
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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BAIRE SPACES AND QUASICONTINUOUS MAPPINGS

Ján Borśık, Ľubica Holá and Dušan Holý

Abstract

The notion of quasicontinuity was perhaps the first time used by R. Baire
in [2]. Let X, Y be topological spaces and Q(X, Y ) be the space of quasicon-
tinuous mappings from X to Y . If X is a Baire space and Y is metrizable,
in Q(X, Y ) we can approach each (x, y) in the graph Grf of f along some
trajectory of the form {(xk, fnk (xk)) : k ∈ ω} if and only if we can approach
most points along a vertical trajectory. This result generalizes Theorem 5
from [3]. Moreover in the class of topological spaces with the property QP we
give a characterization of Baire spaces by the above mentioned fact. We also
study topological spaces with the property QP.

1 Introduction

In what follows let X, Y be topological spaces and R be the space of real numbers
with the usual metric.

In the paper [18], S. Kempisty introduced a notion similar to continuity for real-
valued functions defined in R. For general topological spaces this notion can be
given the following equivalent formulation.

Definition 1. A function f : X → Y is called quasicontinuous at x ∈ X if for
every open set V ⊂ Y, f(x) ∈ V and open set U ⊂ X, x ∈ U there is a nonempty
open set W ⊂ U such that f(W ) ⊂ V . If f is quasicontinuous at every point of X,
we say that f is quasicontinuous.

The notion of quasicontinuity was perhaps the first time used by R. Baire in [2]
in the study of points of continuity of separately continuous functions. As Baire
indicated in his paper [2] the condition of quasicontinuity has been suggested by V.
Volterra.

There is a rich literature concerning the study of quasicontinuity (see, for in-
stance [6], [9], [17], [19], [22], [25], [26], [27]).
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It seems that quasicontinuous mappings and Baire spaces suit each other very
well.

A topological space is a Baire space, provided countable collections of dense
open subsets have a dense intersection (equivalently, nonempty open subsets are of
second Baire category).

It is known [25] that if X is a Baire space and Y a metric space, then every
quasicontinuous function f : X → Y has the set C(f), of continuity points, a dense
Gδ-set. The same works also for a more general space Y (see [17]).

Also (see [4]) if X is a Baire space and Y a metric space, the pointwise limit
f : X → Y of a sequence from Q(X, Y ) has the set C(f) a dense Gδ-set. Conversely,
if X is a metric space and Y is a separable metric space, then each function with
the dense set C(f) is the pointwise limit of a sequence of quasicontinuous functions
([28], for X = R see [13] and [5]).

It was proved in [16] (see also the paragraph 4) that for a Baire space X, if
{fn : n ∈ ω} is a sequence in Q(X,R) pointwise convergent to f : X → R, f
is quasicontinuous iff {fn : n ∈ ω} is equi-quasicontinuous. (The same works
also for every metric range space Y .) Moreover in [16] we can find interesting
characterizations of Baire spaces by the above mentioned fact.

It is a motivation of this paper to continue in the study of interactions between
Baire spaces and quasicontinuous mappings.

Beer in his paper [3] studied relations between pointwise and topological conver-
gence of continuous functions. In our paper we will generalize Theorem 5 from [3] for
quasicontinuous functions and in the class of topological spaces with the property
QP we give a new interesting characterization of Baire spaces using quasicontinuous
functions defined on them.

At the end of our introduction notice that the notion of quasicontinuity recently
turned out to be instrumental in the proof that some semitopological groups are ac-
tually topological ones (see [7], [8]), in the proof of some generalizations of Michael’s
selection theorem (see [12]) and also in characterizations of minimal usco maps and
densely continuous forms via their selections (see [15], [24]).

2 Baire spaces and quasicontinuos mappings

Let X be a topological space and let {Cn : n ∈ ω} be a sequence of nonempty
subsets of X. The lower and upper closed limits of {Cn : n ∈ ω} are defined as
follows [20]: LiCn (resp. LsCn) is the set of all points x each neighbourhood of
which meets all but finitely (resp. infinitely) many sets Cn.

Let Y be another topological space. We can identify every function f : X → Y
with its graph Grf = {(x, f(x)) : x ∈ X}.

If (Y, d) is a metric space, a function f : X → Y is said to be cliquish at x ∈ X
[29], if for each ε > 0 and each neighbourhood U of x there is a nonempty open set
G ⊂ U such that d(f(u), f(v)) < ε for every u, v ∈ G. A function f : X → Y is
called cliquish if it is cliquish at every point x ∈ X.
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If (Y, d) is a metric space, y ∈ Y and ε > 0, by S(y, ε) we denote the open ε-ball
about the point y.

Proposition 1. Let X,Y be topological spaces. Let {fn : n ∈ ω} be a sequence of
functions from X to Y and let f : X → Y be a quasicontinuous function. Let E be a
dense set in X such that for each x ∈ E, f(x) is a cluster point of {fn(x) : n ∈ ω}.
Then Grf ⊂ LsGrfn.

