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ABSTRACT

We investigate bag-of-visual-words (BOVW) approaches to
land-use classification in high-resolution overhead imagery.
We consider a standard non-spatial representation in which
the frequencies but not the locations of quantized image fea-
tures are used to discriminate between classes analogous to
how words are used for text document classification without
regard to their order of occurrence. We also consider two
spatial extensions, the established spatial pyramid match
kernel which considers the absolute spatial arrangement of
the image features, as well as a novel method which we term
the spatial co-occurrence kernel that considers the relative
arrangement. These extensions are motivated by the impor-
tance of spatial structure in geographic data.

The methods are evaluated using a large ground truth
image dataset of 21 land-use classes. In addition to compar-
isons with standard approaches, we perform extensive evalu-
ation of different configurations such as the size of the visual
dictionaries used to derive the BOVW representations and
the scale at which the spatial relationships are considered.

We show that even though BOVW approaches do not nec-
essarily perform better than the best standard approaches
overall, they represent a robust alternative that is more ef-
fective for certain land-use classes. We also show that ex-
tending the BOVW approach with our proposed spatial co-
occurrence kernel consistently improves performance.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
spatial databases and GIS ; I.5.4 [Pattern Recognition]:
Applications; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis

Keywords

land-use classification, local invariant features, bag-of-visual-
words
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The paper investigates bag-of-visual-words (BOVW) ap-
proaches to land-use classification in high-resolution over-
head imagery (we use the term overhead imagery to refer to
both airborne and spaceborne imagery). BOVW approaches
are motivated by document classification in text analysis and
have been successfully applied to analyzing close-range im-
agery. We here present, however, what is, to the best of
our knowledge, the first large scale application of BOVW
approaches to land-use classification. We further investi-
gate two spatial extensions, the established spatial pyramid
match kernel, which considers the absolute spatial arrange-
ment of an image, as well as a novel method which we term
the spatial co-occurrence kernel that considers the relative
arrangement. These extensions are motivated by the impor-
tance of spatial structure in geographic data.

We evaluate the methods using a large ground truth im-
age dataset of 21 land-use classes. This manually labelled
dataset is derived from images in the public domain and is
made available for other researchers1. Besides comparing
BOVW to standard approaches, namely classification based
on color and texture features, we perform extensive evalua-
tion of different configurations such as the size of the visual
dictionaries used to derive the BOVW representations and
the scale at which the spatial relationships are considered.

We conclude that even though BOVW approaches do not
necessarily perform better than the best standard approaches
overall, they represent a robust alternative that is more ef-
fective for certain land-use classes. And, since the current
BOVW representation uses only the luminance information
in an image, it can be combined with color information
for further improvement. We also show that extending the
BOVW approach with our proposed spatial co-occurrence
kernel consistently improves performance.

2. BAG-OF-VISUAL-WORDS
This section describes the bag-of-visual-words (BOVW)

approach to image representation. This method stems from
text analysis wherein a document is represented by word
frequencies without regard to their order. These frequencies
are then used to perform document classification. Identi-
fying the visual equivalent of a word is therefore necessary
before the method can be applied to images. This is com-
monly done by extracting and quantizing local invariant fea-
tures. We first discuss the motivation behind local invariant

1The labelled dataset can be downloaded from
http://vision.ucmerced.edu/datasets.



features and then describe how they are transformed into
visual words.

2.1 Local Invariant Features
Local invariant features have shown to be successful for a

wide range of computer vision applications including wide-
baseline stereo matching, object recognition, and category
labelling. There are typically two steps in using local in-
variant features for image analysis. First, is a detection step
which identifies interesting locations in the image usually
according to some measure of saliency. These are termed
interest points. Second, is to calculate a descriptor for each
of the image patches centered at the detected locations. The
following describes the desirable properties of the detection
and descriptor components of local invariant features. These
properties motivate their use for land-use classification.

Local The local property of the features makes their use ro-
bust to two common challenges in image analysis. First, they
do not require the challenging preprocessing step of segmen-
tation. The descriptors are not calculated for image regions
corresponding to objects or parts of objects but instead for
image patches at salient locations. Second, since objects are
not considered as a whole, the features provide robustness
against occlusion. They have been shown to reliably detect
objects in cluttered scenes even when only portions of the
objects are visible.

Invariance Local image analysis has a long history includ-
ing corner and edge detection [9]. However, the success of
the more recent approaches to local analysis is largely due
to the invariance of the detection and descriptors to geo-
metric and photometric image transformations. Note that
it makes sense to discuss the invariance of both the detec-
tor and descriptor. An invariant detector will identify the
same locations and image patches independent of a particu-
lar transformation. An invariant descriptor will remain the
same. Often, the detection step estimates the transforma-
tion parameters necessary to normalize the image patch (to
a canonical orientation and scale) so that the descriptor it-
self need not be completely invariant.

