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Abstract

Much of the recent progress made in image classification

research can be credited to training procedure refinements,

such as changes in data augmentations and optimization

methods. In the literature, however, most refinements are ei-

ther briefly mentioned as implementation details or only vis-

ible in source code. In this paper, we will examine a collec-

tion of such refinements and empirically evaluate their im-

pact on the final model accuracy through ablation study. We

will show that, by combining these refinements together, we

are able to improve various CNN models significantly. For

example, we raise ResNet-50’s top-1 validation accuracy

from 75.3% to 79.29% on ImageNet. We will also demon-

strate that improvement on image classification accuracy

leads to better transfer learning performance in other ap-

plication domains such as object detection and semantic

segmentation.

1. Introduction

Since the introduction of AlexNet [15] in 2012, deep

convolutional neural networks have become the dominat-

ing approach for image classification. Various new architec-

tures have been proposed since then, including VGG [24],

NiN [16], Inception [1], ResNet [9], DenseNet [13], and

NASNet [35]. At the same time, we have seen a steady

trend of model accuracy improvement. For example, the

top-1 validation accuracy on ImageNet [23] has been raised

from 62.5% (AlexNet) to 82.7% (NASNet-A).

However, these advancements did not solely come from

improved model architecture. Training procedure refine-

ments, including changes in loss functions, data preprocess-

ing, and optimization methods also played a major role. A

large number of such refinements has been proposed in the

past years, but has received relatively less attention. In the

literature, most were only briefly mentioned as implemen-

tation details while others can only be found in source code.

In this paper, we will examine a collection of training

Model FLOPs top-1 top-5

ResNet-50 [9] 3.9 G 75.3 92.2

ResNeXt-50 [27] 4.2 G 77.8 -

SE-ResNet-50 [12] 3.9 G 76.71 93.38

SE-ResNeXt-50 [12] 4.3 G 78.90 94.51

DenseNet-201 [13] 4.3 G 77.42 93.66

ResNet-50 + tricks (ours) 4.3 G 79.29 94.63

Table 1: Computational costs and validation accuracy of

various models. ResNet, trained with our “tricks”, is able

to outperform newer and improved architectures trained

with standard pipeline.

procedure and model architecture refinements that improve

model accuracy but barely change computational complex-

ity. Many of them are minor “tricks” like modifying the

stride size of a particular convolution layer or adjusting

learning rate schedule. Collectively, however, they make a

big difference. We will evaluate them on multiple network

architectures and datasets and report their impact to the final

model accuracy.

Our empirical evaluation shows that several tricks lead

to significant accuracy improvement and combining them

together can further boost the model accuracy. We com-

pare ResNet-50, after applying all tricks, to other related

networks in Table 1. Note that these tricks raises ResNet-

50’s top-1 validation accuracy from 75.3% to 79.29% on

ImageNet. It also outperforms other newer and improved

network architectures, such as SE-ResNeXt-50. In addi-

tion, we show that our approach can generalize to other net-

works (Inception V3 [1] and MobileNet [11]) and datasets

(Place365 [33]). We further show that models trained with

our tricks bring better transfer learning performance in other

application domains such as object detection and semantic

segmentation.

Paper Outline. We first set up a baseline training proce-

dure in Section 2, and then discuss several tricks that are

useful for efficient training on new hardware in Section 3. In
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Algorithm 1 Train a neural network with mini-batch

stochastic gradient descent.

initialize(net)

for epoch = 1, . . . ,K do

for batch = 1, . . . , #images/b do

images← uniformly random sample b images

X, y ← preprocess(images)

z ← forward(net, X)

ℓ← loss(z, y)

grad← backward(ℓ)
update(net, grad)

end for

end for

Section 4 we review three minor model architecture tweaks

for ResNet and propose a new one. Four additional train-

ing procedure refinements are then discussed in Section 5.

At last, we study if these more accurate models can help

transfer learning in Section 6.

Our model implementations and training scripts are pub-

licly available in GluonCV 1 based on MXNet [3] .

