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Bakeriax LLECTURE

On relaxation methods:* A mathematics
for engineering science

By R. V. SourawerL, F.R.S.
(Delivered 17 June 1943—Received 3 August 1943)

1. By engineering, in this lecture, I intend the art whereby science is
applied to useful ends; by engineering science, that corpus of knowledge—
mathematics, physics, chemistry and the like—which is pursued with a
view to such practical application. I am not concerned to defend these
definitions, only to make my meaning clear. Such as they are, their dis-
tinction between engineering and engineering science is analogous with the
distinction between clinical medicine—the art—and medicine—the science
of our medical schools and research centres.

As engineering advances the scope of engineering science advances too,
and roughly (I suppose) it may be said that the engineering science of any
given time is the physics of fifty years before. Thus its field of study now
is very much the same as that of nineteenth-century physicists like Kelvin,
Stokes or Rayleigh: in ‘field physics’ (of which my lecture treats this
afternoon) we are concerned with problems in hydrodynamics, elasticity
and the like such as make up the bulk of their collected papers. There is,
however, this difference in our outlook (and it arises because our science
is directed to practical ends) that we would rather have power to calculate
approximately for any data than power to calculate exactly for data of a few
restricted kinds.

2. Take, as an example, Saint-Venant’s well-known theory of torsion
for a bar of non-circular cross-section. It is formally complete, and its
equations have been satisfied exactly for various mathematical shapes—
equilateral triangles, ellipses and the like. From a purely physical stand-
point this is enough, and nineteenth-century physicists passed, in elasticity,
on to other problems; but engineering science, in so far as it is concerned
with the problem, is concerned with the torsional properties of shapes
(e.g. of ¢ =-girders’) which are not expressible mathematically, therefore

* The name °‘Relaxation Methods®’ is an abbreviation of the more complete
description given in the titles of my 1935 papers (Refs. 1 and 2): ‘Stress-Calculation

in Frameworks by the ““Method of Systematic Relaxation of Constraints™.
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are not tractable by orthodox mathematics. It has no great enthusiasm
for exact solutions: 10 9, accuracy in an estimation of stresses s good
enough. But it does ask for methods which can be applied without restric-
tion, to any shape of cross-section; and the mathematics which sufficed the
nineteenth-century physicist it finds wanting in this respect.

Here and in other problems of field physics, for some six years I have
been seeking, with a zealous team of co-workers* at no time numbering
more than six, to furnish engineering science with a mathematics of its
own ; a mathematics not exact, but on the other hand not thus hedged about
with troublesome restrictions. Being a team without official standing, it
has fluctuated in size and personnel because ministries from time to time
have taken its members for other work; but it has never been allowed to
suffer extinction, since new recruits have been found.t From time to time
our work has led to solutions having a war-time interest, and in conse-
quence our energies have been focussed on a single objective, sometimes
entailing much repetitive computation. In the intervals I have sought to
extend the range of our methods, trying to guess what problems were most
likely to attain war-time importance.

My aim to-day is not to explain the details of our methods, but to show
the kind of thing that they can do. Figure 1, for example, shows one of our
first solutions (in 1937) of the torsion problem. The equiangular section is,
for orthodox analysis, one of the easiest to treat; but I do not think that
orthodox analysis can do much with a pierced triangular section, and
moreover, here and throughout this lecture it should be remembered that
any problem we have solved for one shape of boundary we could have solved
for any.

3. Having made that point, I now show further results of our earliest
work. First, in the theory of torsion Prandtl (1923) sought to determine the
consequences of ‘yield’ whereby, when the shear stress has attained some
limiting value, the corresponding strain can increase without limit (figure 2).
Here too a formal solution can be stated; but the difficulties of analysis
are now much greater, because of the whole cross-section some parts behave
‘elastically’ and others ‘plastically’, and the common boundary of the elastic

* Their names appear as co-authors in the list of references. Acknowledgement is
made to the Ministry of Supply, for grants in support of researches made on behalf
of certain war committees; also to the Ministry of Aircraft Production (through its
Aeronautical Research Committee) and to the Department of Scientific and'In-
dustrial Research, for grants in general support of our effort.

1 In this connexion I gratefully acknowledge help received on many occasions
from Dr C. P. Snow of the Central Register.



Bakerian Lecture 255

and plastic portions is not known in advance. Our computations for an
equilateral triangle are shown in figures 3 a, b, where the contour curves
show the direction and (by the closeness of their spacing) the intensity of
the shear stress on cross-sections. On account of symmetry, only one-
sixth of the complete triangle is reproduced in figure 3a.

w=16-38x10"

Ficure 1. Solution of the torsion problem for a pierced triangle (Ref. 5, figure 7).
The final solution (at top of diagram) was obtained by synthesis of the two solutions
given below.

