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ABSTRACT

This work proposes a simple instance retrieval pipeline based
on encoding the convolutional features of CNN using the
bag of words aggregation scheme (BoW). Assigning each
local array of activations in a convolutional layer to a visual
word produces an assignment map, a compact representation
that relates regions of an image with a visual word. We
use the assignment map for fast spatial reranking, obtain-
ing object localizations that are used for query expansion.
We demonstrate the suitability of the BoW representation
based on local CNN features for instance retrieval, achieving
competitive performance on the Oxford and Paris buildings
benchmarks. We show that our proposed system for CNN
feature aggregation with BoW outperforms state-of-the-art
techniques using sum pooling at a subset of the challenging
TRECVid INS benchmark.
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1. INTRODUCTION
Convolutional neural networks (CNNs) have been demon-

strated to produce global representations that effectively
capture the semantics in images. Such CNN-based repre-
sentations [2, 3, 15, 16, 20, 21] have improved upon the
state-of-the-art for instance retrieval.
Despite CNN-based descriptors performing remarkably

well in retrieval benchmarks like Oxford and Paris Buildings,
state-of-the-art solutions for more challenging datasets such
as TRECVid Instance Search (INS) have not yet adopted

∗denotes equal contribution.
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Figure 1: Examples of the top generated rankings for queries
of three different datasets: Oxford (top), Paris (middle),
TRECVid INS 2013 (bottom).

pipelines that depend solely on CNN features. Current INS
systems [11, 22, 23, 24] are still based on aggregating local
hand-crafted features using bag of words (BoW) encoding [18]
to produce very high-dimensional sparse image representa-
tions. Such high-dimensional sparse representations are more
likely to be linearly separable, while having relatively few
non-zero elements makes them efficient both in terms of
storage and computation.

Many successful image retrieval engines combine an initial
highly-scalable ranking mechanism on the full image database
with a more computational demanding yet higher-precision
reranking mechanism (e.g. geometric verification) applied to
the top retrieved items.

Inspired by advances in CNN-based descriptors for image
retrieval, yet still focusing on instance search, we revisit the
BoW encoding scheme using local features from convolutional
layers of a CNN. This work presents three contributions:

• We propose a sparse visual descriptor based on a Bag
of Local Convolutional Features (BLCF), which allows
fast image retrieval by means of an inverted index.

• We introduce the assignment map as a new compact
representation of the image, which maps pixels in the
image to their corresponding visual words, allowing the
fast composition of a BoW descriptor for any region of
the image.

• We take advantage of the scalability properties of the
assignment map to perform a local analysis of multi-
ple image regions for reranking, followed by a query
expansion stage using the obtained object localizations.
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Using this approach, we present a retrieval system that
achieves state-of-the-art performance in several instance re-
trieval benchmarks. Figure 1 illustrates some of the rankings
produced by our system on several datasets.

2. RELATED WORK
Many works in the literature have proposed CNN-based

representations for image retrieval. Early works [3, 15] fo-
cused on replacing traditional hand-crafted descriptors with
features from fully connected layers of a CNN pre-trained
for image classification. A second generation of works re-
ported significant gains in performance when switching from
fully connected to either sum [2, 7] or max [16, 20] pooled
convolutional features. Our work shares similarities with all
the former in that we use convolutional features extracted
from a pre-trained CNN. Unlike these approaches, however,
we propose using a sparse, high-dimensional encoding that
better represents local image features.

Several works have tried to exploit local information in im-
ages by passing multiple image sub patches through a CNN
to obtain local features from either fully connected [15, 9] or
convolutional [4] layers, which are in turn aggregated using
techniques like average pooling [15], BoW [9], or VLAD [4].
Although many of these methods perform well in retrieval
benchmarks, they require CNN feature extraction from many
image patches, which slows down indexing and feature ex-
traction at retrieval time. Instead, other works [10, 1] treat
the activations of the different neuron arrays across all fea-
ture maps in a convolutional layer as local features. This
way, a single forward pass of the entire image through the
CNN is enough to obtain the activations of its local patches,
which are then encoded using VLAD. Our approach is similar
to the ones in [10, 1] in that we also treat the features in
a convolutional layer as local features. We, however, use
BoW encoding instead of VLAD to take advantage of sparse
representations for fast retrieval in large-scale databases.

