
D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 116-125, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Bagging and Boosting with Dynamic Integration of
Classifiers

Alexey Tsymbal and Seppo Puuronen

Department of Computer Science and Information Systems,
University of Jyväskylä, P.O.Box 35, FIN-40351 Jyväskylä, Finland

{Alexey,sepi}@cs.jyu.fi

Abstract. One approach in classification tasks is to use machine learn-
ing techniques to derive classifiers using learning instances. The co-
operation of several base classifiers as a decision committee has suc-
ceeded to reduce classification error. The main current decision com-
mittee learning approaches boosting and bagging use resampling with
the training set and they can be used with different machine learning
techniques which derive base classifiers. Boosting uses a kind of
weighted voting and bagging uses equal weight voting as a combining
method. Both do not take into account the local aspects that the base
classifiers may have inside the problem space. We have proposed a dy-
namic integration technique to be used with ensembles of classifiers. In
this paper, the proposed dynamic integration technique is applied with
AdaBoost and bagging. The comparison results using several datasets of
the UCI machine learning repository show that boosting and bagging
with dynamic integration of classifiers results often better accuracy than
boosting and bagging result with their original voting techniques.

1 Introduction

There are several approaches in data mining which tries to find previously unknown
and potentially interesting patterns and relations in large databases [6]. One typical
data mining task is to predict a value of an attribute of a new instance when the values
of the other attributes of the instance are known. A common approach is to use a ma-
chine learning technique. A collection of instances with known values of all the attrib-
utes is treated as a training set for a machine learning algorithm that derives a classi-
fier. This classifier is later used to predict the unknown value of the attribute for a new
instance.

Decision committee learning has succeeded to reduce classification error
[1,3,4,7,9,16,17,18,24]. A committee (final classifier) is composed of base classifiers
(committee members), each of which makes its own classifications that are combined
to create a single classification result of the whole committee. Two decision commit-
tee learning approaches, boosting [16,17] and bagging [3], have received extensive
attention recently and they have been deeply analyzed [4,9,18]. Both generate by re

Bagging and Boosting with Dynamic Integration of Classifiers 117

sampling training sets from the original data set to the learning algorithm [24] which
builds up a base classifier for each training set. There are two major differences be-
tween bagging and boosting. First, boosting changes adaptively the distribution of the
training set based on the performance of previously created classifiers while bagging
changes the distribution of the training set stochastically [24]. Second, boosting uses a
function of the performance of a classifier as a weight for voting, while bagging uses
equal weight voting [24]. With both techniques error decreases when the size of the
committee increases, but the marginal error reduction of an additional member tends
to decrease [24]. In general, bagging is more consistent, increasing the error of the
base learner less frequently than boosting. However, boosting has greater average
effect, leading to substantially larger error reductions than bagging on average [4]. The
error reduction has been a little mysterious also to researchers and several analysis to
reveal the real background of the phenomenon have been suggested [1,9,18]. One
explanation is based on that boosting tends to reduce both the bias and variance terms
of error while bagging tends to reduce the variance term only [1,4]. Another is using
the concept of margin distribution [18], and another recent one establishes connection
between boosting and additive models [9] but as comments, as [8] to the last paper
show there is still much work to do before the behaviour of methods are deeply under-
stood.

Both bagging and boosting uses a voting technique which is unable to take into ac-
count the heterogeneity of the instance space. When majority of the base classifiers
give a wrong prediction for a new instance then the majority vote will result in a
wrong prediction. The problem may consist in discarding base classifiers (by assigning
small weights) that are highly accurate in a restricted region of the instance space
because this accuracy is swamped by their inaccuracy outside the restricted area. It
may also consist in the use of classifiers that are accurate in most of the space but still
unnecessarily confuse the whole classification committee in some restricted areas of
the space. To overcome this problem we have suggested a dynamic integration ap-
proach [13]. In this paper we compare bagging and boosting with and without our
dynamic integration approaches using using several data sets from the UCI machine
learning repository [2]. Some preliminary results with small committee sizes were
presented in [20].

