
Proceedings of 2016 EMNLP Workshop on Natural Language Processing and Computational Social Science, pages 114–124,

Austin, TX, November 5, 2016. c©2016 Association for Computational Linguistics

Bag of What? Simple Noun Phrase Extraction for Text Analysis

Abram Handler

UMass Amherst

ahandler@cs.umass.edu

Matthew J. Denny

Penn State

matthewjdenny@gmail.com

Hanna Wallach

Microsoft Research

hanna@dirichlet.net

Brendan O’Connor

UMass Amherst

brenocon@cs.umass.edu

Abstract

Social scientists who do not have specialized

natural language processing training often use

a unigram bag-of-words (BOW) representa-

tion when analyzing text corpora. We offer

a new phrase-based method, NPFST, for en-

riching a unigram BOW. NPFST uses a part-

of-speech tagger and a finite state transducer

to extract multiword phrases to be added to a

unigram BOW. We compare NPFST to both n-

gram and parsing methods in terms of yield,

recall, and efficiency. We then demonstrate

how to use NPFST for exploratory analyses;

it performs well, without configuration, on

many different kinds of English text. Finally,

we present a case study using NPFST to ana-

lyze a new corpus of U.S. congressional bills.

For our open-source implementation, see

http://slanglab.cs.umass.edu/phrases/.

1 Introduction

Social scientists typically use a unigram represen-

tation when analyzing text corpora; each document

is represented as a unigram bag-of-words (BOW),

while the corpus itself is represented as a document–

term matrix of counts. For example, Quinn et al.

(2010) and Grimmer (2010) used a unigram BOW

as input to a topic model, while Monroe et al. (2008)

used a unigram BOW to report the most partisan

terms from political speeches. Although the simplic-

ity of a unigram BOW is appealing, unigram analy-

ses do not preserve meaningful multiword phrases,

such as “health care” or “social security,” and cannot

distinguish between politically significant phrases

that share a word, such as “illegal immigrant” and

“undocumented immigrant.” To address these limi-

tations, we introduce NPFST, which extracts multi-

word phrases to enrich a unigram BOW as additional

columns in the document–term matrix. NPFST is

suitable for many different kinds of English text; it

uses modest computational resources and does not

require any specialized configuration or annotations.

2 Background

We compare NPFST to several other methods in

terms of yield, recall, efficiency, and interpretability.

Yield refers to the number of extracted phrases—a

lower yield requires fewer computational and human

resources to process the phrases. Recall refers to a

method’s ability to recover the most relevant or im-

portant phrases, as determined by a human. A good

method should have a low yield, but high recall.

2.1 n-grams

Our simplest baseline is AllNGrams(K). This

method extracts all n-grams, up to length K, from

tokenized, sentence-segmented text, excluding n-

grams that cross sentence boundaries. This method

is commonly used to extract features for text classifi-

cation (e.g., Yogatama et al. (2015)), but has several

disadvantages in a social scientific context. First,

social scientists often want to substantively inter-

pret individual phrases, but fragmentary phrases that

cross sentence constituents may not be meaning-

ful. For example, the Affordable Care Act includes

the hard-to-interpret 4-gram, “the Internet website

of.” Second, although AllNGrams(K) has high re-

call (provided that K is sufficiently large), it suffers

from a higher yield and can therefore require sub-

stantial resources to process the extracted phrases.

2.2 Parsing

An alternative approach1 is to use syntax to re-

strict the extracted phrases to constituents, such as

noun phrases (NPs). Unlike verb, prepositional,

1Statistical collocation methods provide another approach

(e.g., Dunning (1993), Hannah and Wallach (2014)). These

methods focus on within-n-gram statistical dependence. In

informal analyses, we found their recall unsatisfying for low-

frequency phrases, but defer a full comparison for future work.

114

or adjectival phrases, NPs often make sense even

when stripped from their surrounding context—

e.g., [Barack Obama]NP vs. [was inaugurated in

2008]V P . There are many methods for extracting

NPs. Given the long history of constituent parsing

research in NLP, one obvious approach is to run an

off-the-shelf constituent parser and then retrieve all

NP non-terminals from the trees.2 We refer to this

method as ConstitParse. Unfortunately, the major

sources of English training data, such as the Penn

Treebank (Marcus et al., 1993), include determin-

ers within the NP and non-nested flat NP annota-

tions,3 leading to low recall in our context (see §4).

Since modern parsers rely on these sources of train-

ing data, it is very difficult to change this behavior.

2.3 Part-of-Speech Grammars

Another approach, proposed by Justeson and Katz

(1995), is to use part-of-speech (POS) patterns to

find and extract NPs—a form of shallow partial pars-

ing (Abney, 1997). Researchers have used this ap-

proach in a variety of different contexts (Benoit and

Nulty, 2015; Frantzi et al., 2000; Kim et al., 2010;

Chuang et al., 2012; Bamman and Smith, 2014). A

pattern-based method can be specified in terms of a

triple of parameters: (G, K,M), where G is a gram-

mar, K is a maximum length, and M is a matching

strategy. The grammar G is a non-recursive regu-

lar expression that defines an infinite set of POS tag

sequences (i.e., a regular language); the maximum

length K limits the length of the extracted n-grams

to n ≤ K; while the matching strategy M specifies

how to extract text spans that match the grammar.