2. Training Procedures

The template of training a neural network with mini-

batch stochastic gradient descent is shown in Algorithm 1.

In each iteration, we randomly sample b images to com-

pute the gradients and then update the network parameters.

It stops after K passes through the dataset. All functions

and hyper-parameters in Algorithm 1 can be implemented

in many different ways. In this section, we first specify a

baseline implementation of Algorithm 1.

2.1. Baseline Training Procedure

We follow a widely used implementation [8] of ResNet

as our baseline. The preprocessing pipelines between train-

ing and validation are different. During training, we per-

form the following steps one-by-one:

1. Randomly sample an image and decode it into 32-bit

floating point raw pixel values in [0, 255].

2. Randomly crop a rectangular region whose aspect ratio

is randomly sampled in [3/4, 4/3] and area randomly

sampled in [8%, 100%], then resize the cropped region

into a 224-by-224 square image.

3. Flip horizontally with 0.5 probability.

4. Scale hue, saturation, and brightness with coefficients

uniformly drawn from [0.6, 1.4].

5. Add PCA noise with a coefficient sampled from a nor-

mal distribution N (0, 0.1).

1https://github.com/dmlc/gluon-cv

Model
Baseline Reference

Top-1 Top-5 Top-1 Top-5

ResNet-50 [9] 75.87 92.70 75.3 92.2

Inception-V3 [26] 77.32 93.43 78.8 94.4

MobileNet [11] 69.03 88.71 70.6 -

Table 2: Validation accuracy of reference implementa-

tions and our baseline. Note that the numbers for Incep-

tion V3 are obtained with 299-by-299 input images.

6. Normalize RGB channels by subtracting 123.68,

116.779, 103.939 and dividing by 58.393, 57.12,

57.375, respectively.

During validation, we resize each image’s shorter edge

to 256 pixels while keeping its aspect ratio. Next, we crop

out the 224-by-224 region in the center and normalize RGB

channels similar to training. We do not perform any random

augmentations during validation.

The weights of both convolutional and fully-connected

layers are initialized with the Xavier algorithm [6]. In par-

ticular, we set the parameter to random values uniformly

drawn from [−a, a], where a =
√

6/(din + dout). Here

din and dout are the input and output channel sizes, respec-

tively. All biases are initialized to 0. For batch normaliza-

tion layers, γ vectors are initialized to 1 and β vectors to

0.

Nesterov Accelerated Gradient (NAG) descent [20] is

used for training. Each model is trained for 120 epochs on

8 Nvidia V100 GPUs with a total batch size of 256. The

learning rate is initialized to 0.1 and divided by 10 at the

30th, 60th, and 90th epochs.

2.2. Experiment Results

We evaluate three CNNs: ResNet-50 [9], Inception-

V3 [1], and MobileNet [11]. For Inception-V3 we resize the

input images into 299x299. We use the ISLVRC2012 [23]

dataset, which has 1.3 million images for training and 1000

classes. The validation accuracies are shown in Table 2. As

can be seen, our ResNet-50 results are slightly better than

the reference results, while our baseline Inception-V3 and

MobileNet are slightly lower in accuracy due to different

training procedure.

3. Efficient Training

Hardware, especially GPUs, has been rapidly evolving

in recent years. As a result, the optimal choices for many

performance related trade-offs have changed. For example,

it is now more efficient to use lower numerical precision and

larger batch sizes during training. In this section, we review

various techniques that enable low precision and large batch

training without sacrificing model accuracy. Some tech-

niques can even improve both accuracy and training speed.
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3.1. Large­batch training

Mini-batch SGD groups multiple samples to a mini-

batch to increase parallelism and decrease communication

costs. Using large batch size, however, may slow down

the training progress. For convex problems, convergence

rate decreases as batch size increases. Similar empirical re-

sults have been reported for neural networks [25]. In other

words, for the same number of epochs, training with a large

batch size results in a model with degraded validation accu-

racy compared to the ones trained with smaller batch sizes.

Multiple works [7, 14] have proposed heuristics to solve

this issue. In the following paragraphs, we will examine

four heuristics that help scale the batch size up for single

machine training.