In chapter 2 the bagging and boosting algorithms are reviewed. Chpater 3 includes
a short describtion of our dynamic integration methods. Chapter 4 includes the results
of comparisons and chapter 5 concludes with a short summary and some further re-
search topics.

2 Bagging and Boosting

In this chapter bagging and boosting algorithms to be used in comparisons are re-
viewed.

The bagging algorithm (Bootstrap aggregating) [3] uses bootstrap samples to build
the base classifiers. Each bootstrap sample of m instances is formed by uniformly

118 A. Tsymbal and S. Puuronen

sampling m instances from the training set with replacement. The amount of the dif-
ferent instances in the bootstrap sample is for large m about 1-1/e=63.2%. This results
that dissimilar base classifiers are built with unstable learning algorithms (e.g., neural
networks, decision trees) [1] and the performance of the committee can become better.
However, bagging may slightly degrade the performance of stable algorithms (e.g., k-
nearest neighbor) because effectively smaller training sets are used to train each base
classifier [3]. The bagging algorithm generates T bootstrap samples B1, B2, …, BT and
then the corresponding T base classifiers C1, C2, …, CT. The final classification pro-
duced by the committee of these base classifiers is received using equal weight voting
where ties are broken arbitrarily

Boosting was developed as a method for boosting the performance of any weak
learning algorithm [17], which needs only to be a little bit better than random guessing
[16]. The AdaBoost algorithm (Adaptive Boosting) [7] was introduced as an im-
provement of the initial boosting algorithm and several further variants are presented.
The concept used to correspond a generation of one base classifier is a trial. AdaBoost
changes the weights of the training instances after each trial based on the misclassifi-
cations made by the resulting base classifier trying to force the learning algorithm to
minimize the expected error over different input distributions [1]. Similarly, the cor-
rectly classified instances will have a lower total weight.Thus AdaBoost generates
during the T trials T training sets S1, S2, …, ST where instances have weights and thus T
base classifiers C1, C2, …, CT are built. A final classification produced by the commit-
tee of these base classifiers is received using a weighted voting scheme where the
weight of each classifier depends on its performance on the training set used to build
it.

The AdaBoost algorithm requires a weak learning algorithm whose error is
bounded by a constant strictly less than ½. In practice, the learning algorithm that we
use provide no such guarantee. The original algorithm aborted when the error bound
was breached [17], but this case is fairly frequent for some multiclass problems [1]. In
this paper, a bootstrap sample from the original data S is generated in such case, and
the boosting continues up to a limit of 25 such samples at a given trial, as proposed in
[1]. The same is done when the error is equal to zero at some trial. Some implementa-
tions of AdaBoost use boosting by resampling because the inducers used were unable
to support weighted instances [1]. In this work, boosting by reweighting is imple-
mented with the C4.5 decision tree learning algorithm [15], which is a more direct
implementation of the theory. Some evidence exists that reweighting works better in
practice [1].

3 Dynamic Integration of Classifiers

The challenge of integration is to decide which classifier to rely on or how to combine
classifications produced by several classifiers. The integration approaches can be
divided into static and dynamic ones. Recently, two main approaches to integration
have been used: first, combination of the classifications produced by the base classifi-

Bagging and Boosting with Dynamic Integration of Classifiers 119

ers, and, second, selection of the best classifier from the base classifiers. The most
popular method of combining classifiers is voting [1]. More sophisticated selection
approaches use estimates of the local accuracy of the base classifiers by considering
errors made in similar instances [12] or the meta-level classifiers (“referees”), which
predict the correctness of the base classifiers for a new instance [11].

We have presented a dynamic integration technique that estimates the local accu-
racy of the base classifiers by analyzing the accuracy in near-by instances [13].
Knowledge is collected about the errors that the base classifiers make with the training
instances and this knowledge is taken benefit during the classification of new in-
stances. The goal is to use each base classifier just in that subarea for which it is the
most reliable one. The C4.5 decision tree induction algorithm is used to predict the
errors of the base classifiers [15] and in the dynamic integration the weighted nearest
neighbor classification (WNN) is used [5].