The simplest grammar that we consider is

(A |N) ∗ N(PD ∗ (A |N) ∗ N)∗

defined over a coarse tag set of adjectives, nouns

(both common and proper), prepositions, and deter-

miners. We refer to this grammar as SimpleNP. The

constituents that match this grammar are bare NPs

(with optional PP attachments), N-bars, and names.

We do not include any determiners at the root NP.

2Another type of syntactic structure prediction is NP chunk-

ing. This produces a shallower, non-nested representation.
3The English Web Treebank (LDC2012T13) has some more

nesting structure and OntoNotes (version 5, LDC2013T19) in-

cludes a variant of the Penn Treebank with Vadas and Curran

(2011)’s nested NP annotations. We look forward to the avail-

ability of constituent parsers trained on these data sources.

We also consider three baseline matching strate-

gies, each of which can (in theory) be used with any

G and K. The first, FilterEnum, enumerates all pos-

sible strings in the regular language, up to length K,

as a preprocessing step. Then, at runtime, it checks

whether each n-gram in the corpus is present in this

enumeration. This matching strategy is simple to

implement and extracts all matches up to length K,

but it is computationally infeasible if K is large. The

second, FilterFSA, compiles G into a finite-state au-

tomaton (FSA) as a preprocessing step. Then, at

runtime, it checks whether each n-gram matches this

FSA. Like FilterEnum, this matching strategy ex-

tracts all matches up to length K; however, it can

be inefficient if K is large. The third, GreedyFSA,

also compiles G into an FSA, but uses a standard

greedy matching approach at runtime to extract n-

grams that match G. Unlike the other two match-

ing strategies, it cannot extract overlapping or nested

matches, but it can extract very long matches.4

In their original presentation, Justeson and Katz

(1995) defined a grammar that is very similar to

SimpleNP and suggested using 2- and 3-grams (i.e.,

K = 3). With this restriction, their grammar com-

prises seven unique patterns. They also proposed us-

ing FilterEnum to extract text spans that match these

patterns. We refer to this method as JK = (Sim-

pleNP, K = 3, FilterEnum). Many researchers have

used this method, perhaps because it is described in

the NLP textbook by Manning and Schütze (1999).

3 NPFST

Our contribution is a new pattern-based extraction

method: NPFST = (FullNP, K =∞, RewriteFST).

In §3.1, we define the FullNP grammar, and in §3.2,

we define the RewriteFST matching strategy.

3.1 FullNP Grammar

FullNP extends SimpleNP by adding coordination

of pairs of words with the same tag (e.g., (VB

CC VB) in (cease and desist) order); coordination

of noun phrases; parenthetical post-modifiers (e.g.,

401(k), which is a 4-gram because of common NLP

tokenization conventions); numeric modifiers and

nominals; and support for the Penn Treebank tag set,

4We implemented both FilterFSA and GreedyFSA using

standard Python libraries—specifically, re.match and re.finditer.

115

�����
�����

�����
�����

������� �����
�����
�����

����������

Figure 1: Composed rewrite lattice L = I ◦ P for input I =

(JJ NNP NN). Five spans are retrieved during lattice traversal.

the coarse universal tag set (Petrov et al., 2011), and

Gimpel et al. (2011)’s Twitter-specific coarse tag set.

We provide the complete definition in the appendix.

3.2 RewriteFST Matching Strategy

RewriteFST uses a finite-state transducer (FST) to

rapidly extract text spans that match G—including

overlapping and nested spans. This matching strat-

egy is a form of finite-state NLP (Roche and Sch-

abes, 1997), and therefore builds on an extensive

body of previous work on FST algorithms and tools.

The input to RewriteFST is a POS-tagged5 se-

quence of tokens I , represented as an FSA. For a

simple tag sequence, this FSA is a linear chain, but,

if there is uncertainty in the output of the tagger, it

can be a lattice with multiple tags for each position.

The grammar G is first compiled into a phrase

transducer P ,6 which takes an input sequence I

and outputs the same sequence, but with pairs of

start and end symbols—[S] and [E], respectively—

inserted to indicate possible NPs (see figure 1).

At runtime, RewriteFST computes an output lattice

L = I ◦ P using FST composition;7 since it is non-

deterministic, L includes all overlapping and nested

spans, rather than just the longest match. Finally,

FilterFST traverses L to find all edges with a [S]

symbol. From each one, it performs a depth-first

search to find all paths to an edge with an [E] sym-

bol, accumulating all [S]- and [E]-delimited spans.8

In table 1, we provide a comparison of FilterFST

and the three matching strategies described in §2.3.

