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Abstract

Revealing the linkages between community assembly and species coexistence, which is crucial for the understanding of

ecosystem diversity and functioning, is a fundamental but rarely investigated subject in microbial ecology. Here we

examined archaeal, bacterial, and fungal community assembly in adjacent pairs of maize (water-unsaturated) and rice (water-

saturated) fields across different habitats and regions throughout Eastern China. The high-throughput sequencing dataset was

analyzed by variation partitioning, null model, and neutral community model analyses. We demonstrated that microbial

community assembly was governed more by species sorting than by dispersal limitation in maize fields, and to a lesser extent

in rice fields. The relative importance of species sorting in maize soils was greater at low latitudes than at high latitudes,

while rice soils exhibited an opposite trend. Microbial co-occurrence associations tended to be higher when communities

were primarily driven by dispersal limitation relative to species sorting. There were greater community dissimilarities

between maize and rice soils in low-latitude regions, which was consistent with the higher proportion of negative edges in

the correlation networks. The results indicate that a balance between species sorting and dispersal limitation mediates species

coexistence in soil microbiomes. This study enhances our understanding of contemporary coexistence theory in microbial

ecosystems.

Introduction

Understanding the mechanisms that underpin microbial

community diversity and biogeographic patterns is a key

topic in ecology [1, 2]. Over the past few decades, the

biogeographic patterns of soil microbial communities have

been reported for a wide range of habitats [3–5] at regional

[3, 4, 6], continental [7], and global scales [8–10]. Cur-

rently, microbial biogeography studies are turning their

attention toward the processes that drive microbial

community assembly. There is an ongoing debate regarding

the contributions of deterministic and stochastic processes

in the assembly of microbial communities [11, 12]. Deter-

ministic processes mainly involve ecological selection, with

abiotic and biotic factors representing distinct niches that

influence community assembly [13]. Conversely, stochastic

processes demonstrate that species can co-occur with

considerably overlapping niches when their competitive

capacities are closely matched, and when random changes

are not associated with environmentally derived fitness

[14, 15]. Stochastic processes, which involve random birth,

death, and dispersal events, can greatly influence the dis-

tribution of microbial communities and result in species

composition patterns that are indistinguishable from pat-

terns arising randomly [16–18]. However, characterizing

the processes underpinning spatial variation in microbial

communities across ecosystems is challenging [15, 19, 20].

One of the most common biogeographic patterns,

distance-decay relationship (DDR), refers to decreasing

community similarity with increasing geographic

distance. DDR provides a directional model for variations in

β-diversity across spatial scales [21, 22]. It is widely

acknowledged that both deterministic and stochastic
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processes influence DDR [4, 16]; however, the relative

importance of the two processes varies across habitats [20].

Collectively, species sorting, dispersal limitation (alongside

drift), homogeneous dispersal (also known as mass effect),

and drift (acting alone) simultaneously influence distance-

decay patterns [1, 13, 23–25]. Homogeneous dispersal and

drift may have a minor role in the assembly of microbial

communities at large spatial scales [23, 24]. Consequently,

species sorting and dispersal limitation are the two major

processes that influence DDRs when communities are sur-

veyed at large spatial scales [24, 25]. The slopes of DDRs

could vary based on habitat, which reflects different rates of

species turnover in various locations [4].

Mechanisms of microbial community assembly have

been investigated in numerous terrestrial habitats [10],

including hypolithic soils [26], the hyporheic zone [27],

successional soils [28], a salt marsh [11], incipient basaltic

soil [29], subsurface sediment [23], a grassland [30], and

oil-contaminated soils [3, 31], and aquatic ecosystems

[12, 32]. Agricultural fields are typical human-managed

terrestrial ecosystems that play a key role in global food

security for an increasing global population [33]. Recent

studies have demonstrated that deterministic processes play

a dominant role in bacterial community assembly in wheat

[34] and soybean fields [35]. However, contrasting water

management practices are applied to different crop systems,

forming water-unsaturated (e.g., maize) and water-saturated

(e.g., rice) fields, which may lead to distinct microbial

diversity patterns. Such habitat differentiation can influence

microbial dispersal because saturated water flows poten-

tially facilitate greater dispersal than isolated habitats or

solid substrates [36]. Therefore, the contributions of species

sorting and dispersal limitation to microbial assembly might

vary between terrestrial and aquatic ecosystems [31, 32]. It

remains unclear whether there are correlations between the

microbial diversity patterns and the assembly processes

across unsaturated and saturated agro-ecosystems.

Uncovering high species diversity, which has been

extensively explored in macroorganism communities, is an

enduring challenge for ecologists and has inspired many

theories of species coexistence [15, 37–39]. Coexistence

theories can be divided into two categories. One is based on

the differences in ecological niches of co-occurring species

(niche-based theory) [40] and the other relies on dispersal

and stochastic demographic processes (neutral theory) [15].

Examination of the contributions of deterministic and sto-

chastic processes in microbial community assembly could

elucidate the ecological strategies of co-occurring species

[37, 41]. Microorganisms, which have microscopic sizes

and high dispersal capacity, could display complex inter-

action webs within an ecological niche [42]. Considering

the critical roles of microorganisms in soil ecosystems

[43, 44], revealing the intrinsic linkages between assembly

processes and species coexistence could facilitate the

management of microbial communities for enhanced eco-

system service provisioning such as agricultural production

and habitat restoration in response to environmental chan-

ges [19, 45]. However, despite increased interest in micro-

bial community assembly processes [1, 2, 20, 23, 24, 28],

we still lack an adequate understanding of how community

assembly processes is related with the ecological strategies

of co-occurring species in microbial ecosystems.