It will be seen that near the centre of each side the spacing of the contours
is uniform so that the shear stress has a constant value. That value is the
limiting stress fy in figure 2, and the dotted curve shows the extent of the
plastic region (not known initially). As the twist increases, plastic strain
extends over more and more of the cross-section; but however far it
extends, elastic conditions are maintained in a spinal region extending
from the centre to the corners (figure 35). Experiment gives general con-
firmation of these conclusions (cf. Nadai 1931, Chap. 19).
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Ficure 2. ‘Plastic’ stress-strain diagram (Ref. 5, figure 9).
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Ficures 3 a, b. ‘Plastic torsion’ of a triangular bar (Ref. 5, figures 10 and 11).
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th figure 29 of Hele-Shaw & Hay (1900).
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4. Secondly, we confront the phenomenon of refraction (e.g.) in the
theory of magnetism when we deal with fields containing iron. Few cases
of this kind yield to orthodox analysis, and Hele-Shaw & Hay (1900)
devised a highly ingenious technique for obtaining solutions by experi-
ment. Here again our methods have proved successful, and are not
restricted to particular shapes of boundary. Figure 4 compares the
results of computation with those of experiment, for an iron prism of
triangular section.

5. A like freedom from restriction is found in dealing with the problem
of conformal transformation: any of the four standard types of trans-
formation (figure 5) can be effected by our methods for a region of any
specified form. From the standpoint of engineering science, contormal
transformation is a device whereby a problem hard to solve as presented
can be simplified by a change of coordinates. Thus in studying the flow of a
compressible fluid through a convergent-divergent nozzle we have found
it advantageous to transform the ‘field’ of the fluid into a rectangle.
Figure 6 shows our solution of this problem.

6. I have mentioned ‘plastic torsion’ as a problem hard to attack by
orthodox methods for the reason that we cannot say initially what is the
common boundary of the plastic and elastic regions: a similar difficulty is
confronted in the treatment of fluid motion characterized by ° free surfaces’.
Sometimes it can be turned by an analytical use of conformal transforma-
tion—as was shown by Kirchhoff and Rayleigh in their treatment of jets,
etc., in two dimensions; but this elegant device has pitfalls—as was found
by Davison & Rosenhead (1940) in a study of percolation through granular
material (figure 7). Here, a single and simple boundary condition is
imposed along the sides of the rectangular retaining wall, but the rest of
the boundary (namely, the free surface of the ‘water table’ AE) is not
known in advance, and on it a double boundary condition must be satis-
fied. Using the device, Davison & Rosenhead compelled this remaining
boundary to start at 4 and to finish at D; but having no means of allowing
for the vertical boundary DE they could not compel it to stay within the
porous material, and in fact it was found (in the absence of an assumed
evaporation) to pass from left to right through the vertical boundary DE
before returning (as on their assumptions it must) to D.

Later, when I come to describe our methods, you will see that they are
essentially tentative like the engineering process of ‘scraping’ to a surface-
plate or gauge: for that reason I felt confident that they would serve in
cases where some part of a boundary is initially unknown, and applied to
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this problem (in 1940-1) they led quickly to positive results. The true
solution, as you see, involves ‘seepage’ of water through a part of the
vertical side of the retaining wall.

CIRCLE OF AmMDIUS &
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Fieure 5. Types of conformal transformation (Ref. 7, figure 1).
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Figures 8 and 9 show further examples, and throw some light on the
failure of conformal transformation in the case examined by Davison &
Rosenhead. In both a rubble ‘blanket’ is assumed %o be provided, as is
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Ficure 7. Percolation problem of Davison & Rosenhead (Ref. 9, figure 5).
The curves are contours of constant pressure.
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customary,* to prevent erosion by drainage down the side exposed to air.
In the second (due to the assumption of two strata of different porosities)
refraction enters again as a complicating factor.

* Cf. Casagrande (1937).
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7. So far I have dealt with problems differing in respect of their boun-
dary conditions but all having as governing equation either the two-
dimensional form of Laplace’s equation, viz.
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Ficure 8. Percolation through a levee with rubble ‘blanket’ (Ref. 9, figure 6).
The curves are contours of constant pressure.

or the two-dimensional form of Poisson’s equation, viz.

P2 92 )
[5@ + gyz] w+Z(x, y) = 0, (2)

Downloaded from ht

where Z(x, y) is specified. I now give some account of our methods as
applied to these ‘plane-harmonic’ equations, treating (1) as a particular
case of (2).

As my slides have shown, we present our solutions in the form of nu-
merical values of the wanted function (w) at nodal points of a uniform lattice

Vol. 184. A. 17
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or ‘net’. The meshes (in theory) may be either hexagonal, or square, or
triangular (figure 10); the values satisfy, not-the governing equation (2)
as it stands, but the approximation to it which results when its differentials
are replaced by finite-difference approximations. Such replacement, of
course, is no new device: indeed, it is hard to suggest an alternative, if the
aim is to evolve a method applicable to any shape of boundary. I believe
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Ficure 9. The same problem modified by the assumption of two strata
having different porosities (Ref. 9, figure 7).
The curves are contours of ‘veloecity potential’ ¢.

that triangular nets (which have some advantages in respect of accuracy)
have not been employed before; but they could have been employed by
earlier investigators whose methods can hardly be described as ‘relaxa-
tional’, and it is not this feature that I want to stress.

