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Abstract

Background: The adaptation of the CRISPR-Cas9 system to pooled library gene knockout screens in mammalian
cells represents a major technological leap over RNA interference, the prior state of the art. New methods for
analyzing the data and evaluating results are needed.

Results: We offer BAGEL (Bayesian Analysis of Gene EssentiaLity), a supervised learning method for analyzing gene
knockout screens. Coupled with gold-standard reference sets of essential and nonessential genes, BAGEL offers significantly
greater sensitivity than current methods, while computational optimizations reduce runtime by an order of magnitude.

Conclusions: Using BAGEL, we identify ~2000 fitness genes in pooled library knockout screens in human cell lines
at 5 % FDR, a major advance over competing platforms. BAGEL shows high sensitivity and specificity even across
screens performed by different labs using different libraries and reagents.
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Background
Perturbing gene activity and evaluating the resulting
phenotype is a fundamental technique for identifying the
biological processes in which a gene participates (i.e.,
“forward genetics”). Traditionally, the ability to induce
complete gene knockouts on a genomic scale has been ex-
clusively the domain of model organisms such as yeast,
while experiments in higher eukaryotes, including human
cell lines, have relied on RNA interference (RNAi) or gene
trapping methods in the case of haploid human cells [1].
RNAi uses the endogenous RNA-induced silencing complex
(RISC) machinery to target messenger RNA transcripts,
which have a very large dynamic range of abundance, result-
ing in data that is often diluted by incomplete target knock-
down and off-target effects of variable severity [2–4].

The adaptation of CRISPR-Cas9 technology to pooled li-
brary gene knockout screens in mammalian cells allows
the identification of genes whose knockout contributes to
gene fitness [5–9]. A pooled library screen typically con-
tains several guide RNAs (gRNA) targeting each gene, and
large numbers of cells are treated such that each cell is

affected by (on average) a single gRNA clone, while each
gRNA species targets hundreds of cells. Unperturbed cells,
or cells with knockouts showing no growth phenotype,
grow at wildtype rates, while cells harboring a guide RNA
that targets a fitness gene show lower growth rates
(Fig. 1a). To identify the genes whose knockout causes a
fitness defect, the frequency distribution of gRNA in the
population is assayed by deep sequencing and compared
to the frequency distribution at an early control timepoint.
Changes in the frequency distribution of gRNA are mea-
sured as log fold changes (Fig. 1a, sidebar) where severe
negative fold changes reflect gRNA that cause severe
fitness defects.

Aggregating individual reagent effects into an accurate
estimate of gene-level effect is a major challenge in the
analysis of pooled library screen data [10–14]. To analyze
pooled library RNAi screens, which have similar experi-
mental design, we previously developed a Bayesian classi-
fier and demonstrated its superiority over contemporary
approaches [3]. A key feature of this study was the estab-
lishment of reference sets of core essential and nonessen-
tial genes. Core essential genes were defined as those
genes classified as hits in at half or more of the shRNA
screens in [12] or [13], filtered for constitutive mRNA ex-
pression across a panel of cell lines, while nonessential
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genes were defined as those which are rarely expressed
across those cell lines [3]. Together, these reference sets
can be used as gold standards to evaluate other algorithms
in analyzing fitness screens. Here we describe BAGEL, the
Bayesian Analysis of Gene EssentiaLity, an adaptation of
the previously described Bayesian classifier. BAGEL fea-
tures a more robust statistical model, major performance
enhancements, and an improved user interface. BAGEL
source code, documentation, and reference files are avail-
able at http://bagel-for-knockout-screens.sourceforge.net/.

Implementation

The BAGEL method is implemented as a Python script

and requires the freely available python modules numpy

and scipy. Likelihood functions for fold change distribu-

tions of gRNA targeting reference essential and nonessen-

tial genes are estimated using kernel density estimates,

implemented using the scipy.stats.gaussian_kde() function

in the scipy module. BAGEL input and output are tab-

delimited text files described on the BAGEL website (see

Availablility and requirements for details).

Methods

A pooled library CRISPR-Cas9 fitness screen in hu-

man cells involves having multiple gRNA reagents

targeting each gene and is often evaluated at several

timepoints, ideally with multiple replicates at each

timepoint. BAGEL first estimates the distribution of

fold changes of all gRNA targeting all genes in either

the essential or nonessential training sets (Fig. 1b).