Geometric image transformations result from changes in
viewing geometry and include translation, Euclidean (trans-
lation and rotation), similarity (translation, rotation, and
uniform scaling), affine (translation, rotation, non-uniform
scaling, and shear), and projective, the most general linear
transformation in which parallel lines are not guaranteed to
remain parallel. While affine invariant detectors have been
developed [19], we choose a detector that is only invariant
to similarity transformations for two reasons. First, remote
sensed imagery is acquired at a relatively fixed viewpoint
(overhead) which limits the amount of non-uniform scaling
and shearing. Second, affine invariant detectors have been
shown to perform worse than similarity invariant descriptors
when the transformation is restricted to translation, rotation
and uniform scaling [19]. Invariance to translation and scale
is typically accomplished through scale-space analysis with
automatic scale selection [14]. Invariance to rotation is typ-
ically accomplished by estimating the dominant orientation
of the gradient of a scale-normalized image patch.

Photometric image transformations result from variations
in illumination intensity and direction. Invariance is typi-
cally obtained in both the detector and descriptor by simply
modelling the transformations as being linear and relying on
changes in intensity rather absolute values. Utilizing inten-

sity gradients accounts for the possible non-zero offset in
the linear model and normalizing these gradients accounts
for the possible non-unitary slope.

Robust yet distinctive The features should be robust to
other transformations for which they are not designed to
be invariant through explicit modelling. The detection and
descriptor should not be greatly affected by modest image
noise, image blur, discretization, compression artifacts, etc.
Yet, for the features to be useful, the detection should be
sufficiently sensitive to the underlying image signal and the
descriptor sufficiently distinctive. Comprehensive evaluation
has shown that local invariant features achieve this balance.

Density While detection is image dependent, it typically
results in a large number of features. This density of fea-
tures is important for robustness against occlusion as well
as against missed and false detections. Of course, the large
number of features that result from typical images present
representation challenges. The histograms of quantized de-
scriptors used in this work have shown to be an effective and
efficient method for summarizing the features.

Efficient The extraction of local invariant features can be
made computationally very efficient. This is important when
processing large collections of images, such as is common in
geographic image analysis, as well as for real-time applica-
tions. Real-time object detection has been demonstrated in
prototype systems [22] as well as in commercial products [2].

2.2 SIFT Features
We choose David Lowe’s Scale Invariant Feature Trans-

form (SIFT) [15, 16] as the interest point detector and de-
scriptor. While there are other detectors, such as the Harris-
Laplace/Affine [19], Hessian-Laplace/Affine [19], Kadir and
Brady’s Saliency Detector [10]; other descriptors, such as
shape context [4], steerable filters [5], PCA-SIFT [11], spin
images [12], moment invariants [6], and cross-correlation;
and other detector/descriptor combinations, such as Max-
imally Stable Extremal Regions (MSER) [18] and Speeded
Up Robust Features (SURF) [3], we choose the SIFT detec-
tor and descriptor for the following reasons. First, the SIFT
detector is translation, rotation, and scale invariant which
is the level of invariance needed for our application. Second,
an extensive comparison with other local descriptors found
that the SIFT descriptor performed the best in an image
matching task [20].

Interest point based image analysis, including SIFT, is a
two-step process. First, a detection step locates points that
are identifiable from different views. This process ideally
locates the same regions in an object or scene regardless of
viewpoint or illumination. Second, these locations are de-
scribed by a descriptor that is distinctive yet invariant to
viewpoint and illumination. SIFT-based analysis exploits
image patches that can be found and matched under differ-
ent imaging conditions.

2.2.1 SIFT Detector
The SIFT detection step is designed to find image regions

that are salient not only spatially but also across different
scales. Candidate locations are initially selected from local
extrema in Difference of Gaussian (DoG) filtered images in
scale space. The DoG images are derived by subtracting two
Gaussian blurred images with different σ

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (1)



where L(x, y, σ) is the image convolved with a Gaussian ker-
nel with standard deviation σ, and k represents the different
sampling intervals in scale space. Each point in the three di-
mensional DoG scale space is compared with its eight spatial
neighbors at the same scale, and with its eighteen neighbors
at adjacent higher and lower scales. The local maximum
or minimum are further screened for minimum contrast and
poor localization along elongated edges. The last step of
the detection process uses a histogram of gradient directions
sampled around the interest point to estimate its orientation.
This orientation is used to align the descriptor to make it
rotation invariant.

