

the semantic information from pose estimation or segmen-

tation models. Such methods bring too much extra con-

sumption. Large features also greatly reduce the speed of

retrieval process. Thus, we hope to use some tricks to im-

prove the ability of the ReID model and only use global

features to achieve high performance. The purposes of this

paper are summarized as follow:

• We surveyed many works published on top confer-

ences and found most of them were expanded on poor

baselines.

• For the academia, we hope to provide a strong baseline

for researchers to achieve higher accuracies in person

ReID.

• For the community, we hope to give reviewers some

references that what tricks will affect the performance

of the ReID model. We suggest that when compar-

ing the performance of the different methods, review-

ers need to take these tricks into account.

• For the industry, we hope to provide some effective

tricks to acquire better models without too much extra

consumption.

Fortunately, a lot of effective training tricks have been

present in some papers or open-sourced projects. We collec-

t many tricks and evaluate each of them on ReID datasets.

After a lot of experiments, we choose six tricks to introduce

in this paper. Some of them were designed or modified by

us. We add these tricks into a widely used baseline to get our

modified baseline, which achieves 94.5% rank-1 and 85.9%

mAP on Market1501. Moreover, we found different works

choose different image sizes and numbers of batch size, as

a supplement, we also explore their impacts on model per-

formance. In summary, the contributions of this paper are

concluded as follow:

• We collect some effective training tricks for person

ReID. Among them, we design a new neck struc-

ture named as BNNeck. In addition, we evaluate the

improvements from each trick on two widely used

datasets.

• We provide a strong ReID baseline, which achieves

94.5% and 85.9% mAP on Market1501. It is worth

mentioned that the results are obtained with global fea-

tures provided by ResNet50 backbone. To our best

knowledge, it is the best performance acquired by

global features in person ReID.

• As a supplement, we evaluate the influences of the im-

age size and the number of batch size on the perfor-

mance of ReID models.

2. Standard Baseline

We follow a widely used open-source† as our stan-

dard baseline. The backbone of the standard baseline is

ResNet50 [5]. During the training stage, the pipeline in-

cludes following steps:

1. We initialize the ResNet50 with pre-trained parameter-

s on ImageNet and change the dimension of the fully

connected layer to N . N denotes the number of iden-

tities in the training dataset.

2. We randomly sample P identities and K images of per

person to constitute a training batch. Finally the batch

size equals to B = P×K. In this paper, we set P = 16
and K = 4.

3. We resize each image into 256 × 128 pixels and pad

the resized image 10 pixels with zero values. Then

randomly crop it into a 256× 128 rectangular image.

4. Each image is flipped horizontally with 0.5 probability.

5. Each image is decoded into 32-bit floating point raw

pixel values in [0, 1]. Then we normalize RGB chan-

nels by subtracting 0.485, 0.456, 0.406 and dividing by

0.229, 0.224, 0.225, respectively.

6. The model outputs ReID features f and ID prediction

logits p.

7. ReID features f is used to calculate triplet loss [6]. ID

prediction logits p is used to calculated cross entropy

loss. The margin m of triplet loss is set to be 0.3.

8. Adam method is adopted to optimize the model. The

initial learning rate is set to be 0.00035 and is de-

creased by 0.1 at the 40th epoch and 70th epoch re-

spectively. Totally there are 120 training epochs.

3. Training Tricks

This section will introduce some effective training trick-

s in person ReID. Most of such tricks can be expanded on

the standard baseline without changing the model architec-

ture. The Fig. 2 (b) shows training strategies and the model

architecture appeared in this section.

†https://github.com/Cysu/open-reid
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(a) The pipeline of the standard baseline.
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(b) The pipeline of our modified baseline.

Figure 2. The pipelines of the standard baseline and our modified baseline.

3.1. Warmup Learning Rate

Learning rate has a great impact for the performance of

a ReID model. Standard baseline is initially trained with

a large and constant learning rate. In [2], a warmup strat-

egy is applied to bootstrap the network for better perfor-

mance. In practice, As shown in Fig. 3, we spent 10 epochs

linearly increasing the learning rate from 3.5 × 10−5 to

3.5×10−4. Then, the learning rate is decayed to 3.5×10−5

and 3.5 × 10−6 at 40th epoch and 70th epoch respectively.