Linear scaling learning rate. In mini-batch SGD, gradi-

ent descending is a random process because the examples

are randomly selected in each batch. Increasing the batch

size does not change the expectation of the stochastic gra-

dient but reduces its variance. In other words, a large batch

size reduces the noise in the gradient, so we may increase

the learning rate to make a larger progress along the op-

posite of the gradient direction. Goyal et al. [7] reports

that linearly increasing the learning rate with the batch size

works empirically for ResNet-50 training. In particular, if

we follow He et al. [9] to choose 0.1 as the initial learn-

ing rate for batch size 256, then when changing to a larger

batch size b, we will increase the initial learning rate to

0.1× b/256.

Learning rate warmup. At the beginning of the training,

all parameters are typically random values and therefore far

away from the final solution. Using a too large learning rate

may result in numerical instability. In the warmup heuristic,

we use a small learning rate at the beginning and then switch

back to the initial learning rate when the training process

is stable [9]. Goyal et al. [7] proposes a gradual warmup

strategy that increases the learning rate from 0 to the initial

learning rate linearly. In other words, assume we will use

the first m batches (e.g. 5 data epochs) to warm up, and the

initial learning rate is η, then at batch i, 1 ≤ i ≤ m, we will

set the learning rate to be iη/m.

Zero γ. A ResNet network consists of multiple residual

blocks, each block consists of several convolutional lay-

ers. Given input x, assume block(x) is the output for the

last layer in the block, this residual block then outputs

x + block(x). Note that the last layer of a block could

be a batch normalization (BN) layer. The BN layer first

standardizes its input, denoted by x̂, and then performs a

scale transformation γx̂ + β. Both γ and β are learnable

parameters whose elements are initialized to 1s and 0s, re-

spectively. In the zero γ initialization heuristic, we initialize

γ = 0 for all BN layers that sit at the end of a residual block.

Therefore, all residual blocks just return their inputs, mim-

ics network that has less number of layers and is easier to

train at the initial stage.

No bias decay. The weight decay is often applied to all

learnable parameters including both weights and bias. It’s

equivalent to applying an L2 regularization to all parame-

ters to drive their values towards 0. As pointed out by Jia et

al. [14], however, it’s recommended to only apply the reg-

ularization to weights to avoid overfitting. The no bias de-

cay heuristic follows this recommendation, it only applies

the weight decay to the weights in convolution and fully-

connected layers. Other parameters, including the biases

and γ and β in BN layers, are left unregularized.

Note that LARS [28] offers layer-wise adaptive learning

rate and is reported to be effective for extremely large batch

sizes (beyond 16K). While in this paper we limit ourselves

to methods that are sufficient for single machine training,

in which case a batch size no more than 2K often leads to

good system efficiency.

3.2. Low­precision training

Neural networks are commonly trained with 32-bit float-

ing point (FP32) precision. That is, all numbers are stored in

FP32 format and both inputs and outputs of arithmetic oper-

ations are FP32 numbers as well. New hardware, however,

may have enhanced arithmetic logic unit for lower precision

data types. For example, the previously mentioned Nvidia

V100 offers 14 TFLOPS in FP32 but over 100 TFLOPS in

FP16. As in Table 3, the overall training speed is acceler-

ated by 2 to 3 times after switching from FP32 to FP16 on

V100.

Despite the performance benefit, a reduced precision has

a narrower range that makes results more likely to be out-of-

range and then disturb the training progress. Micikevicius et

al. [19] proposes to store all parameters and activations in

FP16 and use FP16 to compute gradients. At the same time,

all parameters have an copy in FP32 for parameter updat-

ing. In addition, multiplying a scalar to the loss to better

align the range of the gradient into FP16 is also a practical

solution.