What I regard as the essence of ‘relaxation methods’ is their visualiza-
tion of any plane-harmonic problem as concerned with a mechanical system
executing controlled displacements under the action of constraints. That
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notion came to me first as a means of stress-calculation in engineering
(structural) frameworks, where ‘redundancy’ (i.e. a superfluity of members
above the number which would suffice to render a framework ‘just stiff’)
introduces difficulties and uncertainties with which every engineer is
familiar. Postponing for the moment my account of our attack on these
structural problems, I now give a mechanical interpretation of our square
and triangular nets.

Prandtl (1go3) showed that an equation of the form of (2) governs (if
Qthese are small) the transverse deflexions w of a uniformly tensioned mem-
Sbrane (e.g. a soap film) under the action of transverse pressure having, at
‘gevery point, an intensity proportional to Z. Griffith & Taylor (1917)
ctilized this analogy to find experimentally, with the aid of soap films,
<solutions of the torsion problem for cross-sections of non-mathematical

|

N=3:k=6 N=4 : k=4 N=6: k=3
Ficure 10. Three types of relaxation net (Ref. 5, figure 1).

shapes. We have shown (1943) that the finite-difference approximation to

(2) may be interpreted similarly, as governing the transverse deflexions of
;:;_‘nodal points of a tensioned net when the transverse pressure is con-
= centrated at these points in accordance with the rules of statics (Ref. 14,
§§§ 7-9). Consequently an actual net might be uged (in the manner of
£ Griffith & Taylor) to solve the finite-difference equation by experiment;
3 but in fact the net is tractable theoretically, and greater accuracy is attain-
g able in calculation. (In experiment, you see, there is this dilemma—that
— unless considerable displacements are permitted there is nothing much to
% measure ; whereas if they are, then the analogue is inexact,—the deflexions
A are governed by a different equation.)

/[royalsocietypublishing.org/ on 09
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9. A great advantage of the ‘net analogy’ (to minds like mine) is that
it enables one to judge by intuition the extent of the error which is and must
be entailed by our use of finite-difference approximations; and for that
reason I prefer to spend my own energies in extending the range of pro-
blems which can be treated by this simple concept, notwithstanding that

17-2
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the more mathematically minded of my colleagues are bent (I am glad to
say) on improving the accuracy of our approximations.

The appeal to me of the mechanical (‘net’) analogy may be illustrated
by reference to a slide shown earlier (figure 7). Here, if we state our pro-
blem as that of determining the fluid pressure p (which is ‘ plane-harmonic’),

(i) the wanted function has specified values along AB, CDE, EA,
and specified normal gradients along BC,

(ii) a further condition is imposed along A K,

but the form of AE is not known initially, being determined by a double
boundary condition. We made no progress until we examined this double
condition as relating to p interpreted mechanically, as the transverse
displacement of a membrane fixed (to sloping boundaries) along AB, BC,
C'D, unloaded except along AF, and there loaded by edge forces having
uniform horizontal line-intensity; along AED the displacement must be
zero. A model (figure 11) shows the nature of the mechanical problem.
Every string is maintained at the same tension by a hanging load, and
other weights exert an equal pressure where they touch the string. I move
each weight until it can no longer keep the string pressed against the base
(or ‘datum plane’): when every weight is in equilibrium, I have the
wanted curve.

We set ourselves to solve this problem by computation (of course, on a
net finer than the net in my model).* Then solutions came rapidly, owing
to the tentative nature of the relaxation process.

10. I must now explain that process, and to do so I will summarize
ideas by which (in 1935) I was led to a relaxational treatment of braced
Sframeworks. 1 shall be very brief, for I have already given them in a book
published late in 1940 (Ref. 19).

The standard problem in frameworks is, given the loads which come upon
the joints, to deduce the resulting stresses or (what amounts to the same
thing) the joint-displacements. Let us suppose that displacements are
wanted. Then the orthodox procedure is, taking the joint-displacements as
unknowns, to formulate equations of equilibrium for every joint. having
the specified forces on their right-hand sides. Up to this point a firm grasp
is kept on physical realities: but now there follows a series of operations,
performed in accordance with definite mathematical rules, but in which all

* The net was given large meshes in the model, partly for simplicity of manu-
facture and adjustment, but also in order to illustrate the satisfactory representation
of a wanted function which even a coarse net permits. When the weights are in

adjustment, the eye gains a quite clear impression (no doubt, helped largely by
imagination) of a continuous function coinciding with the net at its nodal points.
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physical contact is lost. We dive, so to speak, into a surf of computations,
from which we emerge, slightly breathless, with a result which should be,
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Ficore T Model illustrating vet analogue of figure 7.
(Photozraphs by Prof. C. M. White.)

and we hope is, a pearl. It is a series of displacement values, which ought
to satisfy all of the original equations. We try them, and perhaps they do.
If not, we must dive again.
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In contrast with this process, I sought to reproduce in computation, step
by step, a process which might (at least in imagination) be applied to the
actual framework. ‘“An ordinary engineering ‘jack’ (e.g. for automobiles)
is a means whereby a controlled displacement may be imposed at any
point: it is easy to imagine devices whereby this displacement can be
recorded, together with the load sustained at any instant; also to visualize
an arrangement in which every joint of a framework which would normally
be free to move is provided with a jack of this kind to control its displace-
ment. Suppose that initially the jacks fix the joints in positions such that
the framework is not strained: then, plainly, when the external loads are
applied they will be taken wholly by the jacks. Suppose that subsequently
one jack is relaxed, so that one joint is permitted to travel slowly through a
specified distance: then load will be transferred from that jack to adjacent
jacks and to the framework, and strain-energy will be stored in the latter.
If the force on the jack which is relaxed had a component in the direction
of the travel, that jack will be relieved, and strain-energy will be stored in
the framework at the expense of the potential energy of the external
forces” (Ref. 19, § 3).