5We used the ARK POS tagger for tweets (Gimpel et al.,

2011; Owoputi et al., 2013) and used Stanford CoreNLP for all

other corpora (Toutanova et al., 2003; Manning et al., 2014).
6We used foma (Hulden, 2009; Beesley and Karttunen,

2003) to compile G into P . foma was designed for building

morphological analyzers; it allows a developer to write a gram-

mar in terms of readable production rules with intermediate cat-

egories. The rules are then compiled into a single, compact FST.
7We implemented the FST composition using OpenNLP

(Allauzen et al., 2007) and pyfst (http://pyfst.github.io/).
8There are alternatives to this FST approach, such as a back-

tracking algorithm applied directly to the original grammar’s

FSA to retrieve all spans starting at each position in the input.

Matching Strategy All Matches? Large K?

FilterEnum yes infeasible

FilterFSA yes can be inefficient

GreedyFSA no yes

RewriteFST yes yes

Table 1: RewriteFST versus the matching strategies described

in §2.3. Like FilterEnum and FilterFSA, RewriteFST extracts

all matches up to length K; in contrast, GreedyFSA can-

not extract overlapping or nested matches. Like GreedyFSA,

RewriteFST can extract long matches; in contrast, FilterEnum

and is infeasible and FilterFSA can be inefficient if K is large.

4 Experimental Results

In this section, we provide experimental results com-

paring NPFST to the baselines described in §2 in

terms of yield, recall, efficiency, and interpretability.

As desired, NPFST has a low yield and high recall,

and efficiently extracts highly interpretable phrases.

4.1 Yield and Recall

Yield refers to the number of phrases extracted by

a method, while recall refers to a method’s ability

to recover the most relevant or important phrases,

as determined by a human. Because relevance and

importance are domain-specific concepts that are not

easy to define, we compared the methods using three

named-entity recognition (NER) data sets: mentions

of ten types of entities on Twitter from the WNUT

2015 shared task (Baldwin et al., 2015); mentions

of proteins in biomedical articles from the BioNLP

shared task 2011 (Kim et al., 2011); and a synthetic

data set of named entities in New York Times ar-

ticles (Sandhaus, 2008), identified using Stanford

NER (Manning et al., 2014). Named entities are un-

doubtedly relevant and important phrases in all three

of these different domains.9 For each data set, we

defined a method’s yield to be the total number of

spans that it extracted and a method’s recall to be

the percentage of the (labeled) named entity spans

that were present in its list of extracted spans.10

9Although we use NER data sets to compare the methods’

yield and recall, social scientists are obviously interested in

analyzing other phrases, such as “heath care reform,” which

have a less psycholinguistically concrete status (Brysbaert et al.,

2014). We focus on these kinds of phrases in §4.3 and §5.
10We assumed that all methods extracted all unigram spans.

116

(a) WNUT (b) BioNLP (c) NYT

Figure 2: Recall versus yield for AllNGrams(K) with K = 1, . . . , 6, ConstitParse, JK, (SimpleNP, K = ∞, GreedyFSA), and

NPFST. A good method should have a low yield, but high recall—i.e., the best methods are in the top-left corner of each plot. For

visual clarity, the y-axis starts at 0.5. We omit yield and recall values for AllNGrams(K) with K > 6 because recall approaches an

asymptote. For the WNUT data set, we omit yield and recall values for ConstitParse because there is no reliable constituent parser

for tweets. As described in §4.1, we also show yield and recall values for NPFST run on input lattices (denoted by 0.01 and 0.001).

Figure 2 depicts recall versus yield11 for NPFST

and the following baseline methods: AllNGrams(K)

with different values of K, ConstitParse,12 JK, and

(SimpleNP, K =∞, GreedyFSA). Because the yield

and recall values for (SimpleNP, K = 3, FilterFSA)

are the same as those of JK, we omit these values

from figure 2. We also omit yield and recall val-

ues for (FullNP, K = ∞, FilterEnum) and (FullNP,

K = ∞, FilterFSA) because they are identical to

those of NPFST. Finally, we omit yield and recall

values for (FullNP, K = ∞, GreedyFSA) because

our implementation of GreedyFSA (using standard

Python libraries) is too slow to use with FullNP.

A good method should have a low yield, but

high recall—i.e., the best methods are in the top-

left corner of each plot. The pattern-based methods

all achieved high recall, with a considerably lower

yield than AllNGrams(K). ConstitParse achieved

a lower yield than NPFST, but also achieved lower

recall. JK performed worse than NPFST, in part

because it can only extract 2- and 3-grams, and,

for example, the BioNLP data set contains men-

tions of proteins that are as long as eleven tokens

(e.g., “Ca2+/calmodulin-dependent protein kinase

(CaMK) type IV/Gr”). Finally, (SimpleNP, K =∞,

GreedyFSA) performed much worse than JK be-

cause it cannot extract overlapping or nested spans.

11The WNUT data set is already tokenized; however, we ac-

cidentally re-tokenized it in our experiments. Figure 2 therefore

only depicts yield and recall for the 1,278 (out of 1,795) tweets

for which our re-tokenization matched the original tokenization.
12We used the Stanford CoreNLP shift–reduce parser.