The aims of the present study were to (I) evaluate the

relative importance of species sorting and dispersal limita-

tion in shaping soil microbial communities across different

habitats and regions in agro-ecosystems; and (II) to uncover

associations between assembly processes of microbial

communities and ecological strategies of co-occurring spe-

cies across agro-ecosystems. We carried out a large-scale

soil survey on the composition of soil archaeal, bacterial,

and fungal communities, and 27 edaphic variables in adja-

cent pairs of maize (water-unsaturated) and rice (water-

saturated) fields across Eastern China. Maize and rice are

typical crops that are cultivated extensively across China,

and they offer model systems for adjacent paired sampling

strategies that control for the influence of spatial scale and

climatic factors. Species pairs or assemblages that co-occur

may exhibit similar ecological characteristics and life stra-

tegies [46, 47]; thus, co-occurring species with the low

levels of environmental filtering could be more adapted in

homogeneous habitats. Considering the contrasting water

management practices and cultivation history, we hypo-

thesize that (I) the relative importance of community

assembly processes varies among habitats and regions; and

(II) microbial communities less influenced by species sort-

ing exhibit higher species coexistence.

Materials and methods

Soil sampling and data collection

One hundred and twenty-seven sites were selected in agri-

cultural fields that had been under at least 10 years of maize

or rice cultivation. There were 115 paired sites, five maize-

only sites, and seven rice-only sites, yielding 120 maize and

122 rice soil samples (Supplementary Fig. S1). The sam-

pling sites extend from 18.30°N to 48.35°N and 87.61°E to

99.91°E across Eastern China. Each of the paired sites is

located in adjacent maize or rice field <5 km apart. In

July–September 2017 (at the milk stage of maize and early

grain-filling stage of rice), three 100 m2 plots were sampled

at each site, and five soil cores per plot obtained at a depth

of 0–15 cm were combined.

Standard test methods were adopted to measure soil pH,

moisture, cation exchange capacity, organic matter, dissolved
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organic carbon, total nitrogen, available nitrogen, nitrate-

nitrogen (NO3), ammonium-nitrogen (NH4), total phos-

phorus, available phosphorus, total potassium, available

potassium, microbial biomass carbon, microbial biomass

nitrogen, total iron, available iron, total sulfur, available

sulfur (AS), total manganese (TMn), available manganese,

total copper, available copper, total zinc, available zinc, and

particle size distribution (clay, silt, and sand contents), as

previously described [34, 48]. We obtained climatic data

including mean annual temperature, mean diurnal tempera-

ture range, temperature annual range, mean annual pre-

cipitation, and precipitation seasonality for all sampling sites

from the Worldclim database (www.worldclim.org). In

addition, we estimated the aridity index (AI, precipitation/

evapotranspiration) at each site using the Global Potential

Evapotranspiration database [49], which is based on inter-

polations provided by WorldClim [50].

Soil archaeal, bacterial, and fungal communities were

analyzed using high-throughput sequencing. Total genomic

DNA was extracted from soil samples using a FastDNA

SPIN Kit for Soil (MP Biochemicals, Solon, OH, USA).

Microbial communities were profiled by targeting a region

of the 16S rRNA gene for archaea, 16S rRNA gene for

bacteria, and a region of the internal transcribed spacer 1

gene for fungi. Corresponding polymerase chain reaction

assays were performed with the Arch519F/Arch915R,

515F/907R, and ITS5-1737F/ITS2-2043R primer pairs,

respectively [51]. Sequencing was performed on the Illu-

mina HiSeq2500 platform (Illumina Inc., San Diego, CA,

USA). The acquired sequences were filtered for quality

control as previously described [52, 53]. Any chimeric

sequences were removed using the USEARCH tool based

on the UCHIME algorithm [54]. Sequences were then split

into operational taxonomic units (OTUs) at a 3% dissim-

ilarity level using the UPARSE pipeline [54]. OTUs with

fewer than two sequences were removed, and their repre-

sentative sequences were assigned to taxonomic lineages

using the RDP classifier within the SILVA database

(release 128) for bacteria and archaea and UNITE+ INSD

(UNITE and the International Nucleotide Sequence Data-

bases) for fungi.

Statistical analysis

To compare the assembly processes of microbial commu-

nities across different regions, we divided the samples into

two groups based on latitude (Supplementary Fig. S1):

high-latitude group (latitude > 32°) and low-latitude group

(latitude < 32°). This separation generally corresponds to

the Qinling Mountains–Huaihe River Line (latitude ≈ 32°),

an important geographical (landform, climate, and soil)

boundary in China [55]. Beta-diversities of archaeal, bac-

terial, and fungal communities were estimated based on

Bray–Curtis distances between samples, and the distances

were calculated using OTU tables resampled to a minimum

number of sequences from each sample (36,880 for archaea,

27,712 for bacteria, and 30,369 for fungi). To determine the

significance in difference of community composition

between two geographical groups, a similarity analysis

(ANOSIM) was performed using the anosim function in

“vegan” package in R [56]. The Bray–Curtis dissimilarities

for archaeal, bacterial, and fungal communities between

maize and rice fields or between the two geographical

groups were examined using Wilcoxon rank-sum tests,

performed using the wilcox.test function in “stats” package

in R [57]). DDRs were calculated as the slopes of ordinary

least-squares regressions for the relationships between

geographic distances and community similarities (1—dis-

similarity of the Bray–Curtis metric). All maps were created

using the geom_polygon function in “ggplot2” package in

R [58].