3.3. Experiment Results

The evaluation results for ResNet-50 are shown in Ta-

ble 3. Compared to the baseline with batch size 256 and

FP32, using a larger 1024 batch size and FP16 reduces the

training time for ResNet-50 from 13.3-min per epoch to 4.4-

min per epoch. In addition, by stacking all heuristics for

large-batch training, the model trained with 1024 batch size

560



Input stem

Stage 1

Stage 2

Stage 3

Stage 4

Output

Input

Output

Conv 

7x7, 64, s=2

Input

MaxPool 

3x3, s=2

Down

sampling

Residual

Residual

Conv

1

Conv

3x3, 512

Conv

1x1, 2048

Conv

1

Output

Input

Input

Output Output

+

Path A Path B

Figure 1: The architecture of ResNet-50. The convolution

kernel size, output channel size and stride size (default is 1)

are illustrated, similar for pooling layers.

and FP16 even slightly increased 0.5% top-1 accuracy com-

pared to the baseline model.

The ablation study of all heuristics is shown in Table 4.

Increasing batch size from 256 to 1024 by linear scaling

learning rate alone leads to a 0.9% decrease of the top-1

accuracy while stacking the rest three heuristics bridges the

gap. Switching from FP32 to FP16 at the end of training

does not affect the accuracy.

4. Model Tweaks

A model tweak is a minor adjustment to the network ar-

chitecture, such as changing the stride of a particular convo-

lution layer. Such a tweak often barely changes the compu-

tational complexity but might have a non-negligible effect

on the model accuracy. In this section, we will use ResNet

as an example to investigate the effects of model tweaks.

4.1. ResNet Architecture

We will briefly present the ResNet architecture, espe-

cially its modules related to the model tweaks. For detailed

information please refer to He et al. [9]. A ResNet network

consists of an input stem, four subsequent stages and a final

output layer, which is illustrated in Figure 1. The input stem

has a 7× 7 convolution with an output channel of 64 and a

stride of 2, followed by a 3× 3 max pooling layer also with

a stride of 2. The input stem reduces the input width and

height by 4 times and increases its channel size to 64.

Starting from stage 2, each stage begins with a down-

sampling block, which is then followed by several residual

blocks. In the downsampling block, there are path A and

path B. Path A has three convolutions, whose kernel sizes

Conv

1

Conv

3x3, s=2

Conv

1x1

Conv

1

Input

Output

+

(a) ResNet-B

Conv 

(3x3)

Input

MaxPool 

(3x3, s=2)

Output

Conv 

(3x3, s=2)

Conv 

(3x3)

(b) ResNet-C

Conv

1

Conv

3x3, s=2

Conv

1x1
Conv

1

Input

Output

+

AvgPool

2

(c) ResNet-D

Figure 2: Three ResNet tweaks. ResNet-B modifies the

downsampling block of Resnet. ResNet-C further modifies

the input stem. On top of that, ResNet-D again modifies the

downsampling block.

are 1×1, 3×3 and 1×1, respectively. The first convolution

has a stride of 2 to halve the input width and height, and the

last convolution’s output channel is 4 times larger than the

previous two, which is called the bottleneck structure. Path

B uses a 1×1 convolution with a stride of 2 to transform the

input shape to be the output shape of path A, so we can sum

outputs of both paths to obtain the output of the downsam-

pling block. A residual block is similar to a downsampling

block except for only using convolutions with a stride of 1.

One can vary the number of residual blocks in each stage

to obtain different ResNet models, such as ResNet-50 and

ResNet-152, where the number presents the number of con-

volutional layers in the network.

4.2. ResNet Tweaks

Next, we revisit two popular ResNet tweaks, we call

them ResNet-B and ResNet-C, respectively. We propose

a new model tweak ResNet-D afterwards.

ResNet-B. This tweak first appeared in a Torch imple-

mentation of ResNet [8] and then adopted by multiple

works [7, 12, 27]. It changes the downsampling block of

ResNet. The observation is that the convolution in path A

ignores three-quarters of the input feature map because it

uses a kernel size 1×1 with a stride of 2. ResNet-B switches

the strides size of the first two convolutions in path A, as

shown in Figure 2a, so no information is ignored. Because

the second convolution has a kernel size 3 × 3, the output

shape of path A remains unchanged.