2.2.2 SIFT Descriptor
A SIFT descriptor is extracted from the image patch cen-

tered at each interest point. The size of this patch is de-
termined by the scale of the corresponding extremum in the
DoG scale space. This makes the descriptor scale invariant.
The feature descriptor consists of histograms of gradient di-
rections computed over a 4x4 spatial grid. The interest point
orientation estimate described above is used to align the
gradient directions to make the descriptor rotation invari-
ant. The gradient directions are quantized into eight bins
so the final feature vector has dimension 128 (4x4x8). This
histogram-of-gradients descriptor can be roughly thought of
a summary of the edge information in a scale and orientation
normalized image patch centered at the interest point.

2.3 BOVW Representation
The SIFT detector, like most local feature detectors, re-

sults in a large number of interest points. This density is
important for robustness but presents a representation chal-
lenge particularly since the SIFT descriptor features have
128 dimensions. We adopt a standard approach, termed
bag-of-visual-words [23], to summarize the descriptors by
quantizing and aggregating the features without regard to
their location. The analogy to representing a text document
by its word count frequencies is made possible by labelling
each 128 dimension SIFT feature as a visual word. We ap-
ply standard k-means clustering to a large number of SIFT
features to create a dictionary of visual words. This visual
dictionary is then used to quantize the extracted features
by simply assigning the label of the closest cluster centroid.
The final representation for an image is the frequency counts
or histogram of the labelled SIFT features

BOV W = [t1, t2, . . . , tM ] , (2)

where tm is the number of occurrences of visual word m in
the image and M is the dictionary size. To account for the
difference in the number of interest points between images,
the BOVW histogram is normalized to have unit L1 norm.

A BOVW representation can be used in kernel based learn-
ing algorithms, such as non-linear support vector machines,
by computing the intersection between histograms. Given
BOV W 1 and BOV W 2 corresponding to two images, the
BOVW kernel is computed as:

KBOV W (BOV W 1, BOV W 2) =

M
X

m=1

min
`

BOV W 1(m), BOV W 2(m)
´

. (3)

The intersection kernel is a Mercer kernel which guarantees

an optimal solution to kernel-based algorithms based on con-
vex optimization such as nonlinear support vector machines.

3. SPATIAL EXTENSIONS TO BOVW
The BOVW approach does not consider the spatial lo-

cations of the visual words in an image (just as a BOW
approach in text analysis does not consider where words ap-
pear in a document). One of the contributions of this paper
is to explore spatial extensions to the BOVW approach for
land-use classification. We are motivated by the obvious
fact that spatial structure is important for geographic data
and its analysis. As Walter Tobler stated in his so-called
first law of geography in the early 1970’s, all things are re-
lated, but nearby things are more related than distant things
[24]. Since our objective is land-use classification in high-
resolution overhead imagery of the earth’s surface, this law
motivates us to consider the spatial distribution of the vi-
sual words. In particular, we consider two extensions of the
BOVW representation: the spatial pyramid match kernel
and the spatial co-occurrence kernel. The spatial pyramid
match kernel has shown to be successful for object and scene
recognition in standard (non-overhead) imagery. It consid-
ers the absolute spatial arrangement of the visual words. By
contrast, the spatial co-occurrence kernel, which we intro-
duce here, considers the relative spatial arrangement.

3.1 Spatial Pyramid Match Kernel
The spatial pyramid match kernel (SPMK) was intro-

duced by Lazebnik et al. in 2006 [13]. It is motivated by ear-
lier work termed pyramid matching by Grauman and Darrell
[7] on finding approximate correspondences between sets of
points in high-dimensional feature spaces. The fundamen-
tal idea behind pyramid matching is to partition the feature
space into a sequence of increasingly coarser grids and then
compute a weighted sum over the number of matches that
occur at each level of resolution. Two points are considered
to match if they fall into the same grid cell and matched
points at finer resolutions are given more weight than those
at coarser resolutions. The SPMK applies this approach in
the two-dimensional image space instead of a feature space;
that is, it finds approximate spatial correspondence between
sets of visual words in two images.

More specifically, suppose an image is partitioned into a
sequence of spatial grids at resolutions 0, . . . , L such that the
grid at level l has 2l cells along each dimension for a total
of D = 4l cells. Let H1

l and H2
l be the histograms of visual

words of two images at resolution l so that H1
l (i, m) and

H2
l (i, m) are the counts of visual word m contained in grid

cell i. Then, the number of matches at level l is computed
as the histogram intersection:

I
`

H1
l , H2

l

´

=
D

X

i=1

M
X

m=1

min
`

H1
l (i, m) , H2

l (i, m)
´

. (4)

Abbreviate I
`

H1
l , H2

l

´

to Il. Since the number of matches
at level l includes all matches at the finer level l + 1, the
number of new matches found at level l is Il − Il+1 for l =
0, . . . , L − 1. Further, the weight associated with level l is
set to 1