The learning rate lr(t) at epoch t is compute as;

lr(t) =















3.5× 10−5 × t
10

if t ≤ 10
3.5× 10−4 if 10 < t ≤ 40
3.5× 10−5 if 40 < t ≤ 70
3.5× 10−6 if 70 < t ≤ 120

(1)

3.2. Random Erasing Augmentation

In person ReID, persons in the images are sometimes

occluded by other objects. To address the occlusion prob-

lem and improve the generalization ability of ReID models,

Zhong et al. [27] proposed a new data augmentation ap-

proach named as Random Erasing Augmentation (REA). In

practice, for an image I in a mini-batch, the probability of

it undergoing Random Erasing is pe, and the probability of

it being kept unchanged is 1 − pe. Then, REA random-

ly selects a rectangle region Ie with size (We, He) in im-

age I , and erases its pixels with random values. Assuming

Figure 3. Comparison of learning rate schedules. With warmup s-

trategy, the learning rate is linearly increased in the first 10 epochs.

the area of image I and region Ie are S = W × H and

Se = We ×He respectively, we denote re =
Se

S
as the area

ratio of erasing rectangle region. In addition, the aspect ra-

tio of region Ie is randomly initialized between r1 and r2.

To determine a unique region, REA randomly initializes a

point P = (xe, ye). If xe + We ≤ W and ye + He ≤ H ,

we set the region, Ie = (xe, ye, xe +We, ye +He), as the

selected rectangle region. Otherwise we repeat the above

process until an appropriate Ie is selected. With the select-

ed erasing region Ie, each pixel in Ie is assigned to the mean
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Figure 4. Sampled examples of random erasing augmentation. The

first row shows five original training images. The processed im-

ages are presented in the second low.

value of image I , respectively.

In this study, we set hyper-parameters to p = 0.5, 0.02 <
Se < 0.4, r1 = 0.3, r2 = 3.33, respectively. Some exam-

ples are shown in Fig. 4.

3.3. Label Smoothing

ID Embedding (IDE) [25] network is a basic baseline

in person ReID. The last layer of IDE, which outputs the ID

prediction logits of images, is a fully-connected layer with a

hidden size being equal to numbers of persons N . Given an

image, we denote y as truth ID label and pi as ID prediction

logits of class i. The cross entropy loss is computed as:

L(ID) =

N
∑

i=1

−qi log (pi)

{

qi = 0, y 6= i
qi = 1, y = i

(2)

Because the category of the classification is determined by

the person ID, we call such loss function as ID loss in this

paper.

Nevertheless, person ReID can be regard as one-shot

learning task because person IDs of the testing set have not

appeared in the training set. So it is pretty important to pre-

vent the ReID model from overfitting training IDs. Label

smoothing (LS) proposed in [17] is a widely used method

to prevent overfitting for a classification task. It changes the

construction of qi to:

qi =

{

1− N−1

N
ε if i = y

ε/N otherwise,
(3)

where ε is a small constant to encourage the model to be less

confident on the training set. In this study, ε is set to be 0.1.

When the training set is not very large, LS can significantly

improve the performance of the model.

3.4. Last Stride

Higher spatial resolution always enriches the granularity

of feature. In [16], Sun et al. removed the last spatial down-

sampling operation in the backbone network to increase the

size of the feature map. For convenience, we denote the

last spatial down-sampling operation in the backbone net-

work as last stride. The last stride of ResNet50 is set to be

2. When fed into a image of 256 × 128 size, the backbone

of ResNet50 outputs a feature map with the spatial size of

8 × 4. If change last stride from 2 to 1, we can get a fea-

ture map with higher spatial size (16 × 8). This manipula-

tion only increases very light computation cost and does not

involve extra training parameters. However, higher spatial

resolution brings significant improvement.