Here then is an imagined process whereby a framework could be brought
from the unstrained to the fully-strained configuration; and every step is
easy to follow in calculation. The governing consideration, you see, is that
tndirect solutions are easy: there is no difficulty in computing the forces
brought into play when all but one particular joint are held fixed and on
that joint a specified displacement is imposed. So, for every step in the
loading process, we can compute the relative changes in the jack load-
readings; then, in a further computation, we can follow the whole process,
keeping touch with reality throughout. Two computational tables are
entailed (figure 12): the first (the ‘operations table’) exhibits the effects
on the recorded loads of displacing every joint severally, also (e.g. opera-
tions ‘6’ and °7’) of any simultaneous displacement of two or more joints
which we may expect to find useful; in the second (the ‘liquidation table’)
the first line shows the applied forces which are the loads initially recorded,
subsequent lines show a steady decrease in magnitude of the recorded loads
in consequence of operations which are detailed in the first and second
columns. The tentative nature of the relaxation process will be apparent
to anyone who examines this table carefully.

11. Now, in place of a braced framework, let us suppose that we load
our tensioned net. Nothing need be altered in our imagined (physical)
process, and again every step can be followed in computation. In fact
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there is this simplification, that whereas in the framework every unit
operation may be different, in the net (owing to its regularity) every
operation is the same. We no longer need an operations table: it

Tamee 1
(Units: 1 ton weight; 1 foot.)
Operation Nature of (1) (2) 3) (4) 6)
no. operation X, X Y e Yo s K L3 S
1 (a) %y =1 —3,980 0 312 0 768 1,280 2,700 | —1,080
1 (b) = 0,2513 ~1,000 0 784 0 108 322 678 -271,
2 (a) %y =1 o | —4.100 0 720 0 3,380 720 —720
o 20 - 0.2430 0 | —1,000 0 175 0 825 175 —176
le\l 3 (a) v =1 312 0 -~5.393 4,500 461 768 —1,080 452
S am - 0.1854 58 0 | —1,000 834 85, 142, —2004 80,
N 4 vp =1 0 720 4,500 —5,220 0 0 —7%0 720
A7 R X () - 0.1916 0 138 862 —1,000 0 0 —138 138
=] 5 (a) v =1 768 0 460.8 0| —24808 | —~768 0 2,020
o0 5@ = 0.4081 309, 0 186 0 | —1,000 —300: 0 814
2 6 (a) vy =vg =1 312 720 —893 —720 461 768 | —1,808 1,152
6 (5) = 0.6200 193 446 —554 —446 288 476 | —1,116 714
D 7(a) Py = —vg =1 812 —-720 | —9,893 9.720 461 768 - 360 —288
S 70 - 0.6510 16 =37 —504 496 23 39 —-18 —-15
(=}
\o Operation | Multiplier X 10° % X» Y. i Yo
o0 (Tnitial forces)— 15 7.07 % 7.07 i
o 1) 15 -15 0 1.18 0 2.89
. 0 7.07 1.18 7.07 2.80
%I) 2 (b 7 0 -7.00 0 -1,22 0
= 0 0.07 1.18 8.20 2.89
= 5 10 1.63 448 | —5.54 2448 2.86
= 1.93 4.5 | —4.38 3.83 5.75
e 7 () -8 —-0.13 0.30 4.03 | -3.97 -0.18
= 1.80 4.8 | —0.33 | —-0.14 5.57
= 5() 7 2.18 0 1.30 0 ~7.00
5 3.08 4.83 0.97 | —0.14 —1.43
.9 2() 8 0 —8.00 0 1.05 0
15} 3.98 | -1.17 0.97 | +0.01 —1.48
S 1) 5 —5.00 0 0.39 0 +0.97
Z =3.08 | =1a7 1.36 | +0.01 ~0.46
s 6 () 2.5 048 | +1.12 | =130 | —-1.11 0.72
2 -0.54 | —0.05 | —0.03 | —0.20 0.26
= 5 () 0.20 0.08 0 0.04 0 ~0.20
= —-0.48 | —0.06 | 40.01 | —0.20 0.06
2 1) —0.5 0.50 0 —0.04 0 -0.10
& 0.02 | —0.056 | —0.03 | —0.20 —0.04
E 6 (b) -0.25 -0.05 —0.11 +0.14 0.11 -0.07
-0.03 | —0.16 | +0.11 | —0.00 —-0.11
g 2 () ~0.2 0 0.20 0 —0.03, 0
o —0.03 0.04 0.11 '] —0.12 -0.11
& 70) 0.3 0 —0.01 | —0.10 0.10 0
- —-0.03 0.08 0.00 | 0,02 | —o0.11
o 5 1) —-0.12 —0.04 0 —0.02 0 0.12
o] -0.07 0.08 -0.01 -0.02, +0.01
< 1) —0.08 0.08 ) 0 0 —0.02
° —0.01 0.03 | —0.01 | —0.02 | —0.01
=} 6 (b) -0.04 0 -0.02 0.02 0.020 -0.01
= —0.01 0.01 0.01 0 —0.02
@)
A