2L−l which is inversely proportional to the cell size
and thus penalizes matches found in larger cells. Finally,
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Figure 1: Toy example of a three-level spatial pyra-
mid (adapted from [13]). The image has three visual
words and is divided at three different levels of res-
olution. For each level, the number of words in each
grid cell is counted. Finally, the spatial histogram is
weighted according to equation 6.

the spatial pyramid match kernel for two images is given by:

KL = IL +

L−1
X

l=0

1

2L−l
(Il − Il+1) (5)

=
1

2L
I0 +

L
X

l=1

1

2L−l+1
Il. (6)

The SPMK is a Mercer kernel. The SPMK is summarized
in figure 1.

3.2 Spatial Co-occurrence Kernel
We take further motivation from early work on pixel-

level characterization of land-use classes in overhead im-
agery from Haralick et al.’s seminal work [8] on gray level
co-occurrence matrices (GLCM) and the set of 14 derived
textural features which represents some of the earliest work
on image texture. A GLCM provides a straightforward way
to characterize the spatial dependence of pixel values in an
image. We extend this to the spatial dependence of the vi-
sual words.

More formally, given an image I containing a set of n
visual words ci ∈ C at pixel locations (xi, yi) and a binary
spatial predicate ρ where ciρcj ∈ {0, 1}, we define the visual
word co-occurrence matrix (VWCM) as

V WCMρ(u, v) = ‖(ci, cj)| (ci = u)∧(cj = v)∧(ciρcj)‖. (7)

That is, the VWCM is a count of the number of times two
visual words satisfy the spatial predicate. The choice of the
predicate ρ determines the nature of the spatial dependen-
cies. While this framework provides the flexibility for variety
of dependencies, we focus on proximity and, given a distance
r, define ρ to be true if the two words appear within r pixels
of each other:

ciρrcj =

(

1, if
p

(xi − xj)2 + (yi − yj)2 ≤ r;

0, otherwise.
(8)

The VWCMs computed in this paper thus represent the
number of times pairs of words appear near to each other.

A fundamental challenge to using GLCMs or our proposed
counterparts, VWCMs, is their size. For example, given

a visual dictionary of size M , the VWCM has dimension
M × M . Even though a symmetric predicate such prox-
imity results in a symmetric co-occurrence matrix, its size
is still quadratic with respect to the dictionary, containing
M(M + 1)/2 entries. Haralick et al. therefore defined a set
of 14 scalar quantities to summarize the GLCMs. We ini-
tially also summarized our VWCMs through six commonly
used scalar quantities–entropy, maximum probability, corre-
lation, contrast, energy, and homogeneity–but this did not
prove to be effective for characterizing the spatial depen-
dencies between visual words. We thus use the full co-
occurrence matrix (up to its symmetry if applicable) and
instead investigate smaller dictionaries.

Given two visual co-occurrence matrices V WCM1
ρ and

V WCM2
ρ corresponding to images I1 and I2, we now com-

pute the spatial co-occurrence kernel (SCK) as the intersec-
tion between the matrices

KSCK(V WCM1
ρ , V WCM2

ρ ) =
X

u,v∈C

min(V WCM1
ρ (u, v), V WCM2

ρ (u, v)). (9)

To account for differences between images in the number
of pairs of codewords satisfying the spatial predicate, the
matrices are normalized to have an L1 norm of one. Note
that the SCK, as an intersection of two multidimensional
counts, is also Mercer kernel and thus still guarantees an
optimal solution in the learning stage of non-linear support
vector machines.

3.3 SCK Combined With BOVW
While the proposed SCK can be used by itself, it can

also serve as a spatial extension to the non-spatial BOVW
representation. Specifically, given histograms BOV W 1 and
BOV W 2 corresponding to two images, we compute the com-
bined kernel as the sum of SCK and the intersection of the
histograms

KSCK+BOV W ({V WCM
1

ρ , BOV W
1
}, {V WCM

2

ρ , BOV W
2
})

= KSCK(V WCM
1

ρ , V WCM
2

ρ ) + KBOV W (BOV W
1
, BOV W

2
).

(10)

Note that the visual dictionary used for the spatial co-occur-
rence matrices need not be the same as that used for the
BOVW representation. We explore the effect of using dif-
ferent dictionaries in the experiments below. Again, since
this combined kernel is a (positively weighted) sum of two
Mercer kernels, it is itself a Mercer kernel. While it is possi-
ble to weight the spatial and non-spatial components of the
combined kernel differently, we have so far not considered
this and leave it for future work.

4. GLOBAL IMAGE DESCRIPTORS
We compare the BOVW representations with standard

global image descriptors, namely color histograms and ho-
mogeneous texture.