3.5. BNNeck

Most of works combined ID loss and triplet loss together

to train ReID models. As shown in Fig. 5(a), in the standard

baseline, ID loss and triplet loss constrain the same feature

f . However, the targets of these two losses are inconsistent

in the embedding space.

As shown in Fig. 6(a), ID loss constructs several hyper-

planes to separate the embedding space into different sub-

spaces. The features of each class are distributed in differ-

ent subspaces. In this case, cosine distance is more suitable

than Euclidean distance for the model optimized by ID loss

in the inference stage. On the other hand, as shown in 6(b),

ID loss

Triplet loss

FC layers

features

𝑓

(a) The neck of the standard baseline.

features

𝑓"

ID loss

Triplet loss

FC layers (No bias)

BN layers

features
𝑓#

Inference stage

(b) Our designed BNNeck. In the inference stage, we choose fi
following the BN layer to do the retrieval.

Figure 5. Comparison between standard neck and our designed

BNNeck.
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(a) ID loss (b) triplet loss (c) ID + triplet loss (d) ID + triplet loss 
+ BNNeck

Figure 6. Two-dimensional visualization of sample distribution in the embedding space supervised by (a) ID Loss, (b) Triplet Loss, (c) ID

+ triplet loss and (d) ID + triplet loss + BNNeck. Points of different colors represent embedding features from different classes. The yellow

dotted lines stand for the supposed classification hyperplanes.

triplet loss enhances the intra-class compactness and inter-

class separability in the Euclidean space. Because triplet

loss can not provide globally optimal constraint, inter-class

distance sometimes is smaller than intra-class distance. A

widely used method is to combine ID loss and triplet loss

to train the model together. This approach let the model

learn more discriminative features. Nevertheless, for image

pairs in the embedding space, ID loss mainly optimizes the

cosine distances while triplet loss focuses on the Euclidean

distances. If we use these two losses to simultaneously op-

timize a feature vector, their goals may be inconsistent. In

the training process, a possible phenomenon is that one loss

is reduced, while the other loss is oscillating or even in-

creased.

To overcome the aforementioned problem, we design a

structure named as BNNeck shown in Fig. 5(b). BNNeck

only adds a batch normalization (BN) layer after features

(and before classifier FC layers). The feature before the BN

layer is denoted as ft. We let ft pass through a BN layer to

acquire the normalized feature fi. In the training stage, ft
and fi are used to compute triplet loss and ID loss, respec-

tively. Normalization balances each dimension of fi. The

features are gaussianly distributed near the surface of the

hypersphere. This distribution makes the ID loss easier to

converge. In addition, BNNeck reduces the constraint of the

ID loss on ft. Less constraint from ID loss leads to triplet

loss easier to converge at the same time. Thirdly, normaliza-

tion keeps the compact distribution of features that belong

to one same person.

Because the hypersphere is almost symmetric about the

origin of the coordinate axis, another trick of BNNeck is

removing the bias of classifier FC layer. It constrains the

classification hyperplanes to pass through the origin of the

coordinate axis. We initialize the FC layer with Kaiming

initialization proposed in [4].

In the inference stage, we choose fi to do the person

ReID task. Cosine distance metric can achieve better perfor-

mance than Euclidean distance metric. Experimental results

in Table. 1 show that BNNeck can improve performance of

the ReID model by a large margin.

3.6. Center Loss

Triplet loss is computed as:

LTri = [dp − dn + α]+, (4)

where dp and dn are feature distances of positive pair and

negative pair. α is the margin of triplet loss, and [z]+ equals

to max(z, 0). In this paper, α is set to 0.3. However, triplet

loss only considers the difference between dp and dn and

ignores the absolute values of them. For instance, when

dp = 0.3, dn = 0.5, the triplet loss is 0.1. For another case,

when dp = 1.3, dn = 1.5, the triplet loss also is 0.1. Triplet

loss is determined by two person IDs sampled randomly.

It is difficult to ensure that dp < dn in the whole training

dataset.