To determine the relative importance of species

sorting and dispersal limitation, we performed a variation-

partitioning analysis to separate community variation (using

pairwise Bray–Curtis dissimilarity) into environmental

effect and spatial effect [59]. Spatial variables were

obtained from geographic distances using Moran’s eigen-

vector maps [60], also known as principal coordinates

analysis of neighbor matrices (PCNM) [61]. The derived

PCNM variables (e.g., PCNM1 and PCNM2) could capture

all the detectable spatial scales in the dataset [60, 61], which

were obtained using the pcnm function in “vegan” package

in R [56]. Forward selection procedures, based on a con-

strained analysis of the principal coordinates model, were

used to select environmental and spatial variables and per-

formed using the ordiR2step function in “vegan” package in

R [56]. The forward selection was halted if the significance

level (P < 0.05) of the model was reached or if no

improvement was observed in the selection criterion (R2) of

the model when adding variables. Subsequently, a two-way

permutational multivariate analysis of variance (PERMA-

NOVA) was performed using the selected variables.

Pure environmental variation without a spatial component

represents the effect of species sorting, while pure spatial

variation without an environmental component represents

the effect of dispersal limitation. To evaluate the relative

importance of species sorting versus dispersal limitation

between maize and rice fields and across different regions,

the ratio of species sorting to dispersal limitation effect

(SDER) was calculated.

Null model analysis was carried out using the framework

described by Stegen et al. [23] to classify community pairs

into underlying drivers of species sorting (or selection), dis-

persal limitation, homogeneous dispersal, and drift. The null

model expectation was generated using 999 randomizations.

The variation of both phylogenetic diversity and taxonomic
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diversity was measured using null model-based phylogenetic

and taxonomic β-diversity metrics, namely β-nearest taxon

index (βNTI) and Bray–Curtis-based Raup–Crick (RCBray).

A significant deviation (i.e., |βNTI| > 2) indicates the

dominance of selection processes. βNTI <−2 indicates sig-

nificantly less phylogenetic turnover than expected (i.e.,

homogeneous selection) while βNTI >+2 indicates sig-

nificantly more phylogenetic turnover than expected (i.e.,

variable selection). Subsequently, RCBray was used to further

partition the pairwise comparisons that were not assigned to

selection (i.e., |βNTI| < 2). The relative influence of homo-

genizing dispersal was quantified as the fraction of pairwise

comparisons with |βNTI| < 2 and RCBray < –0.95. Dispersal

limitation was quantified as the fraction of pairwise com-

parisons with |βNTI| < 2 and RCBray > 0.95. The fractions of

all pairwise comparisons with |βNTI| < 2 and |RCBray| < 0.95

were used to estimate influence of “undominated” assembly,

which mostly consists of weak selection, weak dispersal,

diversification, and/or drift [2, 28, 62]. To make variation

partitioning and null model analysis comparable, we also

estimated the SDER using the percentage of pairwise

communities governed by species sorting divided by the

percentage of pairwise communities governed by dispersal

limitation. Here, the percentage of species sorting was cal-

culated as the sum of homogeneous and variable selection.

A neutral community model was used to determine the

contribution of stochastic processes to microbial community

assembly by predicting the relationship between the fre-

quency with which taxa occur in a set of local communities

and their abundance across the wider metacommunity [63].

The model predicts that abundant taxa are more likely to be

dispersed by chance and widespread across metacommu-

nity, while rare taxa would be lost in different local com-

munities due to ecological drift. In the model, the estimated

migration rate is a parameter for evaluating the probability

that a random loss of an individual in a local community

would be replaced by dispersal from the metacommunity,

and, therefore, is a measure of dispersal limitation. Higher

m values indicate that microbial communities are less dis-

persal limited [63, 64]. The formula is as follows:

Freqi ¼ 1 � I 1=N j N � m � pi; N � m � 1 � pið Þð Þ

where Freqi is the occurrence frequency of taxon i across

communities; N is the number of individuals per commu-

nity; m is the estimated migration rate; pi is the average

relative abundance of taxon i across communities; and I() is

the probability density function of beta distribution. R2

indicates the fit of the parameter based on nonlinear least-

squares fitting. The overall fit of the model to the observed

data was assessed by comparing the sum of squares of

residuals, SSerr, with the total sum of squares, SStotal: model

fit= 1−SSerr/SStotal (generalized R-squared; [64, 65]). To

determine whether the model was based on only the random

sampling of the source metacommunity, we compared the

fit of the neutral model with the fit of a binomial distribution

model [63, 64]. Sampling from a binomial distribution

represents the case where local communities are random

subsets of the metacommunity in the absence of drift and

dispersal limitation processes [64]. The Akaike information

criterion of each model was calculated based on 1000

bootstrap replicates. R code used to fit the model and

calculate goodness-of-fit statistics was according to Burns

et al. [64]. In all the habitats, the neutral model out-

performed the binomial distribution model, suggesting that

passive dispersal and ecological drift had an impact beyond

the random sampling of the source community (Supple-

mentary Fig. S2).

To help reveal the patterns of species sorting and dis-

persal limitation and their influence on microbial commu-

nities based on habitats and regions, we estimated Levins’

niche breadth (B) index [66] for the microbial group’s

members according to the formula:

Bj ¼ 1=
XN

i¼ 1
P2
ij

where Bj represents the habitat niche breadth of OTU j in a

metacommunity; N is the total number of communities in

each metacommunity; Pij is the proportion of OTU j in

community i [24, 67]. A high B-value for a given OTU

indicates its wide habitat niche breadth. The community-

level B-value (Bcom) was calculated as the average of B-

values from all taxa occurring in one community [24]. We

expect a microbial group with a wider niche breadth to be

more metabolically flexible at the community level [24, 67].

The analysis was conducted using the “niche.width”

function in “spaa” package in R [68].