Proof. Let U, V be open sets in X and Y , respectively, let (x, f(x)) ∈ U × V and
n0 ∈ ω. The quasicontinuity of f at x implies that there is a nonempty open set
G ⊂ U such that f(s) ∈ V for every s ∈ U . The density of E implies that there
is e ∈ E ∩ G. Thus f(e) ∈ V and since f(e) is a cluster point of {fn(e) : n ∈ ω},
there is n ≥ n0 such that fn(e) ∈ V . Thus (e, fn(e)) ∈ U × V . We proved that
Grf ⊂ LsGrfn.

Notice that the above proposition works also for nets of functions.
It is clear that we cannot replace the quasicontinuity of f in the above proposi-

tion by the cliquishness of f .

Example 1. Let X = Y = R and f : X → Y be defined as follows: f(0) = 1
and f(x) = 0 otherwise. Of course f is cliquish and it is not quasicontinuous at 0.
For every n ∈ ω let fn be a function identically equal to 0. Then for every x 6= 0,
{fn(x) : n ∈ ω} converges to f(x) and Grf is not contained in LsGrfn.

The following theorem generalizes Theorem 5 in [3].

Theorem 1. Let X be a Baire space and let (Y, d) be a metric space. Let {fn : n ∈
ω} be a sequence of quasicontinuous functions from X to Y and f : X → Y be a
cliquish function such that

Grf ⊂ LsGrfn.

Then there is a dense Gδ-set E in X such that for each x ∈ E, f(x) is a cluster
point of {fn(x) : n ∈ ω}.
Proof. We use an idea from [3]. For each n ∈ ω and ε > 0 put

B(n, ε) = ∪{V : V open, ∃j ≥ n, d(fj(z), f(z)) < ε for every z ∈ V }.

Of course B(n, ε) is open for every n ∈ ω and every ε > 0. Now we prove that
B(n, ε) is dense for every n ∈ ω and every ε > 0. Let n ∈ ω and ε > 0. Let G
be a nonempty open subset of X. We want to prove that G ∩ B(n, ε) 6= ∅. The
cliquishness of f implies that there is a nonempty open subset V of G such that

d(f(z), f(v)) < ε/3 for every z, v ∈ V.

Since Grf ⊂ LsGrfn there is j ≥ n such that

V × S(f(v), ε/3) ∩Grfj 6= ∅, where v ∈ V.
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Let u ∈ V be such that d(fj(u), f(v)) < ε/3. The quasicontinuity of fj at u
implies that there is a nonempty open set H ⊂ V such that d(fj(z), fj(u)) < ε/3
for every z ∈ H. We claim that H ⊂ G∩B(n, ε). Let z ∈ H. Then d(fj(z), f(z)) ≤
d(fj(z), fj(u)) + d(fj(u), f(v)) + d(f(v), f(z)) < ε. Put

E = ∩k ∩n B(n, 1/k).

Since X is a Baire space, E must be a dense set in X.

Thus we have the following result:

Theorem 2. Let X be a Baire space and Y be a metrizable space. Let {fn : n ∈ ω}
be a sequence in Q(X, Y ) and f ∈ Q(X, Y ). The following are equivalent:

(1) Grf ⊂ LsGrfn;
(2) there is a dense set E in X such that for each x ∈ E, f(x) is a cluster point

of {fn(x) : n ∈ ω}.
Thus if X is a Baire space and Y is metrizable, in Q(X, Y ) we can approach

each (x, y) in Grf along some trajectory of the form {(xk, fnk
(xk)) : k ∈ ω} if and

only if we can approach most points along a vertical trajectory.
We give a characterization of Baire spaces by the above theorem in some classes

of spaces.
We say that a topological space X has the property CP (QP) if for every

nonempty nowhere dense closed set F ⊂ X there is a continuous (quasicontinu-
ous) function g : X \ F → [0, 1] such that the oscillation ωg of g is equal to 1 for
every x ∈ F .

(If A is a subset of X and f : A → Y is a function, then the function ωf :
Cl A → [0,∞] defined by

ωf (x) = inf{sup{d(f(y), f(z)) : y, z ∈ A ∩ U} : U is a neighbourhood of x}

is called the oscillation of f at x.)
By [6], every pseudometrizable space and every perfectly normal locally con-

nected space has the property CP. Evidently, each space with the property CP has
the property QP. In the next paragraph we will show that there is a space with the
property QP but not CP and that there is a Hausdorff compact space without the
property QP.