Center loss [20], which simultaneously learns a center

for deep features of each class and penalizes the distances

between the deep features and their corresponding class

centers, makes up for the drawbacks of the triplet loss. The

center loss function is formulated as:

LC =
1

2

B
∑

j=1

∥

∥

∥
f tj

− cyj

∥

∥

∥

2

2

, (5)

where yj is the label of the jth image in a mini-batch. cyj

denotes the yith class center of deep features. B is the num-

ber of batch size. The formulation effectively characterizes

the intra-class variations. Minimizing center loss increases

intra-class compactness. Our model totally includes three

losses as follow:

L = LID + LTriplet + βLC (6)
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β is the balanced weight of center loss. In our experiments,

β is set to be 0.0005.

4. Experimental Results

In this section, we will evaluate our models on Mar-

ket1501 and DukeMTMC-reID [11] datasets. The Rank-

1 accuracy and mean Average Precision (mAP) are report-

ed as evaluation metrics. We add tricks on the standard

baseline successively and do not change any training set-

tings. The results of ablation studies present the perfor-

mance boost from each trick. In order to prevent being mis-

led by overfitting, we also show the results of cross-domain

experiments.

4.1. Influences of Each Trick (Same domain)

Market1501 DukeMTMC

Model r = 1 mAP r = 1 mAP

Baseline-S 87.7 74.0 79.7 63.7

+warmup 88.7 75.2 80.6 65.1

+REA 91.3 79.3 81.5 68.3

+LS 91.4 80.3 82.4 69.3

+stride=1 92.0 81.7 82.6 70.6

+BNNeck 94.1 85.7 86.2 75.9

+center loss 94.5 85.9 86.4 76.4

Table 1. The performance of different models is evaluated on Mar-

ket1501 and DukeMTMC-reID datasets. Baseline-S stands for the

standard baseline introduced in section 2.

The standard baseline introduced in section 2 achieves

87.7% and 79.7% rank-1 accuracies on Market1501 and

DukeMTMC-reID, respectively. The performance of stan-

dard baseline is similar with most of baselines reported in

other papers. Then, we add warmup strategy, random eras-

ing augmentation, label smoothing, stride change, BNNeck

and center loss to the model training process, one by one.

Our designed BNNeck boosts more performance than other

tricks, especially on DukeMTMC-reID. Finally, these trick-

s make baseline acquire 94.5% rank-1 accuracy and 85.9%

mAP on Market1501. On DukeMTMC-reID, it reaches

86.4% rank-1 accuracy and 76.4% mAP. In other works,

these training tricks boost the performance of the standard

baseline by more than 10% mAP. In addition, to get such

improvement, we only involve an extra BN layer and do not

increase training time.

4.2. Analysis of BNNeck

In this section, we evaluate the performance of two dif-

ferent features (ft and fi) with Euclidean distance metric

and cosine distance metric. All models are trained without

center loss in Table. 2. We observe that cosine distance met-

ric performs better than Euclidean distance metric for ft.
Because ID loss directly constrains the features followed

Market1501 DukeMTMC

Feature Metric r = 1 mAP r = 1 mAP

f (w/o BNNeck) Euclidean 92.0 81.7 82.6 70.6

ft Euclidean 94.2 85.5 85.7 74.4

ft Cosine 94.2 85.7 85.5 74.6

fi Euclidean 93.8 83.7 86.6 73.0

fi Cosine 94.1 85.7 86.2 75.9

Table 2. The ablation study of BNNeck. f (w/o BNNeck) is base-

line without BNNeck. BNNeck includes two features ft and fi.

We evaluate the performance of them with Euclidean distance and

cosine distance, respectively.

the BN layer, fi can be separated by several hyperplanes

clearly. The cosine distance can measure the angle between

two feature vectors, so cosine distance metric is more suit-

able than Euclidean distance metric for fi. However, ft is

close to triplet loss and is constrained by ID loss at the same

time. Two kinds of metrics achieve similar performance for

ft.
In overall, BNNeck significantly improve the perfor-

mance of ReID models. We choose fi with cosine distance

metric to do the retrieval in the inference stage.