The dynamic integration approach contains two phases. In the learning phase, in-
formation is collected about how each classifier succeeds with each training set in-
stance. With bagging and boosting this is done directly using the base classifiers pro-
duced by C4.5. In the original version of our algorithm we have used cross-validation
technique to estimate the errors of the base classifiers on the training set [13]. In the
application phase, the final classification of the committee is formed so that for a new
instance the seven nearest neighbor instances of the learning set are found out. The
error information of each classifier with these instances is collected and then depend-
ing on the dynamic integration approach the final classification is made using this
information. Two of these three different functions implementing the application
phase were considered [13]. The first function DS implements Dynamic Selection. In
the DS application phase the classification error is predicted for each base classifier
using the WNN procedure and a classifier with the smallest error (with the least global
error in the case of ties) is selected to make the final classification. The second func-
tion DV implements Dynamic Voting. In the DV application phase each component
classifier receives a weight that depends on the local classifier’s performance and the
final classification is conducted by voting classifier predictions with their weights. The
third function DVS was first presented in [21] and it applies mixed approach. Using
the collected error information first about half of classifiers (the better half) is selected
and then the final classification is derived using weighted voting among them.

Previously an application of the dynamic classifier integration in medical diagnos-
tics was considered in [19,20,22]. A number of experiments comparing the dynamic
integration with such widely used integration approaches as CVM, and weighted vot-
ing were also conducted [13,14,22,23]. The comparison results show that the dynamic
integration technique outperforms often weighted voting and CVM. In [21] the dy-
namic classifier integration was applied to decision committee learning, combining the
generated classifiers in a more sophisticated manner than voting. This paper continues
this research considering more experiments comparing bagging and boosting with and
without the three dynamic integration functions.

120 A. Tsymbal and S. Puuronen

4 Experiments

In this chapter we present experiments where the dynamic classifier integration algo-
rithm is used with classifiers generated by AdaBoost and bagging. The experimental
setting is described before the results of the experiments. We have used nine datasets
from the UCI machine learning repository [2]. Previously the dynamic classifier inte-
gration was experimentally evaluated in [13] and preliminary comparisons with
AdaBoost and bagging were made in [21].

The main characteristics of the eight datasets are presented in Table 1. The table in-
cludes the name of the dataset, number of instances included in the dataset, number of
different classes of instances, and numbers of different kind of features included in the
instances.

Table 1. Characteristics of the datasets

Features
Dataset Instances Classes

Discrete Continuous
Breast 286 2 9 0
Diabetes 768 2 0 8
Glass 214 6 0 9
Heart 270 2 8 5
Iris 150 3 0 4
Liver 345 2 0 6
MONK-1 432 2 6 0
MONK-2 432 2 6 0

For each dataset 30 test runs are made. First, in each run 30 percent of the instances
of the data set are randomly picked up to the test set. Then the rest 70 percent of the
instances are passed to bagging and boosting algorithm. These manipulate the learning
set as described in Chapter 2 producing required amount of base classifiers using C4.5
decision tree algorithm with pruning [15]. We make experiments with 5, 10, and 25
base classifiers in the committees.

We calculate average accuracy numbers for base classifiers, for ordinary bagging
and boosting, and for bagging and boosting with the three dynamic integration method
described in Chapter 3 separately. In the learning phase of the dynamic integration
part information about the errors made by each base classifier is collected for all the
instances included in the 70 percent of the original data set, selected in the beginning
of each run. In the application phase of the dynamic integration the instances included
in the test set is used. For each of them the classification errors of all the base classifi-
ers of the committee is collected for seven nearest neighbors of the new instance. The
selection of the number of nearest neighbors has been discussed in [13]. Based on the
comparisons between different distance functions for dynamic integration presented in
[14] we decided to use the Heterogeneous Euclidean-Overlap Metric, which produced
good test results earlier. The test environment was implemented within the MLC++
framework (the machine learning library in C++) [10].