Theorem 3. Let X be a topological space with the property QP. The following are
equivalent:

(1) X is a Baire space;
(2) For every metric space Y , every sequence {fn : n ∈ ω} in Q(X,Y ), every

f ∈ Q(X, Y ), Grf ⊂ LsGrfn iff there is a dense set E in X such that for each
x ∈ E, f(x) is a cluster point of {fn(x) : n ∈ ω};

(3) For every sequence {fn : n ∈ ω} in Q(X,R), every f ∈ Q(X,R), Grf ⊂
LsGrfn iff there is a dense set E in X such that for each x ∈ E, f(x) is a cluster
point of {fn(x) : n ∈ ω}.
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Proof. Only (3) ⇒ (1) needs some explanation. Suppose X is not a Baire space. Let
G be a nonempty open set in X which is of the first Baire category. Let {Kn : n ∈ ω}
be a sequence of nowhere dense subsets of G such that G = ∪{Kn : n ∈ ω}. For
every n ∈ ω put Ln = ∪{Cl Ki : i ≤ n} ∪ (ClG \G). Then Cl G = ∪{Ln : n ∈ ω}.

Let n ∈ ω. Since X has the property QP there is a quasicontinuous function
gn : X \ Ln → [0, 1] such that ωgn

(x) = 1 for every x ∈ Ln. Of course, the
function g∗n : X → [0, 1] defined by g∗n(x) = 0 for every x ∈ Ln and g∗n(x) = gn(x)
otherwise, is quasicontinuous. Let fn : X → [0, 1] be a function defined as follows:
fn(x) = g∗n(x) for every x ∈ Cl G and fn(x) = 0 otherwise. It is easy to verify that
the function fn is quasicontinuous.

Let f : X → [0, 1] be a function defined as follows: f(x) = 1 for every x ∈ Cl G
and f(x) = 0 otherwise. Of course f is quasicontinuous and Grf ⊂ LsGrfn. (Let
x ∈ G. Let U × V be a neighbourhood of (x, f(x)) and n ∈ ω. There is k ≥ n
such that x ∈ Lk. Since ωfk

(x) = 1, there must exist y ∈ U with fk(y) ∈ V . Thus
(y, fk(y)) ∈ U × V . Now let x ∈ Cl G \ G. Since Cl G \ G ⊂ Ln for every n ∈ ω,
ωfn

(x) = 1 for every n ∈ ω.) It is easy to verify that for every x ∈ G we have
|fn(x)− f(x)| = 1 eventually.

Notice that the above characterization does not hold in general topological
spaces.

Example 2. Let X be a countable set with the cofinite topology. Then X is of the
first Baire category. Every quasicontinuous function on X must be constant. Thus
the conditions (2) and (3) are always satisfied on X. The same holds for X = R
equipped with the topology τ = {X, ∅} ∪ {(a,∞) : a ∈ R}.

If a sequence {fn : n ∈ ω} is equi-quasicontinuous (see Definition 2) then the
assumptions on a space X and a function f in Theorem 1 can be omitted.

Theorem 4. Let X be a topological space, let {fn : n ∈ ω} be sequence of real-valued
functions equi-quasicontinuous at points of some dense set D and let f : X → R be
a function such that Grf ⊂ LsGrfn. Then there is a dense set E ⊂ X such that
for each x ∈ E, f(x) is a cluster point of {fn(x) : n ∈ ω}.
Proof. Suppose by way of contradiction that there is an open set U ⊂ X such that
for each x ∈ U , f(x) is not a cluster point of {fn(x) : n ∈ ω}. Let x0 ∈ U ∩D. The
equi-quasicontinuity of {fn : n ∈ ω} at x0 implies that there is an open set G ⊂ U
and n0 ∈ ω such that | fn(y) − fn(x0) |< 1 for every y ∈ G and for every n > n0.
Let y0 be an arbitrary point in G. The sequence {fn(x0) : n ∈ ω} has not a cluster
point, so there is n1 > n0 such that |fn(x0)| > |f(y0)|+2 for every n > n1. For each
y ∈ G we have |fn(y)− f(y0)| ≥ |fn(y)| − |f(y0)| > |fn(x0)| − 1− |fn(x0)|+ 2 > 1.
Therefore, G× (f(y0)− 1, f(y0) + 1) is a neighbourhood of (y0, f(y0)) disjoint from
Grfn for each n > n1, a contradiction to Grf ⊂ LsGrfn.

Theorem 5. Let X be a topological space. Let {fn : n ∈ ω} be a sequence of
real-valued functions equi-quasicontinuous at points of some dense set in X and let
f : X → R be a quasicontinuous function. The following are equivalent:
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(1) Grf ⊂ LsGrfn;
(2) There is a dense set E ⊂ X such that for each x ∈ E, f(x) is a cluster point

of {fn(x) : n ∈ ω}.

3 Topological spaces with the property QP

Let X be a developable space with a development G = {Gn : n ∈ ω}. For a
mapping ϕ : ω → ω denote U(G, ϕ) = {x ∈ X : st(st(x,Gϕ(n)),Gϕ(n)) ⊂ st(x,Gn)}.
We say that a developable space X has the property U if there are a development
G = {Gn : n ∈ ω} and a mapping ϕ : ω → ω such that the set U(G, ϕ) is dense in
X and Gn+1 refines Gn for every n ∈ ω.