To identify significantly enriched taxa of all three

microbial groups, we applied Wilcoxon rank-sum test

(wilcox.test function in “stats” package in R [57]) of the

relative abundance of each OTU (>0.01%) between the

maize and rice fields. OTUs with significantly higher (P <

0.05) abundance in maize samples were grouped as maize-

enriched OTUs, whereas those with significantly (P < 0.05)

higher abundance in rice samples were categorized as rice-

enriched OTUs, and the remaining OTUs with no sig-

nificant differences in relative abundance were categorized

as ‘Others’. In addition, we identified significantly (P <

0.05) enriched OTUs in the high- and low-latitude regions

in both maize and rice fields. OTUs with significantly

higher abundance in high-latitude regions were grouped as

high latitude-enriched OTUs, whereas those with sig-

nificantly higher abundance in low-latitude regions were

categorized as low latitude-enriched OTUs, and the

remaining OTUs with no significant differences in relative

abundance were categorized as ‘Others’.
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To estimate species coexistence across different habitats

and regions, metacommunity co-occurrence networks con-

sisting of all the members of the three microbial groups were

constructed. To reduce rare OTUs in the dataset, we removed

OTUs with a relative abundance <0.01%. Robust correlations

with Spearman’s correlation coefficients (ρ) > 0.6 and false

discovery rate-corrected p-values <0.01 were used to con-

struct networks. Each node represents one OTU, and each

edge represents a strong and significant correlation between

two nodes. To describe the topology of the networks, we

calculated a set of metrics: average path length, network

diameter, average degree, clustering coefficient, and graph

density. Average path length refers to the average network

distance between all pairs of nodes; network diameter refers

to the greatest distance between the nodes that exist in the

network; average degree refers to the average connections of

each node with another unique node in the network; clus-

tering coefficient represents the degree to which the nodes

tend to cluster together; and graph density refers to the

intensity of connections among nodes [69, 70] Therefore,

higher average degree, clustering coefficient, and graph

density suggest a more connected network. In addition, lower

average path lengths and diameters indicate closer associa-

tions in the network [47, 48]. The node-level topological

features, including degree, betweenness, and closeness cen-

trality, were calculated for each node. Degree refers to the

number of connections for a particular node; betweenness

centrality refers to the potential influence of a particular node

on the connections of other nodes; and the closeness cen-

trality of a node refers to the average distance of the node to

any other node [71, 72]. High values of these topological

features suggest a core position of a node in the network,

while low values suggest a peripheral position [31, 48]. Sub-

network analyses of archaeal, bacterial, and fungal commu-

nities were performed separately using the induced_subgraph

function in “igraph” package in R [73]. Networks were

visualized using the interactive Gephi platform [74].

Microbial community dissimilarities between maize and

rice fields were calculated for each pairwise comparison of

soil samples and were mapped using ordinary kriging inter-

polation. The analysis was performed using the “automap”

package in R [75], which performs the interpolation process

by automatically estimating a semivariogram and performing

kriging. We cross-validated the maps using the autoKrige.cv

function in the “automap” package in R [75], which auto-

matically isolates the model structure dataset. We extracted

the predicted values for the selected soil samples and tested

their correlation with the observed values based on a Pearson

correlation analysis (cor.test function in “stats” package in R

[57]). We also calculated the Spearman correlations between

differences in the relative abundance of the major phyla

versus differences in soil properties, which were estimated

between maize and rice soils. We applied the multiple

regression model (lm function in “stats” package in R [57])

with variance decomposition analysis (calc.relimp function in

the “relaimpo” package in R [76]) to estimate the importance

of the differences in soil physicochemical properties in

explaining the dissimilarities in microbial communities and

differences in the relative abundance of selected phyla. The

relationships among microbial taxa were estimated by

establishing correlation networks for soil samples from the

high- or low-latitude regions, which considered both positive

(Spearman’s ρ > 0.6) and negative (Spearman’s ρ<−0.6)

edges. Other parameters for the network construction are as

described above.

All statistical analyses were performed in the R envir-

onment (v3.5.1; http://www.r-project.org/), using “vegan”

[56], “stats” [57], “fdrtool” [77], “igraph” [73], “hmisc”

[78], “ggplot2” [58], “spaa” [68], “picante” [79], “automap”

[75], “relaimpo” [76], and “gplots” [80] packages.

Results

Distance-decay of community similarity

We estimated the DDRs for archaeal, bacterial, and fungal

communities in both rice and maize soils across eastern

China spanning a geographic distance of 3679 km (Sup-

plementary Fig. S3). Although the DDRs were significant

(P < 0.001), the fitness values were relatively low (R2 < 0.1),

indicating weak decay of community similarity with geo-

graphic distance in agricultural soils. The slope of rice soils

(–0.3819 for archaea; –0.3575 for bacteria; and –0.3277 for

fungi) was steeper than that of the maize soils (–0.3520 for

archaea; –0.2113 for bacteria; and –0.2467 for fungi).

Maize soils exhibited significantly higher β-diversity in

archaeal and bacterial communities, but lower β-diversity in

fungal communities than rice soils (Supplementary Fig. S3).

Only minor differences in microbial community com-

position were observed between the two geographical

groups based on the ANOSIM test (RANOSIM= 0.1679,

P < 0.001 for archaea; RANOSIM= 0.1345, P < 0.001 for

bacteria; and RANOSIM= 0.1978, P < 0.001 for fungi).

Microbial β-diversity was significantly (P < 0.001) higher in

low-latitude maize soils than in high-latitude soils, while

rice fields exhibited an opposite trend (Fig. 1a). Further-

more, we observed weak DDRs for each of the microbial

groups across all regions (Fig. 1b).