4.1 Color Histograms
Color histogram descriptors are computed separately in

three color spaces: RGB, hue lightness saturation (HLS),
and CIE Lab. Each dimension is quantized into 8 bins for
a total histogram feature length of 512. The histograms
are normalized to have an L1 norm of one. This results



in three color histogram features: HRGB , HHLS and HLab.
The intersection kernel is applied to the color histograms.

4.2 Homogeneous Texture
Homogeneous texture descriptors extracted using Gabor

filters have proven effective for analyzing overhead imagery
[21]. They were standardized in 2002 by the MPEG-7 Mul-
timedia Content Description Interface [17] after they were
shown to outperform other texture features in which one
of the evaluation datasets consisted of high-resolution aerial
imagery. We extract MPEG-7 compliant descriptors using
a bank of Gabor filters tuned to five scales and six orienta-
tions. A 60 dimensional feature vector is then formed from
the means and standard deviations of the 30 filters:

fMPEG7HT = [µ11, σ11, µ12, σ12, . . . , µ1S , σ1S , . . . , µRS , σRS ] ,
(11)

where µrs and σrs are the mean and standard deviation of
the output of the filter tuned to orientation r and scale s. A
Gaussian radial basis function (RBF) kernel, again a Mercer
kernel, is applied to the homogeneous texture descriptors.

5. DATASET
An extensive manually labelled ground truth dataset is

used to perform quantitative evaluation. The dataset con-
sists of images of 21 land-use classes selected from aerial or-
thoimagery with a pixel resolution of one foot. Large images
were downloaded from the United States Geological Survey
(USGS) National Map of the following US regions: Birming-
ham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Hous-
ton, Jacksonville, Las Vegas, Los Angeles, Miami, Napa,
New York, Reno, San Diego, Santa Barbara, Seattle, Tampa,
Tucson, and Ventura. 100 images measuring 256×256 pixels
were manually selected for each of the following 21 classes:
agricultural, airplane, baseball diamond, beach, buildings,
chaparral, dense residential, forest, freeway, golf course, har-
bor, intersection, medium density residential, mobile home
park, overpass, parking lot, river, runway, sparse residen-
tial, storage tanks, and tennis courts. Note that we use the
term land-use to refer to this set of classes even though they
contain some land-cover and possibly object classes. These
classes were selected because they contain a variety of spatial
patterns, some homogeneous with respect to texture, some
homogeneous with respect to color, others not homogeneous
at all, and thus represent a rich dataset for our investigation.

Five samples of each class are shown in figure 2. The im-
ages downloaded from the National Map are in the RGB
colorspace. The SIFT features underlying the BOVW rep-
resentations and the homogeneous texture descriptors are
extracted using the luminance channel.

6. EXPERIMENTS
The approaches are compared by performing multi-class

classification. Classifiers are trained on a subset of the ground
truth images and then applied to the remaining images. The
classification rate is simply the percentage of the held-out
images that are labelled correctly.

The premise behind our experiments is that once a classi-
fier has been trained on a labelled dataset, it could be used
to classify novel image regions. One of the benefits of a local
feature based approach is that the regions need not be con-
strained to rectagonal or other regular shapes. Note that an
image region need not be assigned one of the class labels and

can instead be assigned a null-label if the classifier provides
a confidence or similar score. Such is the case for support
vector machines.

We use support vector machines (SVMs) to perform the
classification. Multi-class classification is implemented us-
ing a set of binary classifiers and taking the majority vote.
Non-linear SVMs incorporating the kernels described above
are trained using grid-search for model selection. For the
histogram intersection type kernels–BOVW, SPMK, SCK,
BOVW+SCK, and color histogram–the only parameter is
C, the penalty parameter of the error term. The RBF
kernel used for homogeneous texture contains an addition
width parameter γ. Five-fold cross-validation is performed
in which the ground truth dataset is randomly split into five
equal sets. The classifier is then trained on four of the sets
and evaluated on the held-out set. The classification rate
is the average over the five evaluations. Most results are
presented as the average rate over all 21 classes. The SVMs
were implemented using the LIBSVM package [1].

We compare a variety of difference configurations for the
BOVW approaches:

• Different sized visual dictionaries for the BOVW and
SPMK approaches: 10, 25, 50, 75, 100, 125, 150, 175,
200, 250, 300, 400, 500, 1000, and 5000.

• Different numbers of pyramid levels for the SPMK ap-
proach: 1 (essentially standard BOVW), 2, 3, and 4.

• Different sized visual dictionaries used to compute the
co-occurrence matrices for the SCK approach: 10, 50,
and 100.

• Different sized radii for the spatial predicate used to
compute the co-occurrence matrices for the SCK ap-
proach: 20, 50, 100, and 150 pixels.