4.3. Influences of Each Trick (Cross domain)

To further explore effectiveness, we also present the re-

sults of cross-domain experiments in Table. 3. In overview,

three tricks including warmup strategy, label smoothing and

BNNeck significantly boost the cross-domain performance

of ReID models. Stride change and center loss seem to

have no big impact on the performance. However, REA

does harm to models in cross-domain ReID task. In partic-

ularly, when our modified baseline is trained without REA,

it achieves 41.4% and 54.3% rank-1 accuracies on Mar-

ket1501 and DukeMTMC-reID datasets, respectively. Its

performance surpass the ones of the standard baseline by a

large margin. We infer that REA masking the regions of

training images lets the model learn more knowledge in the

training domain. It causes the model to perform worse in

M→D D→M

Model r = 1 mAP r = 1 mAP

Baseline 24.4 12.9 34.2 14.5

+warmup 26.3 14.1 39.7 17.4

+REA 21.5 10.2 32.5 13.5

+LS 23.2 11.3 36.5 14.9

+stride=1 23.1 11.8 37.1 15.4

+BNNeck 26.7 15.2 47.7 21.6

+center loss 27.5 15.0 47.4 21.4

-REA 41.4 25.7 54.3 25.5

Table 3. The performance of different models is evaluated on

cross-domain datasets. M→D means that we train the model on

Market1501 and evaluate it on DukeMTMC-reID.
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Market1501 DukeMTMC

Type Method Nf r = 1 mAP r = 1 mAP

Pose-

guided

GLAD[19] 4 89.9 73.9 - -

PIE [23] 3 87.7 69.0 79.8 62.0

PSE [13] 3 78.7 56.0 - -

Mask-

guided

SPReID [7] 5 92.5 81.3 84.4 71.0

MaskReID [9] 3 90.0 75.3 78.8 61.9

Stripe-

based

AlignedReID [21] 1 90.6 77.7 81.2 67.4

SCPNet [3] 1 91.2 75.2 80.3 62.6

PCB [16] 6 93.8 81.6 83.3 69.2

Pyramid[22] 1 92.8 82.1 - -

Pyramid[22] 21 95.7 88.2 89.0 79.0

BFE[1] 2 94.5 85.0 88.7 75.8

Attention-

based

Mancs [18] 1 93.1 82.3 84.9 71.8

DuATM [14] 1 91.4 76.6 81.2 62.3

HA-CNN [8] 4 91.2 75.7 80.5 63.8

GAN-

based

Camstyle [28] 1 88.1 68.7 75.3 53.5

PN-GAN [10] 9 89.4 72.6 73.6 53.2

Global

feature

IDE [25] 1 79.5 59.9 - -

SVDNet [15] 1 82.3 62.1 76.7 56.8

TriNet[6] 1 84.9 69.1 - -

AWTL[12] 1 89.5 75.7 79.8 63.4

Ours 1 94.5 85.9 86.4 76.4

Ours(RK) 1 95.4 94.2 90.3 89.1

Table 4. Comparison of state-or-the-arts methods. Nf is the num-

ber of features used in the inference stage. RK stands for k-

reciprocal re-ranking method [26]

the testing domain.

4.4. Comparison of StateoftheArts

We compare out strong baseline with state-of-the-arts

methods in Table. 4. All methods have been divided in-

to different types. Pyramid[22] achieves surprising perfor-

mance on two datasets. However, it concatenates 21 lo-

cal features of different scale. If only utilizing the glob-

al feature, it obtains 92.8% rank-1 accuracy and 82.1%

mAP on Market1501. Ours strong baseline can reach

94.5% rank-1 accuracy and 85.9% mAP on Market1501.

BFE[1] obtains similar performance with our strong base-

line. But it combines features of two branches. Through-

out all methods that only use global features, our strong

baseline beats AWTL[12] by more than 10% mAP on

both Market1501 and DukeMTMC-reID. With k-reciprocal

re-ranking method to boost the performance, our method

reaches 94.1% mAP and 89.1% mAP on Market1501 and

DukeMTMC-reID, respectively. To our best knowledge,

our baseline achieves best performance in the case of on-

ly using global features.