Ficure 12. Typical ‘operations’ and ‘liquidation’ table
(Ref. 19, tables IT and III).

is replaced by a standard ‘relaxation pattern’ (figure 13). And liquida-
tion, too, no longer calls for a table: it can be effected on the ‘relaxation

net’
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12. The ‘patterns’ on the right of figure 13 relate, similarly, to the

finite-difference approximation to the biharmonic equation

B Ty

5:1:—2+53/_2:| w=Z(z, y), (3)
in which Z(z, y), as before, is specified. This equation governs (infer alia)
the transverse displacement under pressure, also the ‘ Airy stress-function’
x which gives the stresses induced by extension, of a uniform elastic plate.
I need not here develop a mechanical analogue of the finite-difference
approximation: enough, that this leads (by similar reasoning) to the
patterns shown.

O,
O—9—O
O,

(@) (b)

‘Relaxation patterns’ for the operators V? and V*: square net (N =4)

(¢) (d)
‘Relaxation patterns’ for the operators V2 and V4: triangular net (N = 6)

Ficure 13. ‘Relaxation patterns’ (Ref. 10, figures 5).
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Our paper dealing with biharmonic analysis (Ref. 10) will not have open
publication during the war, but I am allowed to show one solution—for
the stresses in a standard ‘cement briquette’. The problem is indicated in
the left-hand diagram of figure 14: the ‘jaws’ apply a measured pull to
the specimen, and calculation of stresses is needed to decide how far the
assumption is justified, that uniform and simple tension is imposed across
the waist. But here a question is presented as to the coefficient of friction
between the jaws and the briquette: to leave it open, in calculation we
have separated (as the photo-elastic method cannot do) the effects of
(a) the longitudinal pull and (b) the transverse squeeze which the jaws
exert.

Our results for the second system (b) are shown in figures 14 and 15:
figure 14 shows the cross-tension X, figure 15 shows on the left the longi-
tudinal tension Y, and on the right the shear stress-component X,. It
may be concluded that the squeeze (and hence the frictional coefficient)
has little influence on the tension (¥,) across the waist.

13. I leave the biharmonic equation (3) with the remark, that while the
photo-elastic method will always have value as a means to qualitative
understanding of a wanted stress-system, computation can now provide
closer quantitative accuracy, and at no increased cost in respect of labour.
It can, moreover, deal not only with problems in which edge tractions, but
also with problems in which the edge displacements are specified, and even
with ‘mixed’ boundary conditions (tractions specified at some points,
displacements at others): Coker & Filon (1931, § 4.39) restrict the photo-
elastic method to the first class of problem.

14. Before passing to other types of equation I must deal with another
aspect of the relaxation process—whether applied to frameworks or to
nets. Is that process always convergent?

This is a question for mathematicians, and I, from the standpoint of
engineering science, would first propound another: What is an ‘exact’
solution? 1 have said that the orthodox procedure, if displacements are
wanted, is to formulate equations in these as unknowns, with the specified
loadings on their right-hand sides. But when we turn to reality from the
rather artificial atmosphere of the examination hall, we are faced with the
consideration that in fact loadings are never known exactly. To them, if to
any of the data, ‘tolerances’ should be attached: 5 + 0-1 tons here, 10 + 0-3
tons there. But this is rarely done, even in cases confronted as problems of
research ; because the doing of it would have no consequences for orthodox
methods of attack.
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In our methods we fix attention, always, not on the wanted quantities
(stresses or displacements) but on the data of the problem (on the loads).
We assume these, always, to have some specified ‘margin of uncertainty’,
and we ‘whittle’ away at them, accounting for more and more, until
every ‘residual’ of a datum quantity has been brought within that margin.
At that point we stop, asserting that to ‘whittle’ further would be not
only waste of time, but meaningless. If you cannot tell the loads exactly

. 0-06 "approx.
175 =
0-10" approx.
|
V12
/ 4 :
@
T L
075"
_'ré '.25' - =
100"
Q . : s
1
P~
IR’

Part of figure 14; legend on facing page.

(and in practice you never can), then you have no claim to an exact solu-
tion. We need not apologize—we may even boast—that ours is ‘mathe-
matics with a fringe’

15. It may not seemh an important feature of the relaxation method,
but in fact I believe it to be both fundamental and important philosophically,
that in it we fix attention not on the wanted quantities but on the data of
a problem. Ours is a tentative process, like the scraping process whereby,
in engineering, a part is brought to coincide with surface-plate or gauge;
and our ‘margin of uncertainty’ (in the loads) is akin to the margin of
tolerance between a ‘go’ and a ‘not go’ gauge. ‘Exact’ measurement has
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no meaning in metrology,—we can only work to some limiting accuracy ;
and so, I contend, exact solution has no meaning in a mathematics aimed
at practical ends.