Method Time

AllNGrams(∞) 44.4 ms

ConstitParse 825.3 ms

JK 45.3 ms

(SimpleNP, K =3, FilterFSA) 46.43 ms

(SimpleNP, K =∞, GreedyFSA) 39.34 ms

NPFST 82.2 ms

Table 2: Timing results for AllNGrams(∞), ConstitParse,

JK, (SimpleNP, K = 3, FilterFSA), (SimpleNP, K = ∞,

GreedyFSA), and NPFST on ten articles from the BioNLP data

set; AllNGrams(∞) is equivalent to AllNGrams(56) in this con-

text. The pattern-based methods’ times include POS tagging

(37.1 ms), while ConstitParse’s time includes parsing (748 ms).

For the WNUT data set, NPFST’s recall was rela-

tively low (91.8%). To test whether some of its false

negatives were due to POS-tagging errors, we used

NPFST’s ability to operate on an input lattice with

multiple tags for each position. Specifically, we con-

structed an input lattice I using the tags for each po-

sition whose posterior probability was at least t. We

experimented with t = 0.01 and t = 0.001. These

values increased recall to 96.2% and 98.3%, respec-

tively, in exchange for only a slightly higher yield

(lower than that of AllNGrams(2)). We suspect that

we did not see a greater increase in yield, even for

t = 0.001, because of posterior calibration (Nguyen

and O’Connor, 2015; Kuleshov and Liang, 2015).

117

4.2 Efficiency

We used ten articles from the BioNLP data set

to compare the methods’ preprocessing and run-

time costs. Table 2 contains timing results13

for AllNGrams(∞), ConstitParse, JK, (SimpleNP,

K = 3, FilterFSA), and (SimpleNP, K = ∞,

GreedyFSA), and NPFST. We omit results for

(FullNP, K =∞, FilterEnum), (FullNP, K =∞, Fil-

terFSA), and (FullNP, K =∞, GreedyFSA) because

they are too slow to compete with the other methods.

POS tagging is about twenty times faster than

parsing, which is helpful for social scientists who

may not have fast servers. NPFST is slightly slower

than the simpler pattern-based methods; however,

80% of its time is spent constructing the input I and

traversing the output lattice L, both of which are

implemented in Python and could be made faster.

4.3 Interpretability

When analyzing text corpora, social scientists of-

ten examine ranked lists of terms, where each term

is ranked according to some score. We argue that

multiword phrases are more interpretable than uni-

grams when stripped from their surrounding context

and presented as a list. In §4.3.1 we explain how

to merge related terms, and in §4.3.2, we provide

ranked lists that demonstrate that NPFST extracts

more interpretable phrases than other methods.

4.3.1 Merging Related Terms

As described in §3.2, NPFST extracts overlapping

and nested spans. For example, when run on a data

set of congressional bills about crime, NPFST ex-

tracted “omnibus crime control and safe streets act,”

as well as the nested phrases “crime control” and

“safe streets act.” Although this behavior is gener-

ally desirable, it can also lead to repetition in ranked

lists. We therefore outline an high-level algorithm

for merging the highest-ranked terms in a ranked list.

The input to our algorithm is a list of terms L. The

algorithm iterates through the list, starting with the

highest-ranked term, aggregating similar terms ac-

cording to some user-defined criterion (e.g., whether

the terms share a substring) until it has generated C

distinct term clusters. The algorithm then selects a

single term to represent each cluster. Finally, the al-

13We used Python’s timeit module.

gorithm orders the clusters’ representative terms to

form a ranked list of length C. By starting with the

highest-ranked term and terminating after C clusters

have been formed, this algorithm avoids the ineffi-

ciency of examining all possible pairs of terms.

4.3.2 Ranked Lists

To assess the interpretability of the phrases ex-

tracted by NPFST, we used three data sets: tweets

about climate change, written by (manually identi-

fied) climate deniers;14 transcripts from criminal tri-

als at the Old Bailey in London during the 18th cen-

tury;15 and New York Times articles from Septem-

ber, 1993. For each data set, we extracted phrases

using ConstitParse, JK, and NPFST and produced

a list of terms for each method, ranked by count.

We excluded domain-specific stopwords and any

phrases that contained them.16 Finally, we merged

related terms using our term-merging algorithm, ag-

gregating terms only if one term was a substring of

another, to produce ranked lists of five representative

terms. Table 4.3 contains these lists, demonstrating

that NPFST produces highly interpretable phrases.

5 Case Study: Finding Partisan Terms in

U.S. Congressional Legislation

Many political scientists have studied the rela-

tionship between language usage and party affilia-

tion (Laver et al., 2003; Monroe et al., 2008; Slapin

and Proksch, 2008; Quinn et al., 2010; Grimmer and

Stewart, 2013). We present a case study, in which we

use NPFST to explore partisan differences in U.S.

congressional legislation about law and crime. In

§5.1, we describe our data set, and in §5.2, we ex-

plain our methodology and present our results.