5. Supplementary Experiments

We observed that some previous works were done with

different the numbers of batch size or image sizes. In this

section, as a supplementary we explore the affects of them

on model performance.

Batch Size Market1501 DukeMTMC

P ×K r = 1 mAP r = 1 mAP

8× 3 92.6 79.2 84.4 68.1

8× 4 92.9 80.0 84.7 69.4

8× 6 93.5 81.6 85.1 70.7

8× 8 93.9 82.0 85.8 71.5

16× 3 93.8 83.1 86.8 72.1

16× 4 93.8 83.7 86.6 73.0

16× 6 94.0 82.8 85.1 69.9

16× 8 93.1 81.6 86.7 72.1

32× 3 94.5 84.1 86.0 71.4

32× 4 93.2 82.8 86.5 73.1

Table 5. Performance of ReID models with different numbers of

batch size.

5.1. Influences of the Number of Batch Size

The mini-batch of triplet loss includes B = P ×K im-

ages. P and K denote the number of different persons and

the number of different images per person, respectively. A

mini-batch can only contain up to 128 images in one GPU,

so that we can not do the experiments with P = 32,K = 6
or P = 32,K = 8. We removed center loss to clearly find

the relation between triplet loss and batch size. The result-

s are present in Table. 5. However, there are not specific

conclusions to show the effect of B on performance. A s-

light trend we observed is that larger batch size is beneficial

for the model performance. We infer that large K helps to

mine hard positive pairs while large P helps to mining hard

negative pairs.

5.2. Influences of Image Size

Market1501 DukeMTMC

Image Size r = 1 mAP r = 1 mAP

256× 128 93.8 83.7 86.6 73.0

224× 224 94.2 83.3 86.1 72.2

384× 128 94.0 82.7 86.4 73.2

384× 192 93.8 83.1 87.1 72.9

Table 6. Performance of ReID models with different image sizes.

We trained models without center loss and set P =
16,K = 4. As shown in Table. 6, four models achieve

similar performances on both datasets. In our opinion, the

image size is not a pretty importance factor for the perfor-

mance of ReID models.

6. Conclusions and Outlooks

In this paper, we collect some effective training tricks

and design a strong baseline for person ReID. To demon-

strate the influences of each trick on the performance of

ReID models, we do a lot of experiments on both same-

domain and cross-domain ReID tasks. Finally, only using
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global features, our strong baseline achieve 94.5% rank-1

accuracy and 85.9% mAP on Market1501. We hope that

this work can promote the ReID research in academia and

industry.

However, the purpose of our work is not to improve per-

formance roughly. Compared with face recognition, person

ReID still has a long way to explore. We think some train-

ing tricks can speed up the exploration and there are many

effective tricks not discovered. We welcome researchers to

share some other effective tricks with us. We will evaluate

them based on this work.

In the future, we will continue to design more experi-

ments to analyze the principles of these trciks. For example,

when we replace the BNNeck with L2 normalization, what

does the performance of this network become? In addition,

whether can some state-of-the-arts methods such as PCB,

MGN and AlignedReID, etc. be expanded on our strong

baseline? More visualization also is helpful for others to

understand this work.

7. Acknowledge

This work is supported by the National Natural Sci-

ence Foundation of China (No. 61633019) and the Sci-

ence Foundation of Chinese Aerospace Industry (JCK-

Y2018204B053).

References

[1] Zuozhuo Dai, Mingqiang Chen, Siyu Zhu, and Ping Tan.

Batch feature erasing for person re-identification and be-

yond. arXiv preprint arXiv:1811.07130, 2018.

[2] Xing Fan, Wei Jiang, Hao Luo, and Mengjuan Fei. Spher-

ereid: Deep hypersphere manifold embedding for person re-

identification. Journal of Visual Communication and Image

Representation, 2019.

[3] Xing Fan, Hao Luo, Xuan Zhang, Lingxiao He, Chi Zhang,

and Wei Jiang. Scpnet: Spatial-channel parallelism network

for joint holistic and partial person re-identification. arXiv

preprint arXiv:1810.06996, 2018.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[6] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-

fense of the triplet loss for person re-identification. arXiv

preprint arXiv:1703.07737, 2017.