ResNet-C. This tweak was proposed in Inception-v2 [26]

originally, and it can be found on the implementations
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Model
Efficient Baseline

Time/epoch Top-1 Top-5 Time/epoch Top-1 Top-5

ResNet-50 4.4 min 76.21 92.97 13.3 min 75.87 92.70

Inception-V3 8 min 77.50 93.60 19.8 min 77.32 93.43

MobileNet 3.7 min 71.90 90.47 6.2 min 69.03 88.71

Table 3: Comparison of the training time and validation accuracy for ResNet-50 between the baseline (BS=256 with FP32)

and a more hardware efficient setting (BS=1024 with FP16).

Heuristic
BS=256 BS=1024

Top-1 Top-5 Top-1 Top-5

Linear scaling 75.87 92.70 75.17 92.54

+ LR warmup 76.03 92.81 75.93 92.84

+ Zero γ 76.19 93.03 76.37 92.96

+ No bias decay 76.16 92.97 76.03 92.86

+ FP16 76.15 93.09 76.21 92.97

Table 4: The breakdown effect for each effective training

heuristic on ResNet-50.

Model #params FLOPs Top-1 Top-5

ResNet-50 25 M 3.8 G 76.21 92.97

ResNet-50-B 25 M 4.1 G 76.66 93.28

ResNet-50-C 25 M 4.3 G 76.87 93.48

ResNet-50-D 25 M 4.3 G 77.16 93.52

Table 5: Compare ResNet-50 with three model tweaks on

model size, FLOPs and ImageNet validation accuracy.

of other models, such as SENet [12], PSPNet [32],

DeepLabV3 [1], and ShuffleNetV2 [21]. The observation

is that the computational cost of a convolution is quadratic

to the kernel width or height. A 7 × 7 convolution is 5.4

times more expensive than a 3 × 3 convolution. So this

tweak replacing the 7 × 7 convolution in the input stem

with three conservative 3× 3 convolutions, which is shown

in Figure 2b, with the first and second convolutions have

their output channel of 32 and a stride of 2, while the last

convolution uses a 64 output channel.

ResNet-D. Inspired by ResNet-B, we note that the 1 × 1
convolution in the path B of the downsampling block also

ignores 3/4 of input feature maps, we would like to modify

it so no information will be ignored. Empirically, we found

adding a 2×2 average pooling layer with a stride of 2 before

the convolution, whose stride is changed to 1, works well

in practice and impacts the computational cost little. This

tweak is illustrated in Figure 2c.

4.3. Experiment Results

We evaluate ResNet-50 with the three tweaks and set-

tings described in Section 3, namely the batch size is 1024

and precision is FP16. The results are shown in Table 5.

Suggested by the results, ResNet-B receives more infor-

mation in path A of the downsampling blocks and improves

validation accuracy by around 0.5% compared to ResNet-

50. Replacing the 7 × 7 convolution with three 3 × 3 ones

gives another 0.2% improvement. Taking more information

in path B of the downsampling blocks improves the vali-

dation accuracy by another 0.3%. In total, ResNet-50-D

improves ResNet-50 by 1%.

On the other hand, these four models have the same

model size. ResNet-D has the largest computational cost,

but its difference compared to ResNet-50 is within 15% in

terms of floating point operations. In practice, we observed

ResNet-50-D is only 3% slower in training throughput com-

pared to ResNet-50.

5. Training Refinements

In this section, we will describe four training refinements

that aim to further improve the model accuracy.

5.1. Cosine Learning Rate Decay

Learning rate adjustment is crucial to the training. Af-

ter the learning rate warmup described in Section 3.1, we

typically steadily decrease the value from the initial learn-

ing rate. The widely used strategy is exponentially decaying

the learning rate. He et al. [9] decreases rate at 0.1 for ev-

ery 30 epochs, we call it “step decay”. Szegedy et al. [26]

decreases rate at 0.94 for every two epochs.

In contrast to it, Loshchilov et al. [18] propose a cosine

annealing strategy. An simplified version is decreasing the

learning rate from the initial value to 0 by following the

cosine function. Assume the total number of batches is T
(the warmup stage is ignored), then at batch t, the learning

rate ηt is computed as:

ηt =
1

2

(

1 + cos

(

tπ

T

))

η, (1)

where η is the initial learning rate. We call this scheduling

as “cosine” decay.