5.1 The Congressional Bills Corpus

We used a new data set of 97,221 U.S. congressional

bills, introduced in the House and Senate between

14https://www.crowdflower.com/data/sentiment-analysis-

global-warmingclimate-change-2/
15http://www.oldbaileyonline.org/
16For example, for the tweets, we excluded phrases that con-

tained “climate” and “warming.” For the Old Bailey transcripts,

we excluded phrases that contained “st.” or “mr.” (e.g., “st.

john” or “mr. white”). We also used a regular expression to ex-

clude apparent abbreviated names (e.g., “b. smith”) and used a

stopword list to exclude dates like “5 of february.” For the New

York Times articles, we excluded phrases that contained “said.”

118

Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore

JK al gore’s, snake oil science, snow in dc, mine safety

NPFST al gore’s, snake oil science, 15 months, snow in dc,

*bunch of snake oil science

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell

ConsitParse the prisoner, the warden, the draught, the fleet, the house

JK middlesex jury, public house, warrant of attorney, baron perryn, justice grose

NPFST middlesex jury, public house, warrant of attorney, baron perryn,

*middlesex jury before lord loughborough

NYT unigrams will, united, one, government, new

ConstitParse he united states, the government, the agreement, the president, the white house

JK united states, united nations, white house, health care, prime minister

NPFST united states, united nations, white house, health care,

*secretary of state warren christopher

Table 3: Ranked lists of representative terms for unigrams, ConstitParse, JK, and NPFST. For NPSFT, we include the highest-

ranked phrase of length four or more (on its own line, denoted by *) in order to highlight the kinds of longer phrases that JK is

unable to extract. For the Twitter data set, we omit results for ConstitParse because there is no reliable constituent parser for tweets.

1993 and 2014. We created this data set by scraping

the Library of Congress website.17 We used Stan-

ford CoreNLP to tokenize and POS tag the bills. We

removed numbers and punctuation, and discarded all

terms that occurred in fewer than five bills. We also

augmented each bill with its author, its final outcome

(e.g., did it survive committee deliberations, did it

pass a floor vote in the Senate) from the Congres-

sional Bills Project (Adler and Wilkerson, 2014),

and its major topic area (Purpura and Hillard, 2006).

For our case study, we focused on a subset of

488 bills, introduced between 2013 and 2014, that

are primarily about law and crime. We chose this

subset because we anticipated that it would clearly

highlight partisan policy differences. For exam-

ple, the bills include legislation about immigration

enforcement and about incarceration of low-level

offenders—two areas where Democrats and Repub-

licans tend to have very different policy preferences.

5.2 Partisan Terms

We used NPFST to extract phrases from the bills,

and then created ranked lists of terms for each party

using the informative Dirichlet18 feature selection

17http://congress.gov/
18In order to lower the z-scores of uninformative, high-

frequency terms, we set the Dirichlet hyperparameters to be

proportional to the term counts from our full data set of bills.

method of Monroe et al. (2008). This method

computes a z-score for each term that reflects how

strongly that term is associated with Democrats

over Republicans—a positive z-score indicates that

Democrats are more likely to use the term, while

a negative z-score indicates that Republications are

more likely to use the term. We merged the highest-

ranked terms for each party, aggregating terms only

if one term was a substring of another and if the

terms were very likely to co-occur in a single bill,19

to form ranked lists of representative terms. Finally,

for comparison, we also used the same approach to

create ranked lists of unigrams, one for each party.

Figure 3 depicts z-score versus term count, while

table 4 lists the twenty highest-ranked terms. The

unigram lists suggest that Democratic lawmakers fo-

cus more on legislation related to mental health, ju-

venile offenders, and possibly domestic violence,

while Republican lawmakers focus more on illegal

immigration. However, many of the highest-ranked

unigrams are highly ambiguous when stripped from

their surrounding context. For example, we do

not know whether “domestic” refers to “domes-

tic violence,” “domestic terrorism,” or “domestic

programs” without manually reviewing the origi-

19We used the correlation between the terms’ tf-idf vectors

determine how likely the terms were to co-occur in a single bill.

119

(a) unigrams (b) NPFST

Figure 3: z-score versus term count. Each dot represents a single term and is sized according to that term’s z-score. Terms that are

more likely to be used by Democrats are shown in blue; terms that are more likely to be used by Republicans are shown in dark red.

nal bills (e.g., using a keyword-in-context inter-

face (O’Connor, 2014)). Moreover, many of the

highest-ranked Republican unigrams, such as “com-

munication,” are not unique to law and crime.

In contrast, the phrase-based lists are less am-

biguous and much more interpretable. They include

names of bills (which are often long) and important

concepts, such as “mental health,” “victims of do-

mestic violence,” “interstate or foreign commerce,”

and “explosive materials.” These lists suggest that

Democratic lawmakers have a very strong focus on

programs to prevent child abuse and domestic vio-

lence, as well as issues related to mental health and

gang violence. Republican lawmakers appear to fo-

cus on immigration and incarceration. This focus on

immigration is not surprising given the media cov-

erage between 2013 and 2014; however, there was

much less media coverage of a Democratic focus on

crime-related legislation during that time period.