Then, for each withheld gene, it evaluates the likeli-

hood that the observed fold changes for gRNA target-

ing the gene were drawn from either the essential or

the nonessential training distributions. The result is a

Bayes Factor:

BF ¼
Pr D j essentialð Þ

Pr D j nonessentialð Þ

¼
∫ Pr Djk; essentialð Þ Pr k j essentialð Þ dk

∫Pr Djk; nonessentialð Þ Pr k j nonessentialð Þ dk

where the data, D, is the set of observed fold changes for

a given gene and k is the fold change distribution of the

training set, empirically estimated using a kernel density

estimate function (Fig. 1b, red and blue curves).

The integral is estimated by bootstrap resampling of

genes in the training sets. At each iteration the k distri-

butions are calculated and, for each withheld gene, a log

BF is calculated:

BFg ¼
Pr Dg jkess
� �

Pr Dg jknon
� �

log BFg

� �

¼ log Pr Dg

�
�

�kess
� �

Þ− log Pr Dg jknon
� �� �

log BFg

� �

¼
X

i

log Pr fcið jkessð Þð Þ− log Pr fcijknonð Þð ÞÞ

where fci are the observed fold changes for gRNA

targeting gene g. One thousand bootstrapping itera-

tions are conducted; Bayes Factors for withheld genes

are calculated for each iteration (resulting in ~360

posterior BFs for each gene) and the mean and stand-

ard deviation of the resulting posterior distribution of

BFs is reported.

Two factors inherent in the data require that empirical

boundaries be applied to the calculations. First, when

taking the ratio of two curves, the ratio can take on ex-

treme values when the denominator approaches zero.

Second, kernel density estimates become unstable in

regions of sparse data. For these reasons, we identify the

lowest fold change (x-coordinate) at which the knon

Fig. 1 BAGEL overview. a Simulated growth curves of wildtype cells (blue), which double at every time increment. When genetic perturbations

are induced (T = 3), moderate (purple) to severe (magenta) fitness defects, growth arrest (red), and cell death (black) result in different relative

growth rates. At sampled timepoints, fold change relative to wildtype growth is the readout from a sequencing assay. b Representative data from

one replicate. The fold change distribution of all gRNA targeting essential genes (red) is shifted relative to the fold change distribution of all gRNA

targeting nonessential genes (blue). The fold change distribution for all gRNA (black) is shown for reference. c The log likelihood functions of the

red and blue curves from (b), left Y axis. The BAGEL method calculates the log likelihood ratio (black, right Y axis) of these two curves, within empirical

boundaries (green dashes), for each bootstrap iteration; see Methods for details
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density estimate, the denominator above, exceeds 2−7,

and set this as a lower bound (Fig. 1c). This boundary is,

in our experience, a conservative threshold that captures

the smooth region of the knon kernel density estimate

across all data sets we examined. All observed changes

below this boundary are set to the boundary value. Simi-

larly, we calculate the fold change at which the log ratio

of the curves is a minimum and set this as an upper

bound (Fig. 1c). These boundaries ensure that individual

observations do not dominate the final BF score while,

in our experience, making no material change to gene

estimates: observed fold changes outside these boundar-

ies are not stronger evidence that a gene does or doesn’t

induce a fitness defect, given the normal constraints of

the experiment (number of cells, sequencing depth, etc.).

Note that this approach makes no statement about

whether a gene knockout can increase cell fitness, only

whether perturbation causes a growth defect.

For very large CRISPR libraries, the calculation as

described can be computationally expensive. To speed

up the calculations, we include two optimizations. First,

we round all calculated fold changes to the nearest 0.01.

Second, for each bootstrap iteration, we calculate the

value of the log ratio function (Fig. 1c) at each 0.01

within the empirical boundaries described above and

store the values in a lookup table. Then, instead of recal-

culating the values for each gRNA, we pull the value of

the log ratio function from the lookup table. These

optimizations decrease processing time by over an order

of magnitude, with no impact on final results (Pearson’s

r ~ 0.999 for final BFs; data not shown).

For knockout screens with multiple timepoints, the BF

is calculated at each timepoint, and a final BF is the sum

of the timepoint BFs. Since the posterior BF distribu-

tions are approximately normal (by KS tests, not shown),

the variance of the final BF is estimated as the sum of

the variances at the timepoints.