Bagging and Boosting with Dynamic Integration of Classifiers 121

Table 2 presents accuracy values for Bagging with different voting methods. The
first column includes the name of the corresponding data set. The second column tells
how many base classifiers were produced to the committee. The next three columns
include the average of the minimum accuracies of the base classifiers (min), the aver-
age of average accuracies of the base classifiers (aver), and the average of the maxi-
mum accuracies of the base classifiers (max) over the 30 runs.

Table 2. Accuracy values for Bagging with different voting methods

 # of base C4.5 base classifiers Bagging with different voting

DB classifiers min aver max EWV DS DV DVS

 5 0.649 0.691 0.739 0.710 0.697 0.710 0.706

Breast 10 0.625 0.686 0.746 0.717 0.693 0.712 0.702

 25 0.605 0.689 0.763 0.717 0.692 0.720 0.714

 5 0.675 0.706 0.737 0.740 0.704 0.739 0.724

 Diabetes 10 0.668 0.708 0.745 0.752 0.707 0.751 0.740

 25 0.659 0.710 0.760 0.755 0.710 0.755 0.751

 5 0.544 0.608 0.670 0.656 0.663 0.675 0.677

Glass 10 0.522 0.608 0.687 0.669 0.666 0.683 0.689

 25 0.500 0.610 0.711 0.682 0.681 0.696 0.705

 5 0.677 0.731 0.788 0.777 0.747 0.777 0.765

Heart 10 0.659 0.732 0.804 0.788 0.748 0.790 0.779

 25 0.641 0.735 0.818 0.799 0.751 0.798 0.786

 5 0.921 0.942 0.957 0.950 0.944 0.950 0.944

Iris 10 0.914 0.943 0.963 0.947 0.944 0.949 0.943

 25 0.904 0.942 0.965 0.947 0.941 0.948 0.947

 5 0.557 0.610 0.657 0.645 0.621 0.653 0.637

Liver 10 0.541 0.606 0.669 0.649 0.622 0.663 0.657

 25 0.526 0.610 0.695 0.669 0.621 0.682 0.675

 5 0.727 0.827 0.928 0.894 0.975 0.900 0.964

MONK-1 10 0.699 0.834 0.947 0.895 0.988 0.931 0.975

 25 0.666 0.826 0.976 0.913 0.995 0.942 0.976

 5 0.510 0.550 0.588 0.567 0.534 0.565 0.547

MONK-2 10 0.499 0.551 0.600 0.600 0.536 0.566 0.540

 25 0.487 0.551 0.610 0.582 0.539 0.571 0.537

 5 0.658 0.708 0.758 0.742 0.736 0.746 0.746

Average 10 0.641 0.709 0.770 0.752 0.738 0.756 0.753

 25 0.624 0.709 0.787 0.758 0.741 0.764 0.761

The last four columns on the right-hand side of Table 2 include average accuracies
for different voting methods. These are: equal weight voting (EWV), dynamic selec-
tion (DS), dynamic voting (DS), and dynamic voting with selection (DVS). DS, DV,
and DVS were considered in chapter 3. Previous experiments with these two integra-

122 A. Tsymbal and S. Puuronen

tion strategies [13] have shown that the accuracies of the strategies usually differ sig-
nificantly; however, it depends on the dataset, what a strategy is preferable. In this
paper we apply also a combination of the DS and DV strategies that were in [21] ex-
pected to be more stable than the other two.

The accuracies in the table 2 confirm the known result that raising the number of
committee members makes bagging more accurate. In this experiment the average
increase of accuracy over the 8 data sets was 1.3% and 2.1% when the number of the
members was raised from 5 to 10 and 25 correspondingly. The increase was almost
same for DV (1.3% and 2.4%) and DVS (1.0% and 2.1%) but much lower for DS
(0.3% and 0.8%). It seems to be that bagging with dynamic selection is not able to
take as efficiently benefit of the increase of the base classifiers, at least with these data
sets. When individual data sets are looked it is noticed that with ordinary equal weight
voting and dynamic voting the accuracy decreases only with Iris dataset, with dynamic
selection with Iris and Breast datasets, and with DVS with MONK-2 dataset and with
Breast and Iris datasets when the number is raised from 5 to 10.