Theorem 6. Let X be a Baire Moore space with the property U. Let F be a
nonempty nowhere dense closed subset of X. Then there is a closed nowhere dense
set H containing F and there is a family K =

⋃
n∈ω Kn of nonempty open sets such

that

(a) ∀K ∈ K : Cl K ∩H = ∅;
(b) ∀K, L ∈ K : Cl K ∩ Cl L = ∅ for K 6= L;

(c) ∀x ∈ X \H ∃V a neighbourhood of x such that the set {K ∈ K : V ∩K 6= ∅}
has at most one element;

(d) ∀x ∈ H ∀U a neighbourhood of x ∃k ∈ ω ∀n ≥ k ∃K ∈ Kn such that U∩K 6= ∅.
Proof. Let G = {Gn : n ∈ ω} be a development for X such that Gn+1 refines Gn and
let ϕ : ω → ω be a mapping such that the set U(G, ϕ) is dense in X. Put

H =
⋂
n∈ω

Cl st(F,Gn).

Evidently, H is closed and F ⊂ H. We have

H =
⋂
n∈ω

Cl st(F,Gn) =
⋂
n∈ω

((Cl st(F,Gn) \ st(F,Gn)) ∪ st(F,Gn)) ⊂
⋂
n∈ω

st(F,Gn) ∪
⋃
n∈ω

(Cl st(F,Gn) \ st(F,Gn)).

If x ∈ ⋂
n∈ω st(F,Gn) then there are yn ∈ F such that x ∈ st(yn,Gn). Then

yn ∈ st(x,Gn) and the sequence {yn : n ∈ ω} converges to x. Since F is closed,
we have x ∈ F . Therefore

⋂
n∈ω st(F,Gn) is a nowhere dense set and the sets

Cl st(F,Gn) \ st(F,Gn) are nowhere dense, too. Now H is a closed set of the first
category and since X is a Baire space, H is nowhere dense.

Assume that for each i < n we have constructed families of nonempty open sets
Ki such that for each i < n

(1) Cl K ∩ st(ClL,Gϕ(ϕ(i))) = ∅ for each K, L ∈ Ki with K 6= L;
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(2) the sets
⋃

S∈S Cl S are closed whenever S ⊂ Ki;

(3) Cl K ⊂ Mi for each K ∈ Ki;

(4) Si is a maximal element in Ti and for each K ∈ Ki there is s ∈ Si such that
Cl K ⊂ st(s,Gϕ(ϕ(i))),

where K0 = ∅, Ki =
⋃

K∈Ki
Cl K, Mi = st(F,Gi) \ (H ∪⋃

j<i Kj) and

Ti = {T ⊂ Mi ∩ U(G, ϕ) : a /∈ st(b,Gi) for each a, b ∈ T with a 6= b}.
Put

Mn = st(F,Gn) \ (H ∪
⋃

i<n

Ki).

If st(F,Gn) ⊂ H ∪ ⋃
i<n Ki then st(F,Gn) \ ⋃

i<n Ki ⊂ H and hence by (2),
st(F,Gn) \ ⋃

i<n Ki is an open nowhere dense set and hence it is empty. On the
other hand, by (3), F ∩Ki = ∅ for i < n and hence ∅ 6= F ⊂ st(F,Gn) \⋃

i<n Ki, a
contradiction. Hence Mn is an open nonempty set.

Put

Tn = {T ⊂ Mn ∩ U(G, ϕ) : a /∈ st(b,Gn) for each a, b ∈ T with a 6= b}.
Since the union of each chain in Tn belongs to Tn, according to Zorn lemma

there is a maximal element Sn in Tn.
For each s ∈ Sn the set Mn is a neighbourhood of s and hence there is an open

set Ls such that s ∈ Ls ⊂ Cl Ls ⊂ Mn ∩ st(s,Gϕ(ϕ(n))).
Put

Kn = {Ls : s ∈ Sn} and Kn =
⋃

K∈Kn

Cl K.

We will show that Kn and Sn satisfy (1)-(4).
(1): Assume that there is y ∈ Cl K ∩ st(ClL,Gϕ(ϕ(n))) for some K, L ∈ Kn,

K 6= L. Then there are a, b ∈ Sn such that Cl K ⊂ st(a,Gϕ(ϕ(n))) and Cl L ⊂
st(b,Gϕ(ϕ(n))). Since a, b ∈ U(G, ϕ) we have y ∈ Cl K ⊂ st(st(a,Gϕ(ϕ(n))),Gϕ(ϕ(n))) ⊂
st(a,Gϕ(n)) and hence a ∈ st(y Gϕ(n)).

Further, y ∈ st(ClL,Gϕ(ϕ(n))) ⊂ st(st(b,Gϕ(ϕ(n))),Gϕ(ϕ(n))) ⊂ st(b,Gϕ(n)). There-
fore a ∈ st(y,Gϕ(n)) ⊂ st(st(b,Gϕ(n)),Gϕ(n)) ⊂ st(b,Gn), a contradiction to the
construction of Sn.