\
\
29 B0 56 .\u\‘\
. \

\
-3 -3 =6 = -1'7—-":’4"‘

o
-84 -85 78 -a#/,-w 24
-84 -60 - ) -34) -9 -10
'L’j_.ﬁ ! = .23 =) —°1'

Ficure 14. Concrete briquette problem, and computed values of X
(Ref. 10, figures 21, 25a).
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16. And now, as to the convergence of our computations for frameworks
and the like. When we seek a stable equilibrium configuration for some
mechanical system, we are (by a general theorem in mechanics) seeking

~—
Nw

-8 -5 -2

\\
-8 -7 -4 -1 { 4 9
-8
-18

~10! -8 -6 - 4

-0 -9 -7 -5

-7 =7 =7 -9

-2 -3 -5 -10

L NN

e

3 31 34 39 Pt 32 10
5SS V
A
25 28 30 25 26 /1; -188
20 /7 ’(Q /
ad /
12 12 15 9 -2 -32/\ €0,
/ ¢
-2;:;
-za -2 -1 -6 -9 -8
-n4l -11 -10 -9 - 4] 5]

-18 I -15 -13 -2 -7 30

Part of figure 15; legend on facing page.
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that configuration in which the total potential energy takes its minimum
value; consequently any process which continually ‘whittles at’ (so as to
reduce) the total potential energy must bring the configuration nearer

P —

o:[ - -.ﬁ;\

° -1 -3} -2 -15 -9 -4
[ ol -2 -8/ -1 -12| -2 -5 )
o 1 ! =2 -8 -13 -15 -8 -1

-2 -1 -18 ~7 -12 -2 \

-7 -14

Qi

q (2 [ 2
Fieure 15. Concrete briquette problem: values of Y, and X,
(Ref. 10, figures 25 b, ¢).
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to what is wanted. An analogy has been suggested by Prof. Temple,
which I quote for mathematicians to whom my picture of jacks and work-
men makes a fainter appeal than to engineers:—In a valley devoid of fric-
tion the place at which a ball will come to rest is its lowest point: that poirit
is the ‘wanted configuration’ in a system defined by two variables—=x (east
and west) and y (north and south). Proceeding by the rules of our relaxa-
tion method, we start from anywhere and proceed by ‘stages’: sometimes

x

|
s |
i ¢

Part of figure 16; legend on facing page.

east-and-west, sometimes north-and-south; but always proceeding down-
hill, and in every stage continuing until our path is level.* It is clear that
we shall tend always towards our goal, unless the valley contains other
‘stationary points’ (hills) at which all paths are level; but this would mean
that more than one point exists at which a ball can come to rest, and that
possibility (in mechanical systems) can usually be excluded by a theorem
of uniqueness of solution.

You will observe that in adopting Prof. Temple’s analogy I have im-
posed no restriction except this on the shape of the valley,—that is, I have
not assumed the total potential energy to be a quadratic function of the

* Slope is here the analogue of ‘residual force’. Friction will give a ‘margin of
uncertainty .
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displacements: consequently my argument is not restricted to systems in
which Hooke’s law is satisfied,—it only requires that the wanted con-

—

34

\

504

\

293

»

512

200

10 1= =St

F1ieure 16. ‘Wave guide’ solution (Ref. 12, figures 3 and 4). The contours may be interpreted as

relating to free transverse vibrations of an unloaded membrane.

figuration shall be unique. The point has importance, because we are using
relaxation methods, now, on non-linear systems. In relating to linear
systems (the main concern of my book) Temple has already undertaken
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a mathematical defence of our methods: I now state my belief that a
wider defence is possible.

17. 1 pass to a review of our latest work. First, not only statical, but
eigenwerte (characteristic number) problems can be treated: I have given
the underlying theory in my book, where it is exemplified by torsional
oscillations in shafting and by the elastic stability of struts. The methods
there described we have applied without essential change to problems in
‘field physics’, treated with a use of ‘relaxation nets’; e.g. (1) to transverse
vibrations of membranes and (2) to electro-magnetic oscillations in two
dimensions, both of which problems entail a governing equation of the form

ey 0%

a—z—f-a_&é] w+ Aw . F(x, y) = 0, (4)
with F(z, y) specified; also to the elastic stability of plane frameworks
or of flat plating to transverse ‘buckling’,—this last a problem of which the
governing equation is

0 ow ow\ © dw dw

with P,, S, P, specified.* Eigenwerte solutions to (4) or (5) must yield not
only the ‘natural frequency’ or ‘critical loading’ but also the associated
mode of distortion. Figure 16 shows the computed mode for an electro-
nagnetic (‘wave guide’) problem; figures 17 and 18 explain a distinctly
difficult problem in elastic stability.