When the different voting techniques are compared it is noticed that in average over
the 8 datasets DV and DVS produce only about 0.5% higher accuracies than the ordi-
nary voting. Dynamic selection, on the other hand gives in average about 2% smaller
accuracy for bigger committees. There is big difference between individual data sets
in the average accuracies achieved. The biggest ones are that both DVS and DS pro-
duce over 10% smaller accuracy with MONK-2 dataset with 10 base classifiers, and
DS over 10% higher accuracy with MONK-1 dataset with 10 base classifiers than the
ordinary voting. As a summary it can be said that in average over these 8 datasets
there seems not to be great benefit about the dynamic integration with bagging but
because there are many dataset related difference it needs further systematic research
before being able to make any firm conclusions.

Table 3 presents accuracy values for AdaBoost with different voting methods. The
columns are same as in Table 2 except that the ordinary voting with boosting is
weighted voting (WV) and again the accuracies are averages over 30 runs.

The accuracies in the table 3 confirm the known result that raising the number of
committee members makes also boosting more accurate. In this experiment the aver-
age increase of accuracy over the 8 data sets was 0.7% and 1.3% when the number of
the members was raised from 5 to 10 and 25 correspondingly. The increase was a little
bit higher for DV (1.3% and 1.7%) and DVS (0.9% and 1.7%) but DS suffered from
additional base classifiers (-0.0% and -0.7%). It seems to be that also boosting with
dynamic selection is not able to take as efficiently benefit of the increase of the base
classifiers, at least with these data sets. When individual data sets are looked it is no-
ticed that with ordinary weighted voting and dynamic voting the accuracy decreases
only with MONK-2 dataset and with Liver dataset when the amount is raised from 5
to 10. The accuracy of dynamic voting with selection decreases only with the MONK-
2 dataset but the dynamic selection has problems with almost every dataset.

When the different voting techniques are compared it is noticed that in average over
the 8 datasets DVS produces 0.9% higher accuracy with 25 base classifiers, 0.8%
higher accuracy with 10 base classifiers, and 06% higher accuracy with 5 base classi-
fiers than the ordinary weighted voting. The average numbers of DV over the datasets

Bagging and Boosting with Dynamic Integration of Classifiers 123

are also a little bit better than the ordinary weigted voting. Instead, the dynamic selec-
tion produces lower accuracies, in average about 1.0%, 1.7%, and 3.0% for 5, 10, and
25 base classifiers, correspondingly.