(2): Let S ⊂ Kn, zk ∈
⋃

S∈S Cl S and let {zk : k ∈ ω} converge to z. Then there
are Sk ∈ S with zk ∈ Cl Sk. Further there is m ∈ ω such that zk ∈ st(z,Gϕ(ϕ(n)))
for each k ≥ m. This yields z ∈ st(zm,Gϕ(ϕ(n))) and hence there is p > m such
that zk ∈ st(zm,Gϕ(ϕ(n))) for k ≥ p. Therefore zk ∈ Cl Sk ∩ st(zm,Gϕ(ϕ(n))) ⊂
Cl Sk ∩ st(Cl Sm,Gϕ(ϕ(n))). However, by (1) we have Cl Sk ∩ st(ClSm,Gϕ(ϕ(n))) = ∅
for Sm 6= Sk. Therefore Sk = Sm for k ≥ p. This yields zk ∈ Cl Sm for k ≥ p and
hence z ∈ Cl Sm ⊂ ⋃

S∈S Cl S.
(3) and (4) follow from the construction.
Now, we will show that the family K =

⋃
n∈ω Kn of nonempty open sets satisfies

(a)-(d).
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(a) follows from (3) and (b) follows from (1) and (3).
(c): Let x ∈ X \H. Then there is n ∈ ω such that x /∈ Cl st(F,Gn). Let U be

an open neighbourhood of x such that U ⊂ X \Cl st(F,Gn). Since Gn+1 refines Gn

we have U ∩Ki = ∅ for each i ≥ n.
If x /∈ ⋃

i∈ω Ki then V = U \ ⋃
i<n Ki is a neighbourhood of x disjoint from

each K ∈ K. Otherwise, x ∈ Cl K for some K ∈ Kj , j < n. By (b), x /∈ ClS for
each S ∈ K with S 6= K. By (2), the sets Ki for i < n and

⋃
S∈Kj\{K} Cl S are

closed and hence V = U \ (
⋃

i<n,i 6=j Ki ∪
⋃

S∈Kj\{K} Cl S) is a neighbourhood of x

such that {L ∈ K : V ∩ L 6= ∅} = {K}.
(d) Let x ∈ H and let U be a neighbourhood of x. Then there is n ∈ ω such

that x ∈ st(x,Gn) ⊂ U . We will show that st(x,Gn) ∩Km 6= ∅ for each m ≥ ϕ(n).
Assume that st(x,Gn) ∩ Km = ∅ for some m ≥ ϕ(n). Since H ∩ Ki = ∅ for

i < m, by (2) the set st(x,Gm) \ ⋃
i<m Ki is an open neighbourhood of x. Since

x ∈ Cl st(F,Gm), the set (st(x,Gm) \⋃
i<m Ki) ∩ st(F,Gm) is open and nonempty.

Now, the set Wm = (st(x,Gm) \⋃
i<m Ki) ∩ st(F,Gm) \H is open and nonempty,

too.
The set U(G, ϕ) is dense a hence there is p ∈ Wm ∩ U(G, ϕ). We will show that

p /∈ st(U(G, ϕ) \ st(x,Gn),Gm). If namely p ∈ st(U(G, ϕ) \ st(x,Gn),Gm) then there
is z ∈ U(G, ϕ) \ st(x,Gn) such that p ∈ st(z,Gm). Then p ∈ st(z,Gϕ(n)) and hence
st(p,Gϕ(n)) ⊂ st(st(z,Gϕ(n)),Gϕ(n)) ⊂ st(z,Gn). We have p ∈ Wm ⊂ st(x,Gϕ(n))
and hence x ∈ st(p,Gϕ(n)) ⊂ st(z,Gn). On the other hand, z /∈ st(x,Gn) and hence
x /∈ st(z,Gn), a contradiction.

By assumption, we have st(x,Gn) ∩Km = ∅ and hence st(x,Gn) ∩ Sm = ∅, i.e.
Sm ⊂ U(G, ϕ)\st(x,Gn). Since p /∈ st(U(G, ϕ)\st(x,Gn),Gm) we have p /∈ st(s,Gm)
for each s ∈ Sm. However, p ∈ Wm ∩ U(G, ϕ) and p /∈ Sm, a contradiction to the
maximality of Sm.

Therefore for each k ≥ ϕ(n) there is K ∈ Kk such that U ∩ Cl K 6= ∅. Since U
and K are open, we have U ∩K 6= ∅.
Theorem 7. Let X be a topological space such that for each nonempty nowhere
dense closed set F there is a nowhere dense set H containing F and a family K =⋃

n∈ω Kn of open nonempty sets satisfying (a)-(d) of Theorem 6. Then X has the
property QP.

Proof. Let F be a nowhere dense closed set. Let H andK =
⋃

n∈ω Kn satisfy (a)-(d).
Put A =

⋃
i∈ω K2i, where Ki =

⋃
K∈Ki

Cl K. Define a function f : X \ F → [0, 1]
as f(x) = 0 for x ∈ A and f(x) = 1 otherwise.