Assembly processes and coexistence in soil
microbiome

Variation partitioning and null model analyses revealed that

the SDERs of archaeal, bacterial, and fungal communities

were consistently higher in maize than in rice fields; this
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result suggests that the relative contribution of species

sorting was higher in maize fields than in rice fields (Fig. 2a,

b, Supplementary Figs. S4, S5, and Table S1). Null model

analysis revealed a negligible degree of homogeneous dis-

persal (Supplementary Fig. S5), confirming its minor role in

the assembly of microbial communities at large-scale dis-

tances. In addition, the archaeal, bacterial, and fungal

communities fit the neutral community model, and the

degree of fit was higher in rice than in maize fields.

The migration rates tended to be higher in rice than in maize

fields (Supplementary Table S2), suggesting that microbial

communities were less limited by dispersal in rice fields.

Subsequently, we inferred a metacommunity co-

occurrence network based on correlation relationships,

capturing 45,919 associations among 2168 microbial

OTUs (Fig. 2c). We identified 1265 and 1502 significantly

enriched OTUs in maize and rice soils, respectively. The

rice- and maize-enriched OTUs formed independent

modules, and rice-enriched OTUs exhibited much closer

interconnections than maize-enriched OTUs. In addition,

we examined the node-level topological features of different

groups of OTUs (Fig. 2d). Values of the topological

features including degree, betweenness centrality, and

closeness centrality were significantly higher (p < 0.01) in

rice-enriched OTUs than in maize-enriched OTUs.

We generated subnetworks for rice- and maize- enriched

communities and calculated a set of network-level topolo-

gical features (Supplementary Table S3). The average

degree, clustering coefficient, and graph density were higher

in the rice subnetwork than the maize subnetwork, sug-

gesting that rice-enriched OTUs were more interconnected.

The average path length and diameter were lower in the

rice subnetwork, revealing closer relationships among rice-

enriched communities. We also performed separate network

analyses for the archaeal, bacterial, and fungal sub-

communities (Supplementary Fig. S6). Rice-enriched OTUs

consistently exhibited much closer interconnections than

maize-enriched OTUs, which was confirmed by higher

values of the topological features in rice-enriched OTUs.

These results indicated that species co-occurred more

frequently within rice-field microbial communities than in

maize-field microbial communities.

Considering the significant differences in microbial

β-diversity, we compared the SDERs of microbial commu-

nities between the high- and low-latitude regions in maize

and rice fields. Both variation partitioning (Fig. 3, Supple-

mentary Fig. S4, Tables S4 and S5) and null model analysis

(Supplementary Figs. S5 and S7) showed that the ratio was

higher in low-latitude regions than in high-latitude regions in

maize soils, while rice soils exhibited an opposite trend.

Fig. 1 General patterns of microbial beta-diversity in soil samples

from maize and rice fields in different regions. a Compositional var-

iation between high-latitude and low-latitude regions in maize or rice

fields based on Bray–Curtis distance. The boxplot shows community

dissimilarities between high-latitude and low-latitude regions. Red

asterisks indicate significantly higher values in high-latitude regions

(*p < 0.05; ***p < 0.001; Wilcoxon rank-sum test); blue asterisks

indicate the significantly higher values in low-latitude regions.

b Distance-decay curves showing Bray–Curtis similarity against

geographic distances between sampling sites. Solid lines denote the

ordinary least-squares linear regressions. Asterisks denote significant

correlation (***p < 0.0001)
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The microbial communities fit the neutral community model,

and the degree of fit was higher in maize soils from the high-

latitude region than the low-latitude region, and rice soils

exhibited an opposite trend again. Migration rates exhibited a

similar trend (Table 1), which suggested that microbial

communities were less limited by dispersal at high latitudes

for maize soils and at low latitudes for rice soils.

To estimate microbial coexistence in different regions,

metacommunity co-occurrence networks were established

for maize and rice soils (Fig. 3). We also identified

Fig. 2 Community assembly and co-occurrence patterns in soil

microbiomes in maize and rice fields. The sorting/dispersal effect ratio

obtained based on variation partitioning (a) and null model (b) ana-

lysis. Metacommunity co-occurrence network of microbial taxa (c). A

colored co-occurrence network is shown for maize- or rice-enriched

taxa. A connection indicates a strong (Spearman’s ρ > 0.6) and sig-

nificant (FDR-corrected p < 0.01) correlation. The size of each node is

proportional to the degree of the OTUs; the thickness of a connection

between two nodes (i.e., an edge) is proportional to the value of the

Spearman’s correlation coefficient. The network figure on the bottom

right is a summary of node-edge statistics. Colored numbers represent

the number of nodes belonging to the corresponding category (i.e.,

there were 1129 nodes in the "Rice" category). Dark gray numbers

indicate the number of inner-connections. The numbers adjacent to

edge connections represent cross-group interactions. d Unique node-

level topological features of different taxa categories, specifically the

degree, betweenness, and closeness centrality, and the relative abun-

dance of maize- and rice-enriched taxa. Blue asterisks indicate the

significantly high values in rice-enriched taxa (**p < 0.01; ***p <

0.001; Wilcoxon rank-sum test); orange asterisks indicate the sig-

nificantly high properties in maize-enriched taxa. Maize, maize-

enriched OTUs; Rice, rice-enriched OTUs; Others, OTUs not specific

to a group
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significantly enriched OTUs in the high and low-latitude

regions in maize and rice fields. In maize fields, 809 and

509 significantly enriched OTUs were selected in high-

latitude and low-latitude regions, respectively. In rice fields,

911 and 1106 significantly enriched OTUs were selected in

the high-latitude and low-latitude regions, respectively.

OTUs enriched in different regions formed independent

modules. High latitude-enriched OTUs in maize fields and

low latitude-enriched OTUs in rice fields exhibited much

more interconnections, as confirmed by the node-level and

network-level topological features (Fig. 3, Supplementary

Table S6). The subnetworks for different microbial groups

exhibited similar results (Supplementary Figs. S8 and S9).