18. Figure 17 shows a rectangular strip of plating, loaded (in its own
plane) by forces uniformly distributed. The plotted curves are contours
of the principal compressive stress, and are confined (as obviously they must
be) to the bottom half. This system of stresses (chosen as being exactly
calculable) is closely representative of what obtains in the web of a deep
T-girder or in the wing spar of an aeroplane; and in this connexion the
question is presented, whether the web will be elastically stable. The
tendency to buckle, since it is due to compressive stress, must increase
sharply towards the right-hand bottom corner;f but close to the edges it
is prevented by the clamping which is there presumed, so we may expect
the mode of distortion to have its greatest amplitude somewhere near this
corner, and elsewhere to involve no serious deflexions. This expectation
is realized (figure 18).

* This problem was exemplified in the lecture by a model of a ‘through girder’

bridge.
T Cf. the values of stress-intensity which are attached to the contours in figure 17.
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19. The mode exhibited in figure 18 was far from simple to compute,
owing to the nature of the loading and of the boundary conditions: even

uniformly distributed load w

_

LI R AR A AR AN AR ARR

Ficure 17. Loaded web of cantilever girder (Ref. 11, figure 11).

Contours exhibit the variation of the principal compressive stress.
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Fieure 18. Mode of distortion under critical loading of cantilever
girder web (Ref. 11; figure 12).

(The absolute magnitude of the distortion is indefinite.)

in simple cases the same is true when the mode is characterized by ‘large
deflexions'—* well-developed buckling’. H. Wagner has emphasized (1929)
the importance for aeronautics of this latter class of problems. They are

Vol. 184. A. 18

_
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very difficult, as may be judged from the governing equations which follow
(v. Karman 1910):

w\2 2w Pw
4 — s Cue g W s Y D AN
V=4 {(axay) 9zt " 3yt

2 oy Pw X T, Fx w0
D 2h+8y2'% 0z® 0y* ~ oxdy oxoy |’

(6)
Véw =

As you see, these are non-linear simultaneous equations relating two
dependent variables, and the few solutions which are known entail very
elaborate analysis. Recently we have found that—at considerable cost
in labour—they too yield to relaxational attack. We wanted a test of
accuracy, and for that reason have treated problems already solved:
figures 19 and 20 show that in these our accuracy is more than sufficient,
and again I would emphasize that we could have treated any shape of
boundary.

Figure 19 shows, to a base (x) proportional to the intensity of transverse
loading, plottings of the central deflexion (w,) and of three practically
important stresses. I need not here go into details of the problem: what
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Frcure 19. Transversely-loaded circular plate: comparison with exact solution by
S. Way (Ref. 15, figure 4).
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matters now is the order of the agreement between our results (the open
circles) and Way’s (the points shown black).

20. Clearly the agreement is satisfactory, and equally good agreement is
revealed, in figure 20, between our results and those of Friedrichs and
Stoker for a circular plate sustaining edge thrust. (The comparison is
between our results—the broken curve—and the open circles.) A word
should be said regarding the parabolas lettered 4, B, C, D, E, because the
method used to obtain them (an extension of ‘ Rayleigh’s principle’) seems
o likely to have great value for these difficult problems of ‘well-developed
Y buckling’. Having the ‘critical load for small deflexions’ (A= 11 in figure
S — 20), togother with the associated mode, without additional computation
3 beyond a single integration we were able to construct the parabola A,
é’ and we could show that the wanted (broken-line) curve must lie below this.
o Consequently a relatively short exploration (indicated by the points
Cé numbered 1, 2, 3, 4, 5 on the relevant ordinate) led to the required solution

for p=2; having this we could similarly construct the parabola C, thus
= shortemng the exploration for £=3; and so on. The resulting (dotted)
bocurve extends well beyond the elastlc range of ordinary material.
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Ficure 20. Elastic stability of compressed circular plate: comparison with
exact solution of Friedrichs and Stoker (Ref. 15, figure 8).

18-2



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

282 R. V. Southwell

21. Also complicated, although now the governing equations are linear,
are problems of stress-calculation for solids of revolution. We have dealt
with several in a paper recently communicated, and I show results for the
hardest of them—stress-determination for a toroidal hook. Here, strictly
treated, not one of the six stress-components is zero; all can be expressed
in terms of two related functions ¢ and 3, and the boundary conditions
are three in number, therefore hard to satisfy.

Stress-expressions in the hook problem (Ref. 20, equations (61), (75), (76)):

_
2 22 =9
r®.52 =,
_Byioy
2 S
r2.Zr = az(r = (/)), (7)
- e
r2 A — S -
il oz ([Bﬂ ror ¢+¢)

gﬁ‘

— 0
— O(r2 2y _ i b N | B »
r3.7F = Q(r2+ 022 — o A(2r2 + 323) l:r = 3:‘ o) 522

o
-[r5-e-o]ow.
3 00 2 2 g aa'ﬁ
reis = _Q(T + oz )—A{(2+0') Zrz—%o'z3}—3¢+2 'é;‘
0
—[o‘r5+(3—a):|19§¢r,

—r3.90 = Q(r2+0'z2)—o'A(zrz+%zs)—[rai—:i ¢

[ 2] %[ 2-6-oow.