Table 3. Accuracy values for AdaBoost with different voting methods

 # of base C4.5 base classifiers AdaBoost with different voting

DB classifiers min aver max WV DS DV DVS

 5 0.577 0.637 0.703 0.684 0.664 0.686 0.689

Breast 10 0.548 0.628 0.708 0.686 0.658 0.693 0.689

 25 0.504 0.618 0.717 0.687 0.655 0.697 0.697

 5 0.640 0.680 0.720 0.722 0.690 0.722 0.710

 Diabetes 10 0.618 0.674 0.726 0.727 0.685 0.729 0.723

 25 0.528 0.658 0.732 0.738 0.685 0.741 0.742

 5 0.524 0.595 0.666 0.683 0.667 0.685 0.685

Glass 10 0.457 0.572 0.676 0.697 0.668 0.702 0.705

 25 0.371 0.533 0.683 0.703 0.661 0.704 0.708

 5 0.634 0.705 0.773 0.763 0.727 0.763 0.751

Heart 10 0.589 0.685 0.776 0.770 0.719 0.771 0.763

 25 0.495 0.655 0.785 0.769 0.719 0.773 0.776

 5 0.911 0.939 0.965 0.945 0.943 0.945 0.945

Iris 10 0.895 0.939 0.967 0.949 0.946 0.949 0.949

 25 0.846 0.933 0.974 0.951 0.945 0.949 0.948

 5 0.550 0.601 0.650 0.642 0.609 0.642 0.624

Liver 10 0.526 0.593 0.656 0.639 0.606 0.640 0.634

 25 0.474 0.581 0.668 0.645 0.593 0.646 0.647

 5 0.740 0.849 0.936 0.949 0.966 0.948 0.967

MONK-1 10 0.705 0.843 0.950 0.968 0.980 0.974 0.984

 25 0.570 0.803 0.965 0.989 0.983 0.990 0.993

 5 0.473 0.535 0.594 0.509 0.572 0.509 0.559

MONK-2 10 0.458 0.535 0.607 0.503 0.575 0.517 0.538

 25 0.442 0.534 0.625 0.493 0.558 0.501 0.520

 5 0.631 0.693 0.751 0.737 0.730 0.738 0.741

Average 10 0.600 0.684 0.758 0.742 0.730 0.747 0.748

 25 0.529 0.664 0.769 0.747 0.725 0.750 0.754

There is big difference between individual data sets in the average accuracies only
with the dynamic selection method and MONK-2 dataset with the dynamic voting
with selection. As a summary it can be said that in average over these 8 datasets there
might be benefit about the dynamic integration with boosting when dynamic voting
especially with selection is used, but further systematic research is needed to confirm
this.

124 A. Tsymbal and S. Puuronen

5 Conclusion

Decision committee learning has demonstrated spectacular success in reducing classi-
fication error with learned classifiers. These techniques a committee of base classifiers
which produce the final classification using some voting method. Ordinary voting
methods has however an important shortcoming, that they do not take into account
local context related things.

In this paper a technique for dynamic integration of classifiers was experiment as a
method instead of ordinary voting methods with bagging and boosting. The technique
for dynamic integration of classifiers is based on the assumption that each base classi-
fier is the best inside certain sub areas of the whole feature space. The considered
algorithm for dynamic integration of classifiers is a new variation of stacked generali-
zation, which uses a distance metric to locally estimate the errors of base classifiers.

The proposed dynamic integration technique was evaluated with AdaBoost and
Bagging, the decision committee approaches which have received extensive attention
recently, on eight datasets from the UCI machine learning repository. The results
achieved are promising and show that especially boosting but in some contexts also
bagging might give better accuracy with dynamic integration of classifiers than with
simple voting.

Further analysis and experiments are needed to make deeper analysis of combining
the dynamic integration of classifiers with different approaches to decision committee
learning.

Acknowledgments: This research is partly supported by the COMAS Graduate
School of the University of Jyväskylä. We would like to thank the UCI machine
learning repository of databases, domain theories and data generators for the datasets,
and the machine learning library in C++ for the source code used in this study. We
want to thank also the anonymous reviewers for their positive and helpful criticisms.

References

1. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants. Machine Learning, Vol.36 (1999) 105-139.

2. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases [http://
www.ics.uci.edu/ ~mlearn/ MLRepository.html]. Dep-t of Information and CS, Un-ty of
California, Irvine CA (1998).

3. Breiman, L.: Bagging Predictors. Machine Learning, Vol. 24 (1996) 123-140.
4. Breiman, L.: Arcing classifiers. The Annals of Statistics, Vol. 26, No. 3 (1998) 801-823.
5. Cost, S., Salzberg, S.: A Weighted Nearest Neighbor Algorithm for Learning with Symbolic

Features. Machine Learning, Vol. 10, No. 1 (1993) 57-78.
6. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge

Discovery and Data Mining. AAAI/ MIT Press (1997).
7. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and

an Application to Boosting. In: Proc. 2nd European Conf. on Computational Learning Theory,
Springer-Verlag (1995) 23-37.