7. RESULTS

7.1 Overall
Table 1 shows the best average classification rate across

all 21 classes for the different approaches. The best rates
result from the following settings: for BOVW, a dictionary
size of 1000; for SPMK, a dictionary size of 500 and a three
level pyramid; for SCK, a co-occurrence dictionary size of
100 and a radius of 150; and for BOVW+SCK, a BOVW
dictionary size of 1000, a co-occurrence dictionary of size
100, and a radius of 150. Overall, these results are impressive
given that chance classification for a 21 class problem is only
4.76%. Interestingly, the average rate is similar for all the
approaches with perhaps color histograms computed in the
CIE Lab colorspace as the one outlier. Section 7.6 below
compares the per-class rates which exhibit more variation
between approaches.

Color histograms computed in the HLS colorspace per-
form the best overall, achieving a rate of 81.19%. This was
somewhat unexpected because several of the classes exhibit
significant inter-image color variation. But, the color and
BOVW approaches are orthogonal in that the interest point
descriptors are extracted using only the luminance channel
so that a combined approach is likely to perform even better.
This is possible future work.

The results from the BOVW approaches–BOVW, SPMK,
and BOVW+SCK–for different sized dictionaries are com-
pared visually in figure 3 and in tabular form in table 2.



(a) Agricultural (b) Airplane

(c) Baseball Diamond (d) Beach

(e) Buildings (f) Chaparral

(g) Dense Residential (h) Forest

(i) Freeway (j) Golf Course

(k) Harbor (l) Intersection

(m) Medium Density Residential (n) Mobile Home Park

(o) Overpass (p) Parking Lot

(q) River (r) Runway

(s) Sparse Residential (t) Storage Tanks

(u) Tennis Courts

Figure 2: The ground truth dataset contains 100 images from each of 21 land-use classes. Five samples from
each class are shown above.
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Figure 3: Comparison of BOVW, SPMK, and
BOVW+SCK for different visual dictionary sizes.
The size of visual dictionary used to derive the co-
occurrence matrices for the SCK is as follows: 10
when the BOVW dictionary has size 10 or 25; 50
when the BOVW dictionary has size 50 or 75; and
100 otherwise. The radius used to derive the co-
occurrences matrices is fixed at 150.

The SPMK performs best for smaller dictionaries with 150
visual words or less. Smaller dictionaries correspond to a
coarser quantization of the interest point feature space–that
is, each visual word is less discriminative–so that the spa-
tial arrangement of words is more important. But, as the
dictionary size increases, the absolute spatial representation
of SPMK actually leads to decreased performance over the
non-spatial BOVW approach.

Significantly, BOVW+SCK outperforms BOVW for all
dictionary sizes indicating that the relative spatial repre-
sentation of SCK is complementary to the non-spatial infor-
mation of BOVW. Therefore, a fundamental conclusion of
this paper is that the SCK extension improves the BOVW
approach for land-use classification. This is particulary true
for smaller dictionary sizes which is significant from a com-
putational viewpoint since the increased performance pro-
vided by the extension is almost equal to that which results
from an order-of-magnitude increase in dictionary size for
the non-spatial BOVW approach.

7.2 BOVW
As shown in table 2, a larger dictionary results in improved

performance for the non-spatial BOVW up to around 1000
words. Very small dictionaries do not provide sufficient dis-
crimination even though they might appeal from a computa-
tional and storage viewpoint. That performance decreases
for very large dictionaries likely indicates that the visual
words are too discriminative; that is, they are no longer ro-
bust to image perturbations caused by noise, blurring, dis-
cretization, etc. This decreases the likelihood that similar
image patches are labelled as the same word.

7.3 SPMK
Figure 4 and table 3 provide further insight into the SPMK.

Our results here confirm the findings of the originators of the
method in that a spatial pyramid consisting of three levels
tends to be optimum [13]. This remains true for dictionar-
ies up to size 250 after which a single level pyramid which
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Figure 4: The effect of the number of levels used in
the SPMK method.

is the same as the non-spatial BOVW performs best. This
indicates that the absolute spatial configuration of highly
discriminative visual words is not effective for distinguish-
ing the land-use classes.

7.4 SCK
Figure 5 shows the effect of the size of the dictionary and

the radius of the spatial predicate used to compute the co-
occurrence matrices for the SCK. The optimal configuration
is a dictionary of size 100 and a radius of 150 pixels. We did
not try dictionaries larger than 100 since the SCK represen-
tation grows quadratically with the number of visual words
but the plots indicate that a slightly larger dictionary should
increase performance. The results for the different radii in-
dicate that longer range spatial interactions are significant
for distinguishing the land-use classes. In particular, since
our dataset has a ground resolution of one foot per pixel,
the co-occurrence of visual words as far apart as 100 feet is
discriminating. There seems to be little improvement past
100 feet though.