Overall, these results indicate that microbial co-occurrence

is more frequent in high-latitude maize soils and low-

latitude rice soils.

The community-level habitat niche breadths (Bcom) were

estimated to reveal the contributions of species sorting and

dispersal limitation to microbial community assembly.

Significantly higher mean Bcom values were observed in

archaeal, bacterial, and fungal subcommunities of rice fields

than in maize fields (Fig. 4). In maize fields, the mean Bcom

values were significantly higher in the high-latitude regions

compared with the low-latitude regions; however, in rice

fields, an opposite trend was observed for the mean Bcom

values, except for the archaeal community.

Drivers of microbial community dissimilarities
between maize and rice fields

Since distinct assembly processes in microbial communities

were observed in different regions in both maize and rice

Fig. 3 Community assembly and co-occurrence patterns of soil

microbiomes in high- and low-latitude regions in maize and rice fields.

The sorting/dispersal effect ratio obtained based on variation parti-

tioning and null model analysis (left panels). Metacommunity co-

occurrence networks of microbial taxa in maize and rice soils (middle

panels). The networks are colored based on high latitude- or low

latitude-enriched taxa. A connection indicates a strong (Spearman’s

ρ > 0.6) and significant (FDR-corrected p < 0.01) correlation. The size

of each node is proportional to the degree of the OTUs; the thickness

of a connection between two nodes (i.e., an edge) is proportional to the

value of Spearman’s correlation coefficient. The network figure on the

bottom right is a summary of node-edge statistics. Colored numbers

represent the number of nodes belonging to the corresponding

category (i.e., there were 332 nodes in the "Low" latitude category).

Dark gray numbers indicate the number of inner connections. The

numbers adjacent to edge connections represent cross-group interac-

tions. Unique node-level topological features of different taxa cate-

gories, specifically the degree, betweenness, and closeness centrality,

and the relative abundance of high latitude- or low latitude-enriched

taxa (right panels). Red asterisks indicate the significantly higher

values significantly in high latitude-enriched taxa (*p < 0.05; **p <

0.01; ***p < 0.001; Wilcoxon rank-sum test); blue asterisks indicate

the significantly higher properties in low latitude-enriched taxa. High,

high latitude-enriched OTUs; Low, low latitude-enriched OTUs;

Others, OTUs not specific to a group
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fields, we explored the intrinsic factors driving the com-

munity variation. The community dissimilarities between

maize and rice soils for each pairwise set of soil samples

were estimated, and their spatial distributions were mapped

(Fig. 5a). Dissimilarities in bacterial and archaeal commu-

nities, but not fungal communities, were higher at low

latitudes (Fig. 5a). Although the R2 of the linear fitting

models were not high, the trends could be obviously

observed in the predicated maps. In addition, significant and

negative linear regression relationships against latitude were

observed for some abundant microbial phyla, confirming

the higher dissimilarities in low-latitude regions (Supple-

mentary Fig. S10). To identify soil properties that affect

dissimilarities of microbial communities and differences in

relative abundances of microbial phyla, we correlated these

values to the differences in soil properties between maize

and rice fields for each pairwise set of soil samples. NH4,

NO3, TMn, and AS were strong, positive predictors for

dissimilarities of microbial communities, and differences in

relative abundances of most phyla. For example, NH4 was

significantly related to bacterial community dissimilarity,

and phyla Acidobacteria, Firmicutes, and Euryarchaeota;

TMn for archaeal and bacterial community dissimilarity,

and phyla Thaumarchaeota, and Euryarchaeota. The

significance of these observations was confirmed by

linear least-squares regression (Supplementary Figs. S11

and S12).

Relationships among microbial taxa were estimated by

constructing correlation networks for soil samples from

high- or low-latitude regions (Fig. 5c). The high-latitude

network consisted of 2272 nodes with 37,761 positive edges

and 429 negative edges. There were 415 negative edges

between maize- and rice-enriched nodes. The low-latitude

network contained 2247 nodes linked by 64,334 positive

edges and 2473 negative edges, and 2468 negative edges

were between maize- and rice-enriched nodes. The low-

latitude network constituted a higher proportion of negative

edges than the high-latitude network, which correlated with

the higher dissimilarities in microbial communities in the

low-latitude regions.

Discussion

The mechanisms underpinning community diversity have

been explored extensively in microbial ecology [2]. Here

we examined archaeal, bacterial, and fungal community

assembly in agro-ecosystems across different habitats and

Table 1 Fit of the neutral model

in microbial communities across

different regions in maize and

rice fields

Habitats Region Archaea Bacteria Fungi

m R2 m R2 m R2

Maize High latitude 0.0498 0.8300 0.4928 0.8644 0.0171 0.4511

Low latitude 0.0257 0.7219 0.3623 0.8517 0.0169 0.4364

Rice High latitude 0.0666 0.8074 0.5784 0.8661 0.0126 0.3273

Low latitude 0.0848 0.8287 0.6459 0.8707 0.0306 0.5422

m indicates the estimated migration rate and R2 indicates the fit to the neutral model

Fig. 4 Comparison of mean habitat niche breadths (Bcom) in all taxa

in in archaeal, bacterial, and fungal community samples between

maize and rice soils, and high- and low-latitude regions of maize and

rice fields (n.s. p > 0.05; ***p < 0.001; Wilcoxon rank-sum test)
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regions throughout eastern China. We demonstrated that: (i)

microbial community assembly was governed more by

species sorting than by dispersal limitation in maize fields,

and to a lesser extent in rice fields; (ii) the relative impor-

tance of species sorting in maize soils was greater at low

latitudes than at high latitudes, while rice soils exhibited an

opposite trend; and (iii) microbial co-occurrence associa-

tions tended to be higher when communities were primarily

driven by dispersal limitation relative to species sorting.