Some of the approaches cited above propose systems that
are based or partially based on spatial search over multiple
regions of the image. Razavian et al. [16] achieve a remark-
able increase in performance by applying a spatial search
strategy over an arbitrary grid of windows at different scales.
Although they report high performance in several retrieval
benchmarks, their proposed approach is very computationally
costly and does not scale well to larger datasets and real-time
search scenarios. Tolias et al. [20] introduce a local analysis
of multiple image patches, which is only applied to the top
elements of an initial ranking. They propose an efficient
workaround for sub patch feature pooling based on integral
images, which allows them to quickly evaluate many image
windows. Their approach improves their baseline ranking
and also provides approximate object localizations. In this
direction, our work proposes using the assignment map to
quickly build the BoW representation of any image patch,
which allows us to apply a spatial search for reranking. Un-
like [20], we use the object localizations obtained with spatial
search to mask out the activations of the background and
perform query expansion using the detected object location.

3. BAG OF WORDS FRAMEWORK
The proposed pipeline for feature extraction uses the ac-

tivations at different locations of a convolutional layer in a
pre-trained CNN as local features. Similar to [20, 7], we

discard the softmax and fully connected layers of the original
network while keeping the original image aspect ratio. Each
convolutional layer in the network has D different N ×M

feature maps, which can be viewed as N×M local descriptors
of dimension D.
We propose to use bag of words encode the local convo-

lutional features of an image into a single vector. Although
more elaborate aggregation strategies have been shown to
outperform BoW-based approaches for some tasks in the
literature [5, 12], Bag of words encodings produce sparse
high-dimensional codes that can be stored in inverted indices,
which are beneficial for fast retrieval. Moreover, BoW-based
representations are more compact, faster to compute and
easier to interpret.

Bag of words models require constructing a visual codebook
to map vectors to their nearest centroid. We use k-means
on local CNN features to fit this codebook. Each local
CNN feature in the convolutional layer is then assigned its
closest visual word in the learned codebook. This procedure
generates the assignment map, i.e. a 2D array of size N ×M

that relates each local CNN feature with a visual word. The
assignment map is therefore a compact representation of the
image which relates each pixel of the original image with
its visual word with a precision of

(

W
N
, H
M

)

pixels, where W

and H are the width and height of the original image. This
property allows us to quickly generate the BoW vectors of
not only the full image, but also its parts. We describe the
use of this property in our work in Section 4.
Figure 2 shows the pipeline of the proposed approach,

which encodes the image into a sparse high dimensional
descriptor to be used for instance retrieval.

4. IMAGE RETRIEVAL
This section describes the image retrieval pipeline, which

consists of an initial ranking stage, followed by a spatial
reranking, and query expansion.

(a) Initial search: The initial ranking is computed
using the cosine similarity between the BoW vector of the
query image and the BoW vectors of the full images in the
database. We use a sparse matrix based inverted index
and GPU-based sparse matrix multiplications to allow fast
retrieval. The image list is then sorted based on the cosine
similarity of its elements to the query. We use two types of
image search based on the query information that is used:

• Global search (GS): The BoW vector of the query is
built with the visual words of all the local CNN features
in the convolutional layer extracted for the query image.

• Local search (LS): The BoW vector of the query con-
tains only the visual words of the local CNN features
that fall inside the query bounding box.

(b) Local reranking (R): After the initial search, the
top T images in the ranking are reranked based on a localiza-
tion score. We choose windows of all possible combinations
of width w ∈ {W, W

2
, W

4
} and height h ∈ {H, H

2
, H

4
}, where

W and H are the width and height of the assignment map.
We use a sliding window strategy directly on the assignment
map with 50% of overlap in both directions.
We additionally perform a simple filtering strategy to

discard those windows whose aspect ratio is too different
to the aspect ratio of the query. Let the aspect ratio of

the query bounding box be ARq =
Wq

Hq
and ARw = Ww

Hw
be
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Figure 2: The Bag of Local Convolutional Features pipeline (BLCF).

the aspect ratio of the window. The score for window w

is defined as scorew =
min(ARw,ARq)

max(ARw,ARq)
. All windows with a

score lower than a threshold th are discarded.
For each of the remaining windows, we construct the BoW

vector representation and compare it with the query represen-
tation using cosine similarity. The window with the highest
cosine similarity is picked as the object localization and its
score is kept for the image. We also enhance the BoW win-
dow representation with spatial pyramid matching [8] with
L = 2 resolution levels (i.e. the full window and its 4 sub
regions). We construct the BoW representation of all sub
regions at the 2 levels, and weight their contribution to the
similarity score with inverse proportion to the resolution
level of the region. The cosine similarity of a sub region r to
the corresponding query sub region is therefore weighted by
wr = 1

2(L−lr) , where lr is the resolution level of the region r.
With this procedure, the top T elements of the ranking are
sorted based on the cosine similarity of their regions to the
query’s, and also provides the region with the highest score
as a rough localization of the object.