The SCK outperforms the BOVW for dictionaries of sizes
10, 50, and 100 for radii of 100 or 150 pixels (see table 3
for the BOVW values). It is unlikely, however, that this
trend would continue for larger dictionaries (and it would
be computationally and storage intensive) which motivates
combining the BOVW and SCK approaches, possibly using
different sized dictionaries for each.

7.5 BOVW+SCK
Section 7.1 above already showed that extending BOVW

with SCK results in improved performance for all BOVW
dictionary sizes. We now examine the effects of the SCK co-
occurrence dictionary size and predicate radius on the com-
bined method. Figure 6 and table 4 indicate that larger co-
occurrence dictionary sizes result in improved performance
although there is no clear winner between 50 and 100 vi-
sual words. Figure 7 and table 5 indicate that a larger spa-
tial predicate radius results in improved performance again
with little difference between radii of 100 and 150 pixels. All
these observations are consistent with those of the SCK only
method (see section 7.4 above) with the slight difference that
a co-occurrence dictionary size of 100 does not consistently
result in improved performance over a size of 50.
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Figure 5: The effect of co-occurrence radius and dic-
tionary size on the SCK method.
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Figure 6: The effect of co-occurrence dictionary size
on the BOVW+SCK method. The radius used to
derive co-occurrence matrices is fixed at 150.

7.6 Per-Class Classification Rates
So far, we have only considered average classification rates

over all classes. Figure 8 compares the per-class rates for
the best configurations of the different methods. Not only is
there significant variation between classes but there is also
variation between methods within a class even though the
methods do comparably when averaged over all classes. We
summarize our observations as follows.

Easiest classes Chaparral, harbor, and parking lot, and to
a certain extent forest, are the classes with the highest clas-
sification rates. These classes tend to be very homogeneous
with respect to both color and texture. The variation be-
tween cars does result in color histogram features performing
slightly worse than the other approaches on the parking lot
class.

Most difficult classes Storage tanks and tennis courts,
and to a degree the three residential classes, baseball dia-
mond, and intersection, are the classes with the lowest clas-
sification rates. Indeed, these are the classes which have the
most complex spatial arrangements as well as large inter-
image variation. It is for many of these classes that color
histograms outperform the other approaches since, as global
features, they are invariant to spatial arrangement.

BOVW BOVW proves to be a robust “middle-of-the-pack”
approach, never significantly outperforming nor underper-
forming the other techniques.

SPMK SPMK performs better than the other visual word
approaches on the beach, building, runway, and tennis courts
classes. This is due to the absolute spatial arrangement of
these classes being important. Even though the coastline
may be oriented differently in the beach images, for any
particular orientation, the sand and the surf will be in the
same image regions. The same is true for the runway images.
SPMK performs the worst of all methods on the freeway
class. While this class is similar to runway, this result is
likely due to the different locations that the vehicles occur
as well as the variation in the shoulders, medians, and road
widths.

SCK SCK performs the best of all techniques on the for-
est and intersection classes. These are the classes for which
relative spatial arrangement is important. It additionally
performs better than SPMK on the agricultural, freeway
and river classes, and when compared with SPMK also re-
stricted to dictionary of size 100 (results not shown), this
list also includes buildings, golf course, harbor, parking lot,
and runway. These are the classes for which relative spatial
arrangement is more important than absolute arrangement.

BOVW+SCK Extending the non-spatial BOVW approach
using SCK maintains the robustness of BOVW while im-
proving results for 12 of the 21 classes. If the common
underlying BOVW component is restricted to a dictionary
size of 100, BOVW+SCK outperforms BOVW for 16 of the
21 classes. This improvement is most significant for the
beach and intersection classes. The SCK extension does re-
sult in a notable decrease in performance for the baseball
diamond class (although this decrease is marginal for the
smaller BOVW dictionary). This again supports one of the
fundamental conclusions of this paper, that the SCK exten-
sion improves the BOVW approach for land-use classifica-
tion.

Color As mentioned above, the performance of color his-
tograms extracted in the HLS colorspace was somewhat un-
expected. HLS histograms perform significantly better than
the other methods on the baseball diamond, golf course,
medium density residential, river, sparse residential, and
storage tanks classes. This advantage over methods which
only consider luminance is a result of the large intra-class
homogeneity with respect to color. This advantage is com-
pounded when HLS histograms are compared to the spatial
methods since many of these classes have complex spatial
arrangements often with large intra-class variation.