These results suggest that social scientists will

be less likely to draw incorrect conclusions from

ranked lists of terms if they include multiword

phrases. Because phrases are less ambiguous than

unigrams, social scientists can more quickly dis-

cover meaningful term-based associations for fur-

ther exploration, without undertaking a lengthy pro-

cess to validate their interpretation of the terms.

6 Conclusions and Future Work

Social scientists typically use a unigram BOW

representation when analyzing text corpora, even

though unigram analyses do not preserve meaning-

ful multiword phrases. To address this limitation,

we presented a new phrase-based method, NPFST,

for enriching a unigram BOW. NPFST is suitable for

many different kinds of English text; it does not re-

quire any specialized configuration or annotations.

We compared NPFST to several other methods

for extracting phrases, focusing on yield, recall, effi-

ciency, and interpretability. As desired, NPFST has

a low yield and high recall, and efficiently extracts

highly interpretable phrases. Finally, to demonstrate

the usefulness of NPFST for social scientists, we

used NPFST to explore partisan differences in U.S.

congressional legislation about law and crime. We

found that the phrases extracted by NPFST were less

ambiguous and more interpretable than unigrams.

In the future, we plan to use NPFST in combina-

tion with other text analysis methods, such as topic

modeling; we have already obtained encouraging

preliminary results. We have also experimented with

modifying the FullNP grammar to select broader

classes of phrases, such as subject–verb and verb–

object constructions (though we anticipate that more

structured syntactic parsing approaches will eventu-

ally be useful for these kinds of constructions).

120

Method Party Ranked List

unigrams Democrat and, deleted, health, mental, domestic, inserting, grant, programs, prevention, violence, program,

striking, education, forensic, standards, juvenile, grants, partner, science, research

Republican any, offense, property, imprisoned, whoever, person, more, alien, knowingly, officer, not, united,

intent, commerce, communication, forfeiture, immigration, official, interstate, subchapter

NPFST Democrat mental health, juvenile justice and delinquency prevention act, victims of domestic violence,

child support enforcement act of u.s.c., fiscal year, child abuse prevention and treatment act,

omnibus crime control and safe streets act of u.s.c., date of enactment of this act,

violence prevention, director of the national institute, former spouse,

section of the foreign intelligence surveillance act of u.s.c., justice system, substance abuse

criminal street gang, such youth, forensic science, authorization of appropriations, grant program

Republican special maritime and territorial jurisdiction of the united states, interstate or foreign commerce,

federal prison, section of the immigration and nationality act,

electronic communication service provider, motor vehicles, such persons, serious bodily injury,

controlled substances act, department or agency, one year, political subdivision of a state,

civil action, section of the immigration and nationality act u.s.c., offense under this section,

five years, bureau of prisons, foreign government, explosive materials, other person

Table 4: Ranked lists of unigrams and representative phrases of length two or more for Democrats and Republicans.

Our open-source implementation of NPFST is

available at http://slanglab.cs.umass.edu/phrases/.

Acknowledgments

We thank the anonymous reviewers for their com-

ments (especially the suggestion of FSA backtrack-

ing) on earlier versions of this work. We also thank

Ken Benoit, Brian Dillon, Chris Dyer, Michael Heil-

man, and Bryan Routledge for helpful discussions.

MD was supported by NSF Grant DGE-1144860.

121

Appendix: FullNP Grammar

The following foma grammar defines the rewrite phrase transducer P :

POS tag categories. "Coarse" refer to the Petrov Univeral tag set.

We directly use PTB tags, but for Twitter, we assume they’ve been

preprocessed to coarse tags.

CD is intentionally under both Adj and Noun.

define Adj1 [JJ | JJR | JJS | CD | CoarseADJ];

define Det1 [DT | CoarseDET];

define Prep1 [IN | TO | CoarseADP];

define Adv1 [RB | RBR | RBS | CoarseADV];

Note that Twitter and coarse tags subsume some of this under VERB.

define VerbMod1 [Adv1 | RP | MD | CoarsePRT];

PTB FW goes to CoarseX, but we’re excluding CoarseX since for Gimpel et al.’s

Twitter tags, that’s usually non-constituent-participating things like URLs.

define Noun [NN | NNS | NNP | NNPS | FW | CD | CoarseNOUN | CoarseNUM];

define Verb [VB | VBD | VBG | VBN | VBP | VBZ | CoarseVERB];

define AnyPOS [O | Adj1|Det1|Prep1|Adv1|VerbMod1|Noun|Verb |

CoarseDOT|CoarseADJ|CoarseADP|CoarseADV|CoarseCONJ|CoarseDET|

CoarseNOUN|CoarseNUM|CoarsePRON|CoarsePRT|CoarseVERB|CoarseX

]

define Lparen ["-LRB-" | "-LSB-" | "-LCB-"]; # Twitter doesnt have this.