[7] Mahdi M Kalayeh, Emrah Basaran, Muhittin Gökmen,

Mustafa E Kamasak, and Mubarak Shah. Human seman-

tic parsing for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1062–1071, 2018.

[8] Wei Li, Xiatian Zhu, and Shaogang Gong. Harmonious at-

tention network for person re-identification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2285–2294, 2018.

[9] Lei Qi, Jing Huo, Lei Wang, Yinghuan Shi, and Yang Gao.

Maskreid: A mask based deep ranking neural network for

person re-identification. arXiv preprint arXiv:1804.03864,

2018.

[10] Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie

Qiu, Yang Wu, Yu-Gang Jiang, and Xiangyang Xue. Pose-

normalized image generation for person re-identification. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 650–667, 2018.

[11] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set for

multi-target, multi-camera tracking. In European Confer-

ence on Computer Vision workshop on Benchmarking Multi-

Target Tracking, 2016.

[12] Ergys Ristani and Carlo Tomasi. Features for multi-target

multi-camera tracking and re-identification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6036–6046, 2018.

[13] M. Saquib Sarfraz, Arne Schumann, Andreas Eberle, and

Rainer Stiefelhagen. A pose-sensitive embedding for per-

son re-identification with expanded cross neighborhood re-

ranking. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[14] Jianlou Si, Honggang Zhang, Chun-Guang Li, Jason Kuen,

Xiangfei Kong, Alex C Kot, and Gang Wang. Dual attention

matching network for context-aware feature sequence based

person re-identification. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5363–5372, 2018.

[15] Yifan Sun, Liang Zheng, Weijian Deng, and Shengjin Wang.

Svdnet for pedestrian retrieval. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3800–

3808, 2017.

[16] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin

Wang. Beyond part models: Person retrieval with refined

part pooling (and a strong convolutional baseline). In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 480–496, 2018.

[17] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016.

[18] Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and

Xinggang Wang. Mancs: A multi-task attentional network

with curriculum sampling for person re-identification. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 365–381, 2018.

[19] Longhui Wei, Shiliang Zhang, Hantao Yao, Wen Gao, and

Qi Tian. Glad: Global-local-alignment descriptor for pedes-

trian retrieval. In Proceedings of the 25th ACM international

conference on Multimedia, pages 420–428. ACM, 2017.

[20] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

4328



nition. In European conference on computer vision, pages

499–515. Springer, 2016.

[21] Xuan Zhang, Hao Luo, Xing Fan, Weilai Xiang, Yixiao Sun,

Qiqi Xiao, Wei Jiang, Chi Zhang, and Jian Sun. Aligne-

dreid: Surpassing human-level performance in person re-

identification. arXiv preprint arXiv:1711.08184, 2017.

[22] Feng Zheng, Xing Sun, Xinyang Jiang, Xiaowei Guo,

Zongqiao Yu, and Feiyue Huang. A coarse-to-fine pyrami-

dal model for person re-identification via multi-loss dynamic

training. arXiv preprint arXiv:1810.12193, 2018.

[23] Liang Zheng, Yujia Huang, Huchuan Lu, and Yi Yang. Pose

invariant embedding for deep person re-identification. arXiv

preprint arXiv:1701.07732, 2017.

[24] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-

dong Wang, and Qi Tian. Scalable person re-identification:

A benchmark. In Computer Vision, IEEE International Con-

ference, 2015.

[25] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-

natively learned cnn embedding for person reidentification.

ACM Transactions on Multimedia Computing, Communica-

tions, and Applications (TOMM), 14(1):13, 2018.

[26] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-

ranking person re-identification with k-reciprocal encoding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1318–1327, 2017.

[27] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. arXiv preprint

arXiv:1708.04896, 2017.

[28] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and

Yi Yang. Camstyle: A novel data augmentation method for

person re-identification. IEEE Transactions on Image Pro-

cessing, 28(3):1176–1190, 2019.

4329