(c) Query expansion We investigate two query expan-
sion strategies based on global and local BoW descriptors:

• Global query expansion (GQE): The BoW vectors of
the N images at the top of the ranking are averaged
together with the BoW of the query to form the new
representation for the query.

• Local query expansion (LQE): Locations obtained in
the local reranking step are used to mask out the back-
ground and build the BoW descriptor of only the region
of interest of the N -top images in the ranking. These
BoW vectors are averaged together with the BoW of
the query bounding box to perform a second search.

5. EXPERIMENTS

5.1 Preliminary experiments
We experiment with three different instance retrieval bench-

marks to evaluate the performance of our approach: Oxford
Buildings [13], Paris Buildings [14] and a subset of TRECVid
Instance Search 2013 (INS 23k) [19] containing only those
keyframes that are relevant to at least one of the queries. For
the Paris and Oxford datasets, we also test the performance
when adding 100,000 distractor images collected from Flickr
to the original datasets (resulting in the Oxford 105k and
Paris 106k datasets, respectively).

Feature extraction was performed using Caffe [6] and the
VGG16 pre-trained network [17]. We extracted features from
the last three convolutional layers (conv5 1, conv5 2 and
conv5 3) and compared their performance on the Oxford 5k
dataset. We experimented on different image input sizes:

Table 1: mAP on Oxford 5k and Paris 6k for the different
stages in the pipeline introduced in Section 4.

Baseline +R +GQE
+R

+GQE

+R

+LQE

Oxford
GS 0.653 0.701 0.702 0.771 0.782

LS 0.738 0.734 0.773 0.769 0.788

Paris
GS 0.699 0.719 0.774 0.801 0.835

LS 0.820 0.815 0.814 0.807 0.848

1/3 and 2/3 of the original image. Following several other
authors [2, 7], we l2-normalize all local features, followed
by PCA, whitening, and a second round of l2-normalization.
The PCA models were fit on the same dataset as the test
data in all cases. Unless stated otherwise, all experiments
used a visual codebook of 25,000 centroids fit using the (L2-
PCA-L2 transformed) local CNN features of all images in
the same dataset.

We apply bilinear interpolation on the convolutional layers
to obtain higher resolution maps as a workaround of using
bigger input size image. We find this strategy to be beneficial
for all layers tested, achieving the best results when using
conv5 1. Inspired by the boost in performance of the Gaus-
sian center prior in SPoC features [2], we apply a weighting
scheme on the visual words to provide more importance to
those belonging to the center of the image.

5.2 Reranking and query expansion
We apply the local reranking (R) stage on the top-100

images in the initial ranking, using the sliding window ap-
proach described in Section 4. The presented aspect ratio
filtering is applied with a threshold th = 0.4, which was
chosen based on a visual inspection of results on a subset of
Oxford 5k. Query expansion is later applied considering the
top-10 images of the resulting ranking. Table 1 contains the
results for the different stages in the pipeline.

The results indicate that the local reranking is significantly
beneficial only when applied to a ranking obtained from a
search using the global BoW descriptor of the query image
(GS). This is consistent with the work by Tolias et al. [20],
who also apply a spatial reranking followed by query expan-
sion to a ranking obtained with a search using descriptors
of full images. They achieve a mAP of 0.66 in Oxford 5k,
which is increased to 0.77 after spatial reranking and query
expansion, while we reach similar results (e.g. from 0.652 to
0.769). However, our results indicate that a ranking origi-
nating from a local search (LS) does not benefit from local
reranking. Since the BoW representation allows us to ef-
fectively perform a local search (LS) in a database of full
indexed images, we find the local reranking stage applied to
LS to be redundant in terms of the achieved quality of the
ranking. However, the local reranking stage does provide



Table 2: Comparison to state-of-the-art CNN representations
(mAP). Results in the lower section consider reranking and/or
query expansion.