define Rparen ["-RRB-" | "-RSB-" | "-RCB-"];

Ideally, auxiliary verbs would be VerbMod, but PTB gives them VB* tags.

single-word coordinations

define Adj Adj1 [CC Adj1]*;

define Det Det1 [CC Det1]*;

define Adv Adv1 [CC Adv1]*;

define Prep Prep1 [CC Prep1]*;

define VerbMod VerbMod1 [CC VerbMod1]*;

NP (and thus BaseNP) have to be able to stand on their own. They are not

allowed to start with a determiner, since it’s usually extraneous for our

purposes. But when we want an NP right of something, we need to allow

optional determiners since they’re in between.

define BaseNP [Adj|Noun]* Noun;

define PP Prep+ [Det|Adj]* BaseNP;

define ParenP Lparen AnyPOSˆ{1,50} Rparen;

define NP1 BaseNP [PP | ParenP]*;

define NP NP1 [CC [Det|Adj]* NP1]*;

regex NP -> START ... END;

write att compiled_fsts/NP.attfoma

122

References

[Abney1997] Steven Abney. 1997. Part-of-speech tag-

ging and partial parsing. In Corpus-based methods

in language and speech processing, pages 118–136.

Springer.

[Adler and Wilkerson2014] E. Scott Adler and John

Wilkerson. 2014. Congressional Bills Project: (1980-

2004).

[Allauzen et al.2007] Cyril Allauzen, Michael Riley, Jo-

han Schalkwyk, Wojciech Skut, and Mehryar Mohri.

2007. OpenFST: A general and efficient weighted

finite-state transducer library. In Implementation and

Application of Automata, pages 11–23. Springer.

[Baldwin et al.2015] Timothy Baldwin, Marie-Catherine

de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter,

and Wei Xu. 2015. Shared tasks of the 2015 work-

shop on noisy user-generated text: Twitter lexical nor-

malization and named entity recognition. In Proceed-

ings of the Workshop on Noisy User-generated Text,

pages 126–135, Beijing, China, July. Association for

Computational Linguistics.

[Bamman and Smith2014] David Bamman and Noah A.

Smith. 2014. Unsupervised discovery of biographical

structure from text. Transactions of the Association

for Computational Linguistics, 2:363–376.

[Beesley and Karttunen2003] Kenneth R. Beesley and

Lauri Karttunen. 2003. Finite-state morphology: Xe-

rox tools and techniques. CSLI, Stanford.

[Benoit and Nulty2015] Kenneth Benoit and Paul Nulty.

2015. More than unigrams can say: Detecting mean-

ingful multi-word expressions in political text. MPSA

Working Paper, pages 1–19.

[Brysbaert et al.2014] Marc Brysbaert, Amy Beth War-

riner, and Victor Kuperman. 2014. Concreteness rat-

ings for 40 thousand generally known English word

lemmas. Behavior Research Methods, 46(3):904–911.

[Chuang et al.2012] Jason Chuang, Christopher D. Man-

ning, and Jeffrey Heer. 2012. “Without the clut-

ter of unimportant words”: Descriptive keyphrases for

text visualization. ACM Transactions on Computer-

Human Interaction (TOCHI), 19(3):19.

[Dunning1993] Ted Dunning. 1993. Accurate methods

for the statistics of surprise and coincidence. Compu-

tational Linguistics, 19:61–74.

[Frantzi et al.2000] Katerina Frantzi, Sophia Ananiadou,

and Hideki Mima. 2000. Automatic recognition of

multi-word terms: The c-value/nc-value method. In-

ternational Journal on Digital Libraries, 3(2):115–

130.

[Gimpel et al.2011] Kevin Gimpel, Nathan Schneider,

Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob

Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey

Flanigan, and Noah A. Smith. 2011. Part-of-speech

tagging for Twitter: Annotation, features, and exper-

iments. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Hu-

man Language Technologies: short papers-Volume 2,

pages 42–47. Association for Computational Linguis-

tics.

[Grimmer and Stewart2013] Justin Grimmer and Bran-

don M. Stewart. 2013. Text as data: The promise

and pitfalls of automatic content analysis methods for

political texts. Political Analysis, 21(3):267–297.

[Grimmer2010] Justin Grimmer. 2010. A Bayesian hi-

erarchical topic model for political texts: Measuring

expressed agendas in Senate press releases. Political

Analysis, 18(1):1–35.

[Hannah and Wallach2014] Lauren Hannah and Hanna

Wallach. 2014. Topic summarization: From word

lists to phrases. In Proceedings of the NIPS Workshop

on“Modern Machine Learning and Natural Language

Processing”.

[Hulden2009] Mans Hulden. 2009. Foma: A finite-state

compiler and library. In Proceedings of the 12th Con-

ference of the European Chapter of the Association for

Computational Linguistics: Demonstrations Session,

pages 29–32. Association for Computational Linguis-

tics.

[Justeson and Katz1995] John S. Justeson and Slava M.