Screen performance is evaluated by calculating

precision-recall (PR) curves, using the reference essential

and nonessential gene lists as the test set. As noted

above, during the bootstrap process, BFs are only calcu-

lated for genes not selected in the bootstrap resampling

of the fold change density estimates; therefore no circu-

larity is introduced. We confirmed this by comparing

BF-bootstrap results to BFs calculating using 5-fold

cross-validation; the resulting BFs virtually identical

(R2 > 0.99). False discovery rate is (FP/FP + TP),

precision is 1- FDR, and recall = TP/(TP + FN), where

positives and negatives are defined in the reference sets.

Results and discussion

We demonstrate this approach with screens from the

Toronto KnockOut (TKO) library in four cell lines: a

patient-derived glioblastoma cell line (GBM, Fig. 2a),

HCT116 colorectal carcinoma cell line (Fig. 2b), HeLa

cervical carcinoma cell line (Fig. 2c), and RPE1 retinal

pigmented epithelial cells (Fig. 2d) [15]. All the screens

were sampled at multiple timepoints. Using the gold-

standard reference sets from [3], BFs were calculated for

each timepoint and precision-recall (PR) curves were

plotted. In all cases, later timepoints showed improved

recall over the earliest timepoint. The “integrated”

sample is the sum of the timepoint BFs and can be

considered a summary result for the entire screen; the

PR curve for the integrated sample is in every case as

good or better than the timepoint curves. In all cases

screens yielded a very large number of fitness genes: on

average, ~2000 genes at 5 % false discovery rate (FDR)

using the integrated results, and these genes show very

high functional coherence (see [15] for a more complete

evaluation).

One question that arises from these results is whether

the lower performance at the early timepoint, relative to

the later ones, reflects the screening technology or the

biology of the systems being perturbed. We address this

question by looking at functional enrichment in genes

unique to the early hits, genes unique to the late hits, or

genes in the intersection, using the GORILLA web ser-

vice [16]. We find that most (75-89 %) early hits are also

observed at the last timepoint (Fig. 3a), and that genes

exclusively in the early hit set are not meaningfully

enriched for annotated biological processes. Looking

specifically at the GBM cell line as an example, genes in

the intersection are highly enriched for core biological

processes one could reasonably expect to cause fitness

defects (Fig. 3b). Genes in the intersection comprise only

53-65 % of the total number of hits at the last timepoint;

however, genes exclusive to the last timepoint typically

extend coverage of the biological processes identified in

the intersection, as shown for GBM cells in Fig. 3b, and

identify few novel processes.

Though late fitness genes typically reflect the processes

observed in early fitness genes, genes which encode

proteins involved in mitochondrial function offer an

interesting contrast. Genes in both the early and late

timepoints are enriched for some mitochondrial pro-

cesses, including protein transport to the mitochondrion

and mitochondrial translation. However, the late-only

genes are enriched for a small number of GO BP terms

that are centered around functions related to oxidative

phosphorylation, including “respiratory chain complex I

assembly” (7 hits of 18 annotated genes, 7.4-fold enrich-

ment), “respiratory chain complex IV assembly” (4/8

genes, 9.4-fold), and “mitochondrial electron transport,

NADH to ubiquinone” (12/36 genes, 6.3-fold). This differ-

ence may reflect a more subtle phenotype (i.e., lower

fitness defect) among oxphos genes that only becomes

detectable at the later timepoint (Fig. 1a).
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We compared BAGEL to MAGeCK, a contemporary

method for analyzing CRISPR knockout screens [11].

MAGeCK ranks gRNAs by P-value derived from a nega-

tive binomial model comparing control to experimental

timepoints, then calculates gene-level P-values using

modified Robust Ranking Aggregation. To facilitate a

more equal comparison, we compared MAGeCK results

to BAGEL results using only the final timepoint from

the TKO screens described above, and plotted PR curves

using the same reference sets (Fig. 4a-d). In all cases,

BAGEL outperformed MAGeCK, yielding more recall

and more overall hits in a reasonable range of

empirically-calculated FDR (5–15 %). Most striking,

however, was the severe lack of sensitivity using the

theoretical model of MAGeCK. Although gene rankings

for the two methods were generally similar (Spearman

correlations 0.76–0.81 for the top 3000 genes in each

set), the MAGeCK algorithm yielded only 674 (mean;

range 489–905) genes at 10 % FDR, using its own

FDR estimates (Fig. 4). We are confident that the

higher numbers of fitness genes detected by BAGEL

are in fact real: we analyze their expression level, bio-

logical function, and other functional genomic data in

detail in [15].