In the present study, we only observed weak DDRs

(fitness R2 < 0.1) in microbial communities in maize and

rice fields (Supplementary Fig. S2). The fitness values of

the relationships were substantially lower than the values

reported in natural terrestrial ecosystems [3, 4, 6], sug-

gesting that the spatial structures of soil microbial com-

munities were less apparent in human-managed agricultural

ecosystems. We further examined the community assembly

processes driving the relationships. Lower sorting/dispersal

Fig. 5 Spatial distribution and drivers of dissimilarities in bacterial,

archaeal, and fungal communities between maize and rice soils for

each pairwise set of soil samples. a The predicted spatial distributions

of community dissimilarities between pairwise maize and rice soils are

mapped and their associations with latitude for each pairwise set of soil

samples are estimated via linear least-squares regression analysis.

First-order polynomial fits are shown in gray solid lines. The cross-

validation (“CV”) of the maps based on Pearson correlation between

the predicted and observed values in each sampling site. The boxplot

shows differences in community dissimilarities between high- and

low-latitude regions (**p < 0.01; ***p < 0.001; Wilcoxon rank-sum

test). b Contributions of soil properties to the dissimilarities of

microbial communities and differences in relative abundances of

microbial phyla based on correlation and best multiple regression

model. We examined the correlation of the values with the differences

in soil properties between maize and rice fields for each pairwise set of

soil samples and identified the major predictors. Circle size represents

the variable importance (that is, proportion of explained variability

calculated via multiple regression modeling and variance decomposi-

tion analysis). Colors represent Spearman correlations. The abbrevia-

tions of soil properties accorded to the Method. c Correlation networks

for microbial taxa in soils in high- and low-latitude regions. The

networks are colored based on maize or rice-enriched taxa. A con-

nection indicates a strong and significant (FDR-corrected p < 0.01)

correlation, divided into positive (Spearman’s ρ > 0.6; dark gray) or

negative (Spearman’s ρ <−0.6; red) edges. The size of each node is

proportional to the relative abundance of the OTUs; the thickness of a

connection between two nodes (i.e., an edge) is proportional to the

value of Spearman’s correlation coefficient. Maize, maize-enriched

OTUs; Rice, rice-enriched OTUs; Others, non-significantly

different OTUs

Balance between community assembly processes mediates species coexistence in agricultural soil. . . 211



effect ratios for microbial communities were observed in

rice fields, indicating that the microbial communities in the

rice fields were less constrained by environment than the

microbial communities in the maize fields (Fig. 2). This is

supported by the results of the neutral community model

(Supplementary Table S2). In addition, microbial groups in

the rice fields demonstrated wider niche breadths, which

were quantified using community-level habitat niche

breadth analysis (Fig. 4), than the microbial groups in the

maize fields. The finding is consistent with the results of

other studies that report that habitat generalists with wider

niche breadths are influenced less by environmental factors

[24, 67]. A potential explanation is that paddy soils could be

unique habitats due to constant flooding management

activities and long-term regular dry–wet cycles [81],

resulting in less environment filtering even at large spatial

scales. In systems with less environmental variation or with

species pools characterized by environmental generalists,

stochastic processes may overwhelm deterministic pro-

cesses [20]. In particular, species sorting, defined as the

ecological forces that alter community structure due to fit-

ness differences among organisms and environmental het-

erogeneity among regional pools, is a deterministic process

in the absolute sense [2, 14]. Conversely, dispersal limita-

tion may not be used as the sole evidence for stochastic

processes since dispersal can either be deterministic, sto-

chastic, or both [2, 25].

Microbial diversity often exhibits strong habitat-specific

patterns [4]. In the present study, higher dissimilarities in

microbial communities were observed between maize and

rice soils in low-latitude regions, which was consistent with

the higher proportion of negative edges in the correlation

networks (Fig. 5). The observation could be because higher

temperatures in low-latitude regions caused higher meta-

bolic rates and more rapid succession, resulting in greater

dissimilarity tendency between maize and rice soil micro-

bial communities [82]. In addition, soil microbiota in

warmer regions (e.g., low latitudes) are more sensitive to

environmental changes [5]. As opposed to high-latitude

maize soils, we demonstrated that low-latitude soils were

driven more strongly by species sorting than by dispersal

limitation (Fig. 3). In contrast, rice paddy soils exhibited an

opposite trend (i.e., comparatively more species sorting in

higher latitudes). The dynamics of soil microbial commu-

nities we observed could be associated with the cultivation

histories of the different crops grown in water-saturated

and unsaturated agricultural fields. Rice agriculture was

originally developed in the middle and lower Yangtze

River Basin, while the origin of dry-land agriculture is

along the Yellow River Basin in northern China [83],

which correspond to the sampling sites in the low- and

high-latitude regions, respectively, in the present study.

A long-term history of cultivation could positively select

microorganisms with fitness advantages under relatively

constant environmental conditions, resulting in less envir-

onment filtering. This is in line with a previous study [84],

which demonstrated that stochastic processes played

greater roles in driving microbial community assembly

under long-term warming in a tall-grass prairie ecosystem

than deterministic processes [84]. Given that maize soils

are unsaturated, microorganisms in such habitats could

have limited dispersal capacity and hence would potentially

experience higher dispersal limitation. Therefore, our

results suggest that microbial community assembly is less

environmentally filtered in agricultural fields under long-

term cultivation. The findings could facilitate the under-

standing of the mechanism of generation and maintenance

of the ubiquitous microbial taxa, which are dominant in

terrestrial ecosystems at the global scale [8].