Let x ∈ F and let U be a neighbourhood of x. Then there are an even i and an
odd j such that U ∩Ki 6= ∅ and U ∩Kj 6= ∅.Therefore there are points y, z ∈ U \F
such that f(y) = 0 and f(z) = 1. This yields that ωf (x) = 1.

Now, we will show that f is quasicontinuous. Let x ∈ X \ F and let U be an
open neighbourhood of x. If x ∈ X \H then there is an open neighbourhood V of
x such that {K ∈ K : V ∩K 6= ∅} has at most one element. If this set is empty,
then f(x) = f(y) = 1 for each y ∈ V . If {K ∈ K : V ∩K 6= ∅} = {L} and x ∈ Cl L,
then G = U ∩ V ∩ L is an open nonempty subset of U such that f(y) = f(x) for
each y ∈ G. If x /∈ Cl L, we can argue as above.
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Finally, let x ∈ H\F . Then by (d) there is an odd j such that U∩K 6= ∅ for some
K ∈ Kj Now, U ∩K is an open nonempty subset of U such that f(y) = f(x) = 1
for each y ∈ U ∩K.

Proposition 2. The Niemytzki plane is the space with the property QP but not
CP.

Proof. Let X be the Niemytzki plane. It means, X = P ∪ L, where P = {(x, y) ∈
R2 : y > 0} and L = {(x, y) ∈ R2 : y = 0}. The basis of open neighbourhoods of
points from P are disc in the plane which are small enough to lie within P . The
basis of open neighbourhoods of points from L are sets {(p, 0)} ∪A, where A is an
open disc in P which is tangent to the x-axis at (p, 0). It is easy to see that X is a
Baire Moore space with the property U . By Theorem 6 and 7 X has the property
QP.

Assume that X has the property CP. Let ∅ 6= F ⊂ L. Then F is a nonempty
nowhere dense closed set in X. The space P as a subspace of X is second countable,
therefore there are only c continuous functions on P to [0, 1]. However, we have 2c

subsets of L, therefore there are nonempty sets F1, F2 ⊂ L, F1 6= F2, and continuous
functions f1 : X \ F1 → [0, 1], f2 : X \ F2 → [0, 1] and g : P → [0, 1] such that
ωf1(z) = 1 for each z ∈ F1, ωf2(z) = 1 for each z ∈ F2 and f1(z) = f2(z) = g(z)
for each z ∈ P . Since F1 6= F2, there is w ∈ F1 \ F2 (or w ∈ F2 \ F1). We have
w ∈ X \ F2 and hence f2 is continuous at w, so 0 ≤ ωg(w) ≤ ωf2(w) = 0. On the
other hand, w ∈ F1 and it is easy to see that ωg(w) = ωf1(w) = 1, a contradiction.
Therefore the Niemytzki plane has not the property CP.

Proposition 3. There is a Hausdorff compact space which has not the property
QP.

Proof. Let X = βω (the Čech-Stone compactification of ω) and let z ∈ βω \ ω.
Then {z} is a nonempty closed nowhere dense set in X. Assume that there is
a quasicontinuous function g : X \ {z} → [0, 1] such that ωg(z) = 1. Put A =
g−1([0, 1/3)) and B = g−1((2/3, 1]). Then A and B are disjoint semi-open sets in
X \ {z} and (since X \ {z} is open) also in X. (A set A ⊂ X is semi-open, if
A ⊂ Cl(IntA) [21].)

There is a continuous function f : X → [0, 1] such that f(x) = 0 for x ∈ A ∩ ω
and f(x) = 1 for x ∈ B ∩ ω. Let U be an open neighbourhood of z in X. Since
ωg(z) = 1, there are points z1, z2 ∈ U \{z} such that g(z2)−g(z1) > 5/6. This yields
that z2 ∈ B and z1 ∈ A. Therefore z ∈ Cl A ∩ Cl B and, since A and B are semi-
open, we have ClA = Cl IntA and Cl B = Cl Int B. Hence the set U ∩ IntA 6= ∅,
and, since ω is dense in X, there is y1 ∈ U ∩ IntA ∩ ω, and f(y1) = 0. Similarly,
there is y2 ∈ U ∩ IntB∩ω, and f(y2) = 1. However then ωf (z) = 1, a contradiction
to the continuity of f .
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4 Some comments to the pointwise convergence of
quasicontinuous mappings

Of course the pointwise limit of a sequence of even continuous functions need not
be quasicontinuous.

However it is known that the pointwise limit of an equicontinuous sequence of
functions is continuous. Of course equicontinuity is too strong; it is not necessary
to guarantee continuity of the pointwise limit of a sequence of continuous functions.

There is a rich literature concerning necessary and sufficient conditions for con-
tinuity of the pointwise limit of a net of continuous functions (see [10] for a survey).

Of course mathematicians studied also the pointwise convergence of quasicon-
tinuous mappings (see [4], [5], [12], [13], [16], [28]).