Katz. 1995. Technical terminology: Some linguistic

properties and an algorithm for identification in text.

Natural Language Engineering, 1(01):9–27.

[Kim et al.2010] Su Nam Kim, Timothy Baldwin, and

Min-Yen Kan. 2010. Evaluating n-gram based eval-

uation metrics for automatic keyphrase extraction. In

Proceedings of the 23rd international conference on

computational linguistics, pages 572–580. Association

for Computational Linguistics.

[Kim et al.2011] Jin-Dong Kim, Sampo Pyysalo, Tomoko

Ohta, Robert Bossy, Ngan Nguyen, and Jun’ichi Tsu-

jii. 2011. Overview of BioNLP shared task 2011. In

Proceedings of the BioNLP Shared Task 2011 Work-

shop, pages 1–6. Association for Computational Lin-

guistics.

[Kuleshov and Liang2015] Volodymyr Kuleshov and

Percy S. Liang. 2015. Calibrated structured predic-

tion. In Advances in Neural Information Processing

Systems, pages 3456–3464.

[Laver et al.2003] Michael Laver, Kenneth Benoit, and

John Garry. 2003. Extracting policy positions from

political texts using words as data. The American Po-

litical Science Review, 97(2):311–331.

[Manning and Schütze1999] Christopher D. Manning and

Hinrich Schütze. 1999. Foundations of Statistical

Natural Language Processing. MIT Press.

[Manning et al.2014] Christopher D. Manning, Mihai

Surdeanu, John Bauer, Jenny Finkel, Steven J.

123

Bethard, and David McClosky. 2014. The Stanford

CoreNLP natural language processing toolkit. In As-

sociation for Computational Linguistics (ACL) System

Demonstrations, pages 55–60.

[Marcus et al.1993] Mitchell P. Marcus, Mary Ann

Marcinkiewicz, and Beatrice Santorini. 1993. Build-

ing a large annotated corpus of English: The Penn

Treebank. Computational Linguistics, 19(2):313–330.

[Monroe et al.2008] Burt L. Monroe, Michael P. Colaresi,

and Kevin M. Quinn. 2008. Fightin’ words: Lex-

ical feature selection and evaluation for identifying

the content of political conflict. Political Analysis,

16:372–403.

[Nguyen and O’Connor2015] Khanh Nguyen and Bren-

dan O’Connor. 2015. Posterior calibration and

exploratory analysis for natural language processing

models. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing,

pages 1587–1598. Association for Computational Lin-

guistics.

[O’Connor2014] B O’Connor. 2014. MITEXTEX-

PLORER : Linked brushing and mutual information

for exploratory text data analysis. In ACL 2014 Work-

shop on Interactive Language Learning, Visualization,

and Interfaces.

[Owoputi et al.2013] Olutobi Owoputi, Brendan

O’Connor, Chris Dyer, Kevin Gimpel, Nathan

Schneider, and Noah A. Smith. 2013. Improved

part-of-speech tagging for online conversational text

with word clusters. In Proceedings of NAACL.

[Petrov et al.2011] Slav Petrov, Dipanjan Das, and Ryan

McDonald. 2011. A universal part-of-speech tagset.

arXiv preprint arXiv:1104.2086.

[Purpura and Hillard2006] Stephen Purpura and Dustin

Hillard. 2006. Automated classification of congres-

sional legislation. Proceedings of The 2006 Interna-

tional Conference on Digital Government Research,

pages 219–225.

[Quinn et al.2010] Kevin M. Quinn, Burt L. Mon-

roe, Michael Colaresi, Michael H. Crespin, and

Dragomir R. Radev. 2010. How to analyze political

attention with minimal assumptions and costs. Ameri-

can Journal of Political Science, 54(1):209–228.

[Roche and Schabes1997] Emmanuel Roche and Yves

Schabes. 1997. Finite-State Language Processing.

MIT Press.

[Sandhaus2008] Evan Sandhaus. 2008. The New York

Times Annotated Corpus. Linguistic Data Consor-

tium, LDC2008T19.

[Slapin and Proksch2008] Jonathan B Slapin and Sven-

Oliver Proksch. 2008. A scaling model for estimating

time-serial positions from texts. American Journal of

Political Science, 52(3):705–722.

[Toutanova et al.2003] K. Toutanova, Dan Klein, Christo-

pher D. Manning, and Yoram Singer. 2003. Feature-

rich part-of-speech tagging with a cyclic dependency

network. In Proceedings of the 2003 Conference

of the North American Chapter of the Association

for Computational Linguistics on Human Language

Technology-Volume 1, pages 173–180.

[Vadas and Curran2011] David Vadas and James R. Cur-

ran. 2011. Parsing noun phrases in the Penn Treebank.

Computational Linguistics, 37(4):753–809.

[Yogatama et al.2015] Dani Yogatama, Lingpeng Kong,

and Noah A. Smith. 2015. Bayesian optimization of

text representations. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language

Processing, pages 2100–2105. Association for Com-

putational Linguistics.

124