Bagging and Boosting with Dynamic Integration of Classifiers 125

8. Freund, Y., Schapire, R.E.: Discussion of the Paper “Additive Logistic Regression: a Statis-
tical View of Boosting by Jerome Friedman, Trevor Hastie and Robert Tibshirani. The An-
nals of Statistics, Vol. 28, No. 2 (2000).

9. Friedman, J., Hastie, T, Tibshirani, R.: Additive Logistic Regression: a Statistical View of
Boosting. The Annals of Statistics, Vol. 28, No. 2 (2000).

10. Kohavi, R., Sommerfield, D., Dougherty, J.: Data Mining Using MLC++: A Machine
Learning Library in C++. Tools with Artificial Intelligence, IEEE CS Press (1996) 234-245.

11. Koppel, M., Engelson, S.P.: Integrating Multiple Classifiers by Finding their Areas of Ex-
pertise. In: AAAI-96 Workshop On Integrating Multiple Learning Models (1996) 53-58.

12. Merz, C.: Dynamical Selection of Learning Algorithms. In: D.Fisher, H.-J.Lenz (eds.),
Learning from Data, Artificial Intelligence and Statistics, Springer-Verlag, NY (1996).

13. Puuronen, S., Terziyan, V., Tsymbal, A.: A Dynamic Integration Algorithm for an Ensemble
of Classifiers. In: Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems:
ISMIS’99, Lecture Notes in AI, Vol. 1609, Springer-Verlag, Warsaw (1999) 592-600.

14. Puuronen, S., Tsymbal, A., Terziyan, V.: Distance Functions in Dynamic Integration of Data
Mining Techniques. In: B.V. Dasarathy (ed.), Data Mining and Knowledge Discovery: The-
ory, Tools, and Techniques, SPIE Press, USA (2000) to appear.

15. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
(1993).

16. Schapire, R.E.: A Brief Introduction to Boosting. In: Proc. 16th Int. Joint Conf. AI (1999).
17. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning, Vol. 5, No. 2 (1990)

197-227.
18. Schapire, E., Freaund, Y., Bartlett, P., Lee, W.S.: Boosting the Margin: A New Explanation

for the Effectiveness of Voting Methods. The Annals of Statistics, Vol. 26, No 5 (1998)
1651-1686.

19. Skrypnik, I., Terziyan, V., Puuronen, S., Tsymbal, A.: Learning Feature Selection for Medi-
cal Databases. In: Proc. 12th IEEE Symp. on Computer-Based Medical Systems CBMS’99,
IEEE CS Press, Stamford, CT (1999) 53-58.

20. Terziyan, V., Tsymbal, A., Puuronen, S.: The Decision Support System for Telemedicine
Based on Multiple Expertise. Int. J. of Medical Informatics, Vol. 49, No. 2 (1998) 217-229.

21. Tsymbal, A.: Decision Committee Learning with Dynamic Integration of Classifiers. In:
Proc. 2000 ADBIS-DASFAA Symposium on Advances in Databases and Information Sys-
tems, Prague, September 2000, Lecture Notes in Computer Science, Springer-Verlag (to ap-
pear).

22. Tsymbal, A., Puuronen, S., Terziyan, V.: Advanced Dynamic Selection of Diagnostic Meth-
ods. In: Proceedings 11th IEEE Symp. on Computer-Based Medical Systems CBMS’98,
IEEE CS Press, Lubbock, Texas, June (1998) 50-54.

23. Tsymbal, A., Puuronen, S., Terziyan, V.: Arbiter Meta-Learning with Dynamic Selection of
Classifiers and its Experimental Investigation. In: J.Eder, I.Rozman, T.Welzer (eds.), Ad-
vances in Databases and Information Systems: 3rd East European Conference ADBIS'99,
Lecture Notes in CS, Vol. 1691, Springer-Verlag, Maribor (1999) 205-217.

24. Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine
Learning (2000) in press.

	Bagging and Boosting with Dynamic Integration of Classifiers
	1 Introduction
	2 Bagging and Boosting
	3 Dynamic Integration of Classifiers
	4 Experiments
	5 Conclusion
	Acknowledgments
	References