In the paper [16], the notion of equi-quasicontinuity was defined, a sufficient
condition under which the pointwise limit of a sequence of quasicontinuous functions
is quasicontinuous. The following definition of equi-quasicontinuity is given (for
simplicity) for real-valued functions, however we can extend it for functions with
values in metric spaces and also for nets.

Definition 2. Let {fn : n ∈ ω} be a sequence of real-valued functions defined on a
topological space X. We say that the sequence {fn : n ∈ ω} is equi-quasicontinuous
at x ∈ X if for every ε > 0 and every open neighbourhood U of x there is n0 ∈ ω
and a nonempty open set W ⊂ U such that | fn(z) − fn(x) |< ε for every z ∈ W
and for every n ≥ n0. We say that {fn : n ∈ ω} is equi-quasicontinuous if it is
equi-quasicontinuous at every x ∈ X.

Of course every equicontinuous sequence is also equi-quasicontinuous and there
are easy examples of equi-quasicontinuous sequences which are not equicontinuous.
Of course members of an equi-quasicontinuous sequence need not be quasicontinuous
functions.

In [16] the following proposition and theorem were proved.

Proposition 4. Let {fn : n ∈ ω} be a sequence of real-valued functions defined on
a topological space X pointwise convergent to a real-valued function f defined on X.
If {fn : n ∈ ω} is equi-quasicontinuous at x ∈ X, then f is quasicontinuous at x.

Theorem 8. Let X be a Baire space. Let {fn : n ∈ ω} be a sequence of real-
valued quasicontinuous functions defined on X pointwise convergent to a function
f : X → R. Then the following are equivalent:
(1) f is quasicontinuous;
(2) {fn : n ∈ ω} is equi-quasicontinuous.

In [16], Theorem 8 was proved using the Choquet game for Baire spaces. Here
we offer an easy direct proof:

Proof. (1) ⇒ (2) Let x0 ∈ X, U be a neighbourhood of x0 and ε > 0. The
quasicontinuity of f at x0 implies the existence of a nonempty open subset U1 ⊂ U



Baire spaces and quasicontinuous mappings 79

such that | f(x)− f(x0) |< ε/4 for every x ∈ U1. Put

An = {x ∈ U1 : for every m ≥ n :| fm(x)− f(x) |< ε/4}.

The pointwise convergence of {fn} to f implies that U1 = ∪nAn. Since X is a
Baire space, there is n0 ∈ ω such that An0 is not nowhere dense in U1. There is a
nonempty open set V ⊂ U1 such that An0 is dense in V . There is n1 > n0 such
that | fn(x0)− f(x0) |< ε/4 for every n ≥ n1.

We claim that for every n ≥ n1 and for every x ∈ V we have | fn(x)−fn(x0) |< ε.
Let n ≥ n1 and x ∈ V . The quasicontinuity of fn at x implies the existence of a
nonempty open subset G ⊂ V such that | fn(t)− fn(x) |< ε/4 for every t ∈ G. An0

is dense in V , thus there is z ∈ An0 ∩G. Thus

| fn(x)− fn(x0) |≤| fn(x)− fn(z) | + | fn(z)− f(z) | +
| f(z)− f(x0) | + | f(x0)− fn(x0) |< ε.

Moreover in [16] a characterization of Baire spaces by the above mentioned fact
in the class of metrizable spaces and in the class of quasi-regular T1 topological
spaces with locally countable π-base was given. However such a characterization
does not hold in general topological spaces as Example 2 shows. Example 2 answers
negatively the question in [16] for T1 topological spaces.

5 Miscellanea

Definition 3. ([1]) Let X be a topological space and (Y, d) be a metric space. Let
{fn : n ∈ ω} be a sequence of functions from X to Y and let f : X → Y . Then
{fn : n ∈ ω} is called Alexandroff convergent to f on X, provided it pointwise
converges to f , and for every ε > 0 and n0 ∈ ω there exist a countable open
covering {Γ0,Γ1, ...} of X and a sequence {nk : k ∈ ω} in ω such that nk > n0 for
every k and for each x ∈ Γk we have d(fnk

(x), f(x)) < ε.

The following proposition is probably known.

Proposition 5. Let X be a topological space and (Y, d) be a metric space. Let
{fn : n ∈ ω} be a sequence of quasicontinuous functions from X to Y Alexandroff
convergent to a function f : X → Y . Then f is quasicontinuous too.

Let (Z, d) be a metric space. If E ⊂ Z and ε > 0, let S(E, ε) denote the union
of all open ε-balls whose centers run over E.