The comparison between step decay and cosine decay

are illustrated in Figure 3a. As can be seen, the cosine decay

decreases the learning rate slowly at the beginning, and then

becomes almost linear decreasing in the middle, and slows

562



(a) Learning Rate Schedule

(b) Validation Accuracy

Figure 3: Visualization of learning rate schedules with

warm-up. Top: cosine and step schedules for batch size

1024. Bottom: Top-1 validation accuracy curve with regard

to the two schedules.

down again at the end. Compared to the step decay, the

cosine decay starts to decay the learning since the beginning

but remains large until step decay reduces the learning rate

by 10x, which potentially improves the training progress.

5.2. Label Smoothing

The last layer of a image classification network is often a

fully-connected layer with a hidden size being equal to the

number of labels, denote by K, to output the predicted con-

fidence scores. Given an image, denote by zi the predicted

score for class i. These scores can be normalized by the

softmax operator to obtain predicted probabilities. Denote

by q the output of the softmax operator q = softmax(z), the

probability for class i, qi, can be computed by:

qi =
exp(zi)

∑K

j=1
exp(zj)

. (2)

It’s easy to see qi > 0 and
∑K

i=1
qi = 1, so q is a valid

probability distribution.

On the other hand, assume the true label of this image

is y, we can construct a truth probability distribution to be

pi = 1 if i = y and 0 otherwise. During training, we mini-

mize the negative cross entropy loss

ℓ(p, q) = −

K
∑

i=1

pi log qi (3)

to update model parameters to make these two probabil-

ity distributions similar to each other. In particular, by the

way how p is constructed, we know ℓ(p, q) = − log py =

−zy + log
(

∑K

i=1
exp(zi)

)

. The optimal solution is z∗y =

inf while keeping others small enough. In other words, it

encourages the output scores dramatically distinctive which

potentially leads to overfitting.

The idea of label smoothing was first proposed to train

Inception-v2 [26]. It changes the construction of the true

probability to

qi =

{

1− ε if i = y,

ε/(K − 1) otherwise,
(4)

where ε is a small constant. Now the optimal solution

becomes

z∗i =

{

log((K − 1)(1− ε)/ε) + α if i = y,

α otherwise,
(5)

where α can be an arbitrary real number. This encour-

ages a finite output from the fully-connected layer and can

generalize better.

When ε = 0, the gap log((K − 1)(1 − ε)/ε) will be

∞ and as ε increases, the gap decreases. Specifically when

ε = (K − 1)/K, all optimal z∗i will be identical. Figure 4a

shows how the gap changes as we move ε, given K = 1000
for ImageNet dataset.

We empirically compare the output value from two

ResNet-50-D models that are trained with and without la-

bel smoothing respectively and calculate the gap between

the maximum prediction value and the average of the rest.

Under ε = 0.1 and K = 1000, the theoretical gap is around

9.1. Figure 4b demonstrate the gap distributions from the

two models predicting over the validation set of ImageNet.

It is clear that with label smoothing the distribution centers

at the theoretical value and has fewer extreme values.

5.3. Knowledge Distillation

In knowledge distillation [10], we use a teacher model

to help train the current model, which is called the student

model. The teacher model is often a pre-trained model with

higher accuracy, so by imitation, the student model is able

to improve its own accuracy while keeping the model com-

plexity the same. One example is using a ResNet-152 as the

teacher model to help training ResNet-50.