We also compared the two algorithms using a newly

published data set from Wang et al. [17], where four

leukemia and lymphoma cell lines were screened for

essential genes using a large gRNA library. As with the

TKO screens, the BAGEL algorithm yields equal or

superior precision-recall curves and greater sensitivity,

though with a smaller margin of improvement (Fig. 4e-h).

MAGeCK identifies 1571 (mean, range 1241–1800) hits at

10 % FDR while BAGEL identifies on average 2272 (range

1963–2482) essential genes at 5 % FDR.

The reason behind the difference in sensitivity

between BAGEL and MAGeCK likely lies in the variable

effectiveness of CRISPR reagents. Examining the fold

change distribution of all guides targeting genes in the

reference set of high-confidence essentials (Fig. 1b), it is

evident that many gRNAs targeting essential genes do

not show significant dropout. The BAGEL algorithm

chooses between the essential and nonessential distribu-

tions, and is able to detect even a slight shift in overall

effect, whereas a statistical test based solely on ex-

cluding the null hypothesis – generally speaking, that

the observed fold changes are not likely to be drawn

from the blue curve in Fig. 1a—requires either deeper

sampling (i.e., more replicates and/or more guides

targeting each gene) or a more severe phenotype. In

fact, this is reflected in the MAGeCK results for the

four TKO cell lines tested: the GBM and RPE1 cell

lines were screened with a 90 k library and MAGeCK

Fig. 2 Precision-recall curves for BAGEL results for GBM (a), HCT116 (b), HeLa (c), and RPE1 (d) screens using the TKO library. Where indicated, a single

timepoint is plotted. “Integrated” = Bayes Factors summed across all timepoints in the experiment

Hart and Moffat BMC Bioinformatics  (2016) 17:164 Page 4 of 7



yielded 586 and 489 hits, respectively, while the HeLa

and HCT116 lines were screened with a 177 k library

and MAGeCK yielded 718 and 905 hits – on average,

~50 % more hits using the larger library. The screens

described in Wang et al. used a sequence-optimized

180 k gRNA library and used a more conservative

experimental design, resulting in a lower proportion

of non-performing guides and contributing to sub-

stantially improved sensitivity for both BAGEL and

MAGeCK, though BAGEL still identifies ~50 % more

hits in each screen.

Conclusions
The ability to perform accurate, saturating forward

genetic screens in human cell lines will transform

molecular genetics in the coming years. To maximize

potential—and to avoid pitfalls similar to the costly

false starts encountered in the RNAi field—rigorous

Fig. 3 Comparing early and late hits. a Number of fitness genes detected at early timepoint (cyan), late timepoint, (green), or both (blue) in each

TKO screen. b Representative data from GBM screen. Most GO_BP terms enriched in late-only genes (green) extend observations of terms enriched in

genes found in both early and late timepoints
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analytical methods must be applied that are able to

effectively discriminate true hits from false positives.

While data suggests that off-target effects in CRISPR-

Cas9 pooled library screens are much less of a con-

cern than with RNAi, the variable effectiveness of

early reagent pools makes it important that analytical

methods are able to detect subtle phenotypes. BAGEL

accurately models the wide variability in phenotype

shown by reagents targeting known essential genes,

enabling the sensitive and precise identification of

fitness genes, even under conditions of suboptimal

data quality.

Availability and requirements
Project name: bagel-for-knockout-screens

Project home page: http://bagel-for-knockout-screens.

sourceforge.net/

Operating system(s): platform independent

Programming language: Python

Fig. 4 Comparing BAGEL with MAGeCK. For each cell line, precision-recall curves were plotted for BAGEL and MAGeCK results using the

last timepoint of the screen. Red circle indicates results at MAGeCK-reported 10 % FDR cutoff. a-d TKO screens from Hart et al. [15]

e-h Screens from Wang et al. [17]
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Licensing: This software is provided without restriction

for commercial or academic use.

TKO screen data are available at http://tko.ccbr.

utoronto.ca/
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