If E and F are nonempty subsets of Z and for some ε > 0 both E ⊂ S(F, ε) and
F ⊂ S(E, ε), then the Hausdorff pseudometric hd between them is given by

hd(E,F ) = inf{ε > 0 : F ⊂ S(E, ε), E ⊂ S(F, ε)}.
Otherwise we put hd(E,F ) = ∞.
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Now let (X, dX), (Y, dY ) be metric spaces. On X × Y consider the box metric ρ
of dX , dY , defined as follows:

ρ[(x1, y1), (x2, y2)] = max{dX(x1, y1), dY (y1, y2)}.
As above we can identify every function f : X → Y with its graph and consider

hρ-convergence of functions.
The following example shows that the convergence in the Hausdorff pseudometric

preserves neither quasicontinuity nor cliquishness.

Example 3. Let X = Y = [0, 1] with the usual Euclidean metric. Let D be a
dense set in X. Let f : X → Y be defined as follows: f(x) = 1 if x ∈ D and
f(x) = 0 otherwise. Of course f is not cliquish, however it can be appoximated in
the Hausdorff pseudometric (generated by the box metric on X×Y ) by the sequence
of quasicontinuous functions fn : X → Y defined as follows. Let n ∈ ω, n ≥ 1. Put
fn(x) = 1 for x ∈ [ i

2n , i+1
2n ] for i odd, 1 ≤ i ≤ 2n − 1 and fn(x) = 0 otherwise.

Definition 4. Let X be a topological space and (Y, d) be a metric space. A sequence
{fn : n ∈ ω} of functions from X to Y is equi-cliquish at x ∈ X if for every ε > 0
and every neighbourhood U ⊂ X of x there is a nonempty open set G ⊂ U and
n0 ∈ ω such that d(fn(y), fn(z)) < ε for every n ≥ n0 and for every y, z ∈ G.

It is very easy to verify that the following proposition holds.

Proposition 6. Let X be a topological space and (Y, d) be a metric space. Let
{fn : n ∈ ω} be a sequence of functions from X to Y pointwise convergent to a
function f : X → Y . If {fn : n ∈ ω} is equi-cliquish at x ∈ X, then f : X → Y is
cliquish at x.

However an analogy with Theorem 2.5 in [16] does not hold as the following
example shows.

Example 4. Let X = Y = R with the Euclidean metric. For every n ∈ ω, let
fn : X → Y be defined as follows: fn(x) = 1

q−n if x = p
q in the basic form and

q − n > 0 and fn(x) = 0 otherwise. Let f : X → Y be the function identically
equal to 0. Then of course X is a Baire space, fn is cliquish for every n ∈ ω and f
is cliquish too. However the sequence {fn : n ∈ ω} is not equi-cliquish. Let G be
a nonempty open set in X and m ∈ ω, m ≥ 1. There is q ∈ ω, q > m and there is
an integer p such that p

q ∈ G and p
q is in the basic form. Then for n = q − 1 ≥ m

and for y = p
q and for an irrational z ∈ G we have fn(y) = 1

q−n = 1 and fn(z) = 0.
Thus the sequence {fn : n ∈ ω} is not equi-cliquish.

Proposition 7. Let X be a topological space and (Y, d) be a metric space. Let
{fn : n ∈ ω} be an equi-cliquish sequence of functions from X to Y and f : X → Y
be a function such that Grf ⊂ LiGrfn. Then f is cliquish too.

Proof. Let x ∈ X. We prove that f is cliquish at x. Let ε > 0 and let U be an
open neighbourhood of x. There is n0 ∈ ω and a nonempty open set V ⊂ U such
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that d(fn(u), fn(v)) < ε/3 for every n ≥ n0 and for every u, v ∈ V . We claim that
for every s, t ∈ V, d(f(s), f(t)) < ε. Let s, t ∈ V . Since Grf ⊂ LiGrfn, there is
n1 ∈ ω such that n1 ≥ n0 and for every n ≥ n1 we have V × S(f(s), ε/3) ∩Grfn 6=
∅ and V × S(f(t), ε/3) ∩ Grfn 6= ∅. Let n ≥ n1 and s1, t1 ∈ V be such that
d(f(s), fn(s1)) < ε/3 and d(f(t), fn(t1)) < ε/3. Thus we have

d(f(s), f(t)) ≤ d(f(s), fn(s1)) + d(fn(s1), fn(t1)) + d(fn(t1), f(t)) < ε.

The following example shows that an equi-quasicontinuous sequence need not
converge in the Hausdorff pseudometric to a quasicontinuous function.

Example 5. Let X = Y = [0, 1] with the usual Euclidean metric. For every
n ∈ ω, n ≥ 2 let fn : X → Y be a function defined as follows: fn(x) = 1 for every
x ∈ [ 1

n − 1
2n , 1

n + 1
2n ] and fn(x) = 0 otherwise. It is easy to verify that the sequence

{fn : n ∈ ω} is equi-quasicontinuous and it converges in the Hausdorff pseudometric
(generated by the box metric) to a function f : X → Y defined as follows: f(0) = 1
and f(x) = 0 otherwise, which is not quasicontinuous at 0.
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[6] J. Borśık, Points of continuity, quasicontinuity and cliquishness, Rend. Ist.
Math. Univ. Trieste 26 (1994), 5–20.
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Ľubica Holá
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