During training, we add a distillation loss to penalize

the difference between the softmax outputs from the teacher

model and the learner model. Given an input, assume p is

the true probability distribution, and z and r are outputs of

the last fully-connected layer of the student model and the

teacher model, respectively. Remember previously we use a

negative cross entropy loss ℓ(p, softmax(z)) to measure the

difference between p and z, here we use the same loss again

for the distillation. Therefore, the loss is changed to

ℓ(p, softmax(z)) + T 2ℓ(softmax(r/T ), softmax(z/T )),
(6)
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(a) Theoretical gap

(b) Empirical gap from ImageNet validation set

Figure 4: Visualization of the effectiveness of label smooth-

ing on ImageNet. Top: theoretical gap between z∗p and oth-

ers decreases when increasing ε. Bottom: The empirical

distributions of the gap between the maximum prediction

and the average of the rest.

where T is the temperature hyper-parameter to make the

softmax outputs smoother thus distill the knowledge of la-

bel distribution from teacher’s prediction.

5.4. Mixup Training

In Section 2.1 we described how images are augmented

before training. Here we consider another augmentation

method called mixup [30]. In mixup, each time we ran-

domly sample two examples (xi, yi) and (xj , yj). Then we

form a new example by a weighted linear interpolation of

these two examples:

x̂ = λxi + (1− λ)xj , (7)

ŷ = λyi + (1− λ)yj , (8)

where λ ∈ [0, 1] is a random number drawn from the

Beta(α, α) distribution. In mixup training, we only use

the new example (x̂, ŷ).

5.5. Experiment Results

Now we evaluate the four training refinements. We

set ε = 0.1 for label smoothing by following Szegedy et

al. [26]. For the model distillation we use T = 20, specif-

ically a pretrained ResNet-152-D model with both cosine

decay and label smoothing applied is used as the teacher.

In the mixup training, we choose α = 0.2 in the Beta dis-

tribution and increase the number of epochs from 120 to

200 because the mixed examples ask for a longer training

progress to converge better. When combining the mixup

training with distillation, we train the teacher model with

mixup as well.

We demonstrate that the refinements are not only lim-

ited to ResNet architecture or the ImageNet dataset. First,

we train ResNet-50-D, Inception-V3 and MobileNet on Im-

ageNet dataset with refinements. The validation accura-

cies for applying these training refinements one-by-one are

shown in Table 6. By stacking cosine decay, label smooth-

ing and mixup, we have steadily improving ResNet, Incep-

tionV3 and MobileNet models. Distillation works well on

ResNet, however, it does not work well on Inception-V3

and MobileNet. Our interpretation is that the teacher model

is not from the same family of the student, therefore has

different distribution in the prediction, and brings negative

impact to the model. In addition, we experiemented train-

ing without mixup for 200 epochs and that only results in an

increment around 0.15% increment on the Top-1 accuracy,

therefore the effect of mixup training is still significant.

To support our tricks is transferable to other dataset, we

train a ResNet-50-D model on MIT Places365 dataset with

and without the refinements. Results are reported in Ta-

ble 7. We see the refinements improve the top-5 accuracy

consistently on both the validation and test set.

6. Transfer Learning

Transfer learning is one major down-streaming use case

of trained image classification models. In this section, we

will investigate if these improvements discussed so far can

benefit transfer learning. In particular, we pick two impor-

tant computer vision tasks, object detection and semantic

segmentation, and evaluate their performance by varying

base models.

6.1. Object Detection

The goal of object detection is to locate bounding boxes

of objects in an image. We evaluate performance using

PASCAL VOC [4]. Similar to Ren et al. [22], we use union

set of VOC 2007 trainval and VOC 2012 trainval for train-

ing, and VOC 2007 test for evaluation, respectively. We

train Faster-RCNN [22] on this dataset, with refinements

from Detectron [5] such as linear warmup and long train-

ing schedule. The VGG-19 base model in Faster-RCNN

is replaced with various pretrained models in the previous

discussion. We keep other settings the same so the gain is

solely from the base models.