A few potential limitations in the interpretation of our

findings should be considered. First, one may argue that a

large proportion of variation remains unexplained in the

variation partitioning. The unexplained variation could be

largely attributed to the unmeasured environmental vari-

ables and large-scale sampling. However, results from the

null and neutral theory-based process models collectively

support the robustness of our conclusions. Variation par-

titioning analysis focuses on partitioning beta-diversity of

metacommunity in a region [85], while null model analysis

examines the pairwise metacommunities [23]. The neutral

model predicts the relationship between the frequency with

which taxa occur in a set of local communities and their

abundance across the wider metacommunity [63, 64]. Such

frameworks provide complementary information and

should be simultaneously applied when considering their

strengths and weaknesses [2]. Second, we used the SDERs

rather than their absolute values when comparing micro-

bial communities across different habitats and regions. It

was difficult to evaluate the relative importance of species

sorting versus dispersal limitation using their absolute

values since the total variation explained by the two pro-

cesses varied among the regional metacommunities. For

instance, the absolute value of dispersal limitation for

bacterial communities was higher in rice fields than in

maize fields (Supplementary Figs. S4 and S5). However,

bacteria in the rice fields had wider niche breadths (Fig. 4)

and higher migration rates (Supplementary Table S1) than

the bacteria in the maize fields. In addition, the micro-

organisms in the rice fields exhibited higher site occupa-

tion than the microorganisms in the maize fields

(Supplementary Fig. 13). The relative importance of spe-

cies sorting and dispersal limitation seemingly influences

the differences in microbiota assembly across systems, as

demonstrated by a recent study [24].

Determining the linkages between community

assembly and species coexistence is fundamental for the
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understanding of mechanisms underpinning community

diversity [2, 37, 86]. The contemporary coexistence theory

emphasizes that coexistence depends on both niche differ-

ences and fitness differences [39]. Kraft et al. applied a null

model approach to examine the co-occurrence patterns of

more than 1100 tree species in an Amazonian forest, and

they demonstrated that co-occurring trees are often less

ecologically similar than predicted by a niche-free (neutral)

model. In addition, niche-based processes drive con-

vergence and divergence in key aspects of plant ecological

strategy [37]. While the ecological strategies of co-

occurring species are well documented in plant commu-

nities [37–39, 41], few studies have examined the co-

occurrence strategies in microbial communities. Micro-

organisms occupying a specific ecological niche can form

complex interaction networks [42]. Co-occurrence networks

have provided novel insight into potential interactions via

revealing the niche spaces shared by community members

[42, 46, 87]. Since complex soil processes are driven

by interactions among soil bacteria, archaea, and fungi,

research on soil microbiomes has increasingly focused on

all the microbial members as a whole [88–90]. Species

sorting became a less dominant assembly process in rice

field communities as microbial co-occurrence increased

(Fig. 2). Similar trends were observed in the high-latitude

and the low-latitude regions in maize and rice fields,

respectively (Fig. 3).

Environmental filtering refers to how abiotic factors

prevent species without certain physiological traits from

occurring in local communities [41]. Different to macro-

organisms, microorganisms exhibit a relatively high degree

of metabolic flexibility, physiological tolerance, dispersal,

rapid growth, and evolutionary adaptation via horizontal

gene transfer [91, 92]. Such features may enable the occu-

pation of wider niches, resulting in greater coexistence of

species within metacommunities [12, 93, 94]. In addition,

microorganisms are less environmentally filtered than

macroorganisms [24, 95]. In tropical forests, niche-based

assembly of tree communities (e.g., habitat specialization

and strategy differentiation) contributes to species coex-

istence [37].

In the microbial ecosystems investigated in the

present study, we showed that a balance between species

sorting and dispersal limitation mediates species coex-

istence in agricultural soil microbiomes across eastern

China. This conclusion is based on the linkages between

community assembly and species coexistence estimated

according to the relative importance of the two processes.

However, a previous study demonstrated that more

interconnected microbial communities experienced lower

turnover and susceptibility to homogenizing selection in

unperturbed aquifers [96]. Such discrepancies may be

attributed to the following reasons: (i) compared with

aquatic ecosystems, selection could be more intense in

soil ecosystems with lower fluidity, resulting in lower

degrees of microbial co-occurrence due to competition for

limited resources; (ii) in our agricultural fields, human

management (e.g., cultivation or irrigation) could have

resulted in distinct linkages between community assembly

and species coexistence, relative to the unperturbed

environments.

Data synthesis

We propose a conceptual paradigm (Fig. 6) to describe the

different microbial community assembly processes in two

distinct agro-ecosystems across a large geographical dis-

tance. First, dispersal limitation is more dominant in the

assembly of microbial communities in water-saturated (e.g.,

rice) fields than unsaturated (e.g., maize) fields. Second,

distinct processes drive microbial community assembly

across different regions in saturated and unsaturated agri-

cultural fields. That is, microbial communities in high-

latitude maize soils or low-latitude rice soils tend to be less

driven by species sorting relative to dispersal limitation. In

addition, microbial co-occurrence is more widespread under

weaker environmental filtering. Considering the importance

of microorganisms for overall ecosystem functioning

[43, 44], it is crucial to understand the mechanisms under-

pinning the generation and maintenance of microbial

diversity in response to current and future environmental

changes. By uncovering the intrinsic linkages between

assembly processes and species coexistence, the present

study could facilitate the management of microbial

communities in agro-ecosystems for better adaptation to

habitat fragmentation and climate change, in addition to

informing restoration strategies based on reassembly and

co-occurrence processes.

Although the paradigm offers potentially novel insight,

we acknowledge some limitations in the study. For exam-

ple, the paradigm is based on model agro-ecosystems with

an adjacent-pair sampling strategy that controls for the

influence of spatial scale and climatic factors. Therefore,

considering the importance of soil processes in overall

ecosystem functioning, simulation studies should be eval-

uated both theoretically and experimentally across a broad

range of systems.
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