> (8)

Boundary conditions :

azzp
= dzor Y L

cos (7, ») {Q(-rz+a'z"-)—-O'A(zr2 + 32%) — a ?ﬁ

[r——(3 0')]192;0} ...,-2_

~

(9)

ov

Equations (7)—(9) present the mathematical problem, which looks dis-
tinctly ‘fierce’: by contrast, figure 21 shows how simple may be the im-
plications of a complex mathematical solution. The contours of tensile
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stress 00, for the heavily loaded section 4 B, are not straight as assumed in
the customary theory, but they are very flat curves. Figure 21 relates to
hooks of standard B.S.I. sections, and is based on a paper recently com-

municated (Ref. 18).
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Ficure 21. Tensile stress-distribution in two B.S.I. standard hooks
(Ref. 18, figures 3, 4).

22. This work on large deflexions and on hooks will serve to illustrate
yet another advantage of the relaxation method. I have shown by my
examples that its errors are made apparent at every stage; I have empha-
sized its tentative quality, which has enabled us to overcome the diffi-
culties of boundaries not defined initially, and of data characterized by
discontinuities like the stress-strain diagram of a plastic material; and I
might have mentioned in addition, that it can utilize just as easily experi-
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mental data, presented in curves, as data expressible mathematically
—e.g. a pressure-density relation found experimentally for steam. My
last point is that by its freedom from restriction, and by its tentative
quality, it lends itself ideally to iterative methods of solution. This, more
and more, is a feature we are tending to exploit as we enter the field of
non-linear equations.

In fact, when he discards ‘orthodox’ for ‘relaxational’ methods an
investigator finds his problem quite transformed,—the incidence of com-
putational difficulties has completely shifted. I do not mean that they have
disappeared : full scope remains for inventive artifice. But he can take for
granted (as involving nothing more than time and labour) operations that
formerly he would have regarded as beyond his power—e.g. potential
solutions for a series of slightly differing boundaries. His tools become
more powerful, though admittedly less exact.

23. I have not time to elaborate this point, but I can exemplify it by
recent solutions in some fields as yet hardly explored. One such field of
study relates to compressible fluids, another to the strains in plastic
material. I have touched on both already, and figures 22 and 23 show
some of our latest results.

24. My last point relates to our presentation of results. What have we
when we terminate our computations, deeming their accuracy sufficient?

No formal solution, merely a ‘grid’ of computed values, coarse or fine
as our effort has been brief or sustained. But this we must derive from any
formal solution before it can be put to practical use: the pure analyst,
when having given us a formal solution he goes home to his tea, from our
standpoint has left his work half done. To any who object that it is not
the whole picture, I reply that it is what we accept without question in a
‘half-tone’ reproduction (cf. figure 24).

Mr A. N. Black, of the Engineering Department at Oxford, has pursued
this line of thought somewhat further, using a microscope to analyse part
of a half-tone reproduction taken from a newspaper. Each elemental square
was viewed in turn, and an estimate made and recorded of the fraction
of its area which was ‘black’ (i.e. inked); then, from the record of these
estimates, a diagram was constructed on squared paper to have the same
fractions inked of its corresponding squares. No particular convention was
adopted,—the inked fraction might have any shape or position in its square ;
but viewed from a suitable distance the resulting diagrams (figure 25) repro-
duce with striking fidelity the general quality of the original photograph.
Few ‘wanted functions’ are likely to have more elaborate features!



286

Bakerian Lecture

*(LT "Joy) ssoxys Ieoys redounad Jo SIM0JU0O :18BQ POYDJOU B UI SOSSGIIS OSB[J ‘€7 WHODL

>

i — | —

TR

b 1

1

9810

7207 1sn3ny () uo /310" 3urysiqndK1aro0os[eLo//:sdny woly papeorumoq



286 R. V. Southwell

25. I have been compelled this afternoon to hurry, but I have tried to
avoid detail and to give some impression of the kind of thing that can now

BT

Ficure 24. Photographic enlargement of ‘half-tone’ reproduction
(by Mr V. Belfield).
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be done. It has been pleasant, in the past six years, to try our methods
out against problems of steadily increasing difficulty, and tp have met no
failure so far, though the labour is sometimes heavy.
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To exploit them fully—as is my natural desire—a problem should be
‘broken down’, like any problem of engineering construction, into jobs
appropriate to varying degrees of skill. A novice soon acquires power to
solve plane-potential problems; with longer experience other types of
problem become familiar; and so on, up to the level at which real acumen
is demanded for the planning of new research. This of course implies
considerable facilities—a mathematical laboratory, or institute, of a kind
which has more appeal in America than in this country; but it would be
vain to hope for such developments in war-time, and instead I have tried
to extend our range to the utmost, even at the cost of leaving attractive
byways unexplored.

What once we regarded as an alternative method having some practical
< advantages, in our recent studies we are finding an indispensable weapon
S of research. I hope that some of my audience, who have heard me with
g such patience this afternoon, may perhaps see ways in which our methods
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