Mean average precision (mAP) results are reported in

Table 8. We can observe that a base model with a higher

validation accuracy leads to a higher mAP for Faster-RNN

in a consistent manner. In particular, the best base model

with accuracy 79.29% on ImageNet leads to the best mAP

at 81.33% on VOC, which outperforms the standard model

by 4%.
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Refinements
ResNet-50-D Inception-V3 MobileNet

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Efficient 77.26 (± 0.07) 93.53 (± 0.05) 77.50 93.60 71.90 90.53

+ cosine decay 77.73 (± 0.13) 93.82 (± 0.08) 78.19 94.06 72.83 91.00

+ label smoothing 78.37 (± 0.09) 94.10 (± 0.03) 78.40 94.13 72.93 91.14

+ distill w/o mixup 78.63 (± 0.04) 94.38 (± 0.03) 78.26 94.01 71.97 90.89

+ mixup w/o distill 79.01 (± 0.09) 94.57 (± 0.02) 78.77 94.39 73.28 91.30

+ distill w/ mixup 79.33 (± 0.07) 94.66 (± 0.03) 78.34 94.16 72.51 91.02

Table 6: The validation accuracies on ImageNet for stacking training refinements one by one. The baseline models are

obtained from Section 3. We repeat each refinement on ResNet-50-D for 4 times with different initialization, and report the

mean and standard deviation in the table.

Model Val Top-1 Acc Val Top-5 Acc Test Top-1 Acc Test Top-5 Acc

ResNet-50-D Efficient 56.34 86.87 57.18 87.28

ResNet-50-D Best 56.70 87.33 57.63 87.82

Table 7: Results on both the validation set and the test set of MIT Places 365 dataset. Prediction are generated as stated

in Section 2.1. ResNet-50-D Efficient refers to ResNet-50-D trained with settings from Section 3, and ResNet-50-D Best

further incorporate cosine scheduling, label smoothing and mixup.

Refinement Top-1 mAP

B-standard 76.14 77.54

D-efficient 77.16 78.30

+ cosine 77.91 79.23

+ smooth 78.34 80.71

+ distill w/o mixup 78.67 80.96

+ mixup w/o distill 79.16 81.10

+ distill w/ mixup 79.29 81.33

Table 8: Faster-RCNN performance with various pre-

trained base networks evaluated on Pascal VOC.

Refinement Top-1 PixAcc mIoU

B-standard 76.14 78.08 37.05

D-efficient 77.16 78.88 38.88

+ cosine 77.91 79.25 39.33

+ smooth 78.34 78.64 38.75

+ distill w/o mixup 78.67 78.97 38.90

+ mixup w/o distill 79.16 78.47 37.99

+ mixup w/ distill 79.29 78.72 38.40

Table 9: FCN performance with various base networks eval-

uated on ADE20K. Note that the refinement is only applied

on the base network training.

6.2. Semantic Segmentation

In this section, we study how these improvement on

base network would be transferable to semantic segmenta-

tion. We use Fully Convolutional Network (FCN) [17] as

the baseline approach and evaluate it on the ADE20K [34]

dataset. Following PSPNet [32] and Zhang et al. [31], we

replace the base network with various pre-trained models

discussed in previous sections and apply dilation network

strategy [2, 29] on stage-3 and stage-4. A fully convolu-

tional decoder is built on top of the base network to make

the final prediction. We follow the practice in Zhang [31] to

choose training hyper-parameters.

Both pixel accuracy (pixAcc) and mean intersection over

union (mIoU) are reported in Table 9. In contradiction to

our results on object detection, the base network trained

with cosine learning rate schedule effectively improves the

performance of the FCN, while other refinements provide

inferior results. A potential explanation to the phenomenon

is that semantic segmentation provides dense prediction in

the pixel level. While models trained with label smooth-

ing, distillation and mixup favor soften labels, blurred pixel-

level information and degrade overall pixel-level accuracy.

7. Conclusion

In this paper, we survey a dozen tricks to train deep

convolutional neural networks to improve model accuracy.

These tricks introduce minor modifications to the model

architecture, data preprocessing, loss function, and learn-

ing rate schedule. Our empirical results on ResNet-50,

Inception-V3 and MobileNet indicate that these tricks im-

prove model accuracy consistently. More excitingly, stack-

ing all of them together leads to a significantly higher accu-

racy. In addition, these improved pre-trained models show

strong advantages in transfer learning, which improve both

object detection and semantic segmentation. We believe the

benefits can extend to broader domains where classification

base models are favored.
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