Texture Texture performs the best on the agricultural, air-
plane, freeway, and runway classes. These results are con-
sistent with our previous use of homogeneous texture de-
scriptors based on the outputs of Gabor filters for analyzing
remote sensed imagery [21].

8. CONCLUSION
We described and evaluated BOVW and spatial exten-

sions for land-use classification in high-resolution overhead
imagery. While the BOVW-based approaches do not per-
form better overall than the best standard approach, they
represent a robust alternative that is more effective for cer-
tain classes. We also proposed a novel spatial extension
termed spatial co-occurrence kernel and showed that it con-
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Figure 7: The effect of co-occurrence radius on
the BOVW+SCK method. The size of the co-
occurrence dictionary is fixed at 100.

sistently improves upon a BOVW baseline. Extensions of
this work include further investigation into which classes in-
terest point based approaches are the most appropriate for
and integrating interest point and color analysis since they
are complementary.
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Figure 8: Per-class classification rates corresponding to the optimal configuration for each method. BOVW
uses a dictionary size of 1000. SPMK uses a dictionary size of 500 with three levels. SCK uses a co-
occurrence dictionary size of 100 and radius of 150. BOVW+SCK uses a BOVW dictionary size of 1000 and
a co-occurrence dictionary size of 100 and radius of 150. The color histograms are computed in the HLS
colorspace.

Table 1: Best classification rates for different approaches. See text for details.
BOVW SPMK SCK BOVW+SCK Color–RGB Color–HLS Color–Lab Texture

Rate 76.81 75.29 72.52 77.71 76.71 81.19 66.43 76.91

Table 2: Classification rates for BOVW, SPMK, and BOVW+SCK for different visual dictionary sizes. The
size of visual dictionary used to derive the co-occurrence matrices for the SCK is as follows: 10 when the
BOVW dictionary has size 10 or 25; 50 when the BOVW dictionary has size 50 or 75; and 100 otherwise.
The radius used to derive the co-occurrences matrices is fixed at 150.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000

BOVW 50.05 61.91 66.81 69.19 71.86 71.48 72.81 72.52 73.62 74.10 74.43 74.81 75.76 76.81 76.10
SPMK 59.71 67.86 71.29 72.62 74.00 73.00 74.52 72.76 74.62 74.67 74.19 74.29 75.29 73.81 72.29
BOVW+SCK 50.71 63.19 68.00 72.33 72.10 74.62 74.76 75.10 75.76 75.71 75.95 76.43 76.86 77.71 76.62

Table 3: The effect of the number of levels used in the SPMK method.
10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000

1 50.05 61.91 66.81 69.19 71.86 71.48 72.81 72.52 73.62 74.10 74.43 74.81 75.76 76.81 76.10
2 51.86 63.14 67.33 70.29 70.91 72.52 72.81 71.95 73.81 73.81 74.71 74.24 75.52 74.24 74.10
3 59.71 67.86 71.29 72.62 74.00 73.00 74.52 72.76 74.62 74.67 74.19 74.29 75.29 73.81 72.29
4 59.05 67.48 69.52 71.62 71.62 71.52 71.76 71.05 72.05 72.52 71.76 72.90 72.90 71.19 71.19

Table 4: The effect of co-occurrence dictionary size on the BOVW+SCK method. The rows correspond to
the size of the dictionary used to derive the co-occurrence matrices. The columns correspond to the size of
the dictionary for the BOVW component. The radius used to derive the co-occurrence matrices is fixed at
150.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000

10 50.71 63.19 66.95 70.62 71.00 72.48 72.71 73.10 74.24 73.90 74.86 75.24 75.62 75.52 73.90
50 67.86 69.10 68.00 72.33 73.62 73.76 75.10 74.71 74.76 75.90 75.95 76.86 76.81 77.14 76.67
100 70.52 69.71 72.10 73.95 72.10 74.61 74.76 75.10 75.76 75.71 75.95 76.43 76.85 77.71 76.62

Table 5: The effect of co-occurrence radius on the BOVW+SCK method. The rows correspond to the radius
used to derive the co-occurrence matrices. The columns correspond to the size of the dictionary for the
BOVW component. The size of the co-occurrence dictionary is fixed at 100.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000

20 67.62 69.86 71.29 73.14 72.43 73.57 74.57 74.19 74.81 74.52 74.81 75.71 75.76 76.38 75.05
50 69.33 69.62 71.05 73.19 72.52 74.19 74.48 74.86 74.48 74.48 75.33 75.86 76.57 77.05 75.86
100 70.29 69.86 71.81 73.52 72.95 74.33 74.95 75.24 74.86 76.00 75.86 76.33 76.86 77.62 76.67
150 70.52 69.71 72.10 73.96 72.10 74.62 74.76 75.10 75.76 75.71 75.96 76.43 76.86 77.71 76.62