Oxford Paris
5k 105k 6k 106k

Ng et al. [10] 0.649 - 0.694 -
Razavian et al. [16] 0.844 - 0.853 -
SPoC [2] 0.657 0.642 - -
R-MAC [20] 0.668 0.616 0.830 0.757
CroW [7] 0.682 0.632 0.796 0.710
uCroW [7] 0.666 0.629 0.767 0.695
GS 0.652 0.510 0.698 0.421
LS 0.739 0.593 0.820 0.648
CroW + GQE [7] 0.722 0.678 0.855 0.797
R-MAC + R + GQE [20] 0.770 0.726 0.877 0.817
LS + GQE 0.773 0.602 0.814 0.632
LS + R + LQE 0.788 0.651 0.848 0.641

with a rough localization of the object in the images of the
ranking, as depicted in Figure 1. We use this information to
perform query expansion based on local features (LQE).
Results indicate that query expansion stages greatly im-

prove performance in Oxford 5k. We do not observe signifi-
cant gains after reranking and QE in the Paris 6k dataset,
although we achieve our best result with LS + R + LQE.

5.3 Comparison with the state-of-the-art
We compare our approach with other CNN-based represen-

tations that make use of features from convolutional layers
on the Oxford and Paris datasets. Table 2 includes the best
result for each approach in the literature. Our performance
using global search is comparable to that of Ng et al. [10],
which is the one that most resembles our approach. However,
they achieve this result using VLAD features, which are more
expensive to compute and, being a dense high-dimensional
representation, do not scale as well to larger datasets. Simi-
larly, Razavian et al. [16] achieve the highest performance
of all approaches in both the Oxford and Paris benchmarks
by applying a spatial search at different scales for all images
in the database. Such approach is prohibitively costly when
dealing with larger datasets, especially for real-time search
scenarios. Our BoW-based representation is highly sparse,
allowing for fast retrieval using inverted indices, and achieves
consistently high mAP in all tested datasets.

We also compare our local reranking and query expansion
results with similar approaches in the state-of-the-art. The
authors of R-MAC [20] apply a spatial search for reranking,
followed by a query expansion stage, while the authors of
CroW [7] only apply query expansion after the initial search.
Our proposed approach also achieves competitive results in
this section, achieving the best result for Oxford 5k.

5.4 Experiments on TRECVid INS
In this section, we compare the Bag of Local Convolu-

tional Features (BLCF) with the sum pooled convolutional
features proposed in several works in the literature. We use
our own implementation of the uCroW descriptor from [7]
and compare it with BLCF for the TRECVid INS subset.
For the sake of comparison, we test our implementation of
sum pooling using both our chosen CNN layer and input size
(conv5 1 and 1/3 image size), and the ones reported in [7]
(pool5 and full image resolution). For the BoW representa-

tion, we train the codebook using 3M local CNN features
chosen randomly from the INS subset. In this case, we do
not apply center prior to the feature to avoid down weight-
ing local features from image areas where the objects might
appear. Table 3 compares sum pooling with BoW in Oxford,
Paris, and TRECVid subset datasets. As stated in earlier
sections, sum pooling and BoW have similar performance in
Oxford and Paris datasets. For the TRECVid INS subset,
however, Bag of Words significantly outperforms sum pooling,
which demonstrates its suitability for challenging instance
search datasets, in which queries are not centered and have
variable size and appearance. We also observe a different
behavior when using the provided query object locations (LS)
to search, which was highly beneficial in Oxford and Paris
datasets, but does not provide any gain in TRECVid INS.
We hypothesize that the fact that the size of the instances is
much smaller in TRECVid than in Paris and Oxford datasets
causes this drop in performance. Global search (GS) achieves
better results on TRECVid INS, which suggests that query
instances are in many cases correctly retrieved due to their
context.

Table 3: mAP of sum pooling and BoW aggregation tech-
niques in Oxford, Paris and TRECVid INS subset.

Oxford 5k Paris 6k INS 23k

BoW
GS 0.650 0.698 0.323
LS 0.739 0.819 0.295

Sum pooling
(as ours)

GS 0.606 0.712 0.156
LS 0.583 0.742 0.097

Sum pooling
(as in [7])

GS 0.672 0.774 0.139
LS 0.683 0.763 0.120

6. CONCLUSION
We proposed an aggregation strategy based on Bag of

Words to encode features from convolutional neural networks
into a sparse representations for instance search. We achieved
competitive performance with respect to other CNN-based
representations in Oxford and Paris benchmarks, while being
more scalable in terms of index size, cost of indexing, and
search time. We also compared our BoW encoding scheme
with sum pooling of CNN features in the far more challenging
TRECVid instance search task, and demonstrated that our
method consistently and significantly performs better. Our
method does, however, appear to be more sensitive to large
numbers of distractor images than methods based on sum
and max pooling. We speculate that this may be because
the distractor images are drawn from a different distribution
to the original dataset, and may therefore require a larger
codebook to better represent the diversity in the visual words.
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