
Balance between Complexity and Quality:
Local Search for Minimum Vertex Cover in Massive Graphs

Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences, Beijing, China
shaoweicai.cs@gmail.com

Abstract

The problem of finding a minimum vertex cover
(MinVC) in a graph is a well known NP-hard prob-
lem with important applications. There has been
much interest in developing heuristic algorithms
for finding a “good” vertex cover in graphs. In
practice, most heuristic algorithms for MinVC are
based on the local search method. Previously,
local search algorithms for MinVC have focused on
solving academic benchmarks where the graphs are
of relatively small size, and they are not suitable for
solving massive graphs as they usually have high-
complexity heuristics. In this paper, we propose
a simple and fast local search algorithm called
FastVC for solving MinVC in massive graphs,
which is based on two low-complexity heuristics.
Experimental results on a broad range of real world
massive graphs show that FastVC finds much better
vertex covers (and thus also independent sets) than
state of the art local search algorithms for MinVC.

1 Introduction
The rapid growth of the Internet, the widespread deployment
of sensors and scientific advances have resulted in more
and more massive data sets. This has brought a series
of computational challenges, as existing algorithms usually
become ineffective on massive data sets, and for most
problems we need to develop new algorithms. Many data sets
can be modeled as graphs, and the study of massive real world
graphs, also called complex networks, grew enormously in
last decade.

A vertex cover of a graph is a subset of the vertices which
contains at least one of the two endpoints of each edge.
Alternatively, a vertex cover is a set of vertices whose removal
completely disconnects a graph. The MinVC problem is to
find the minimum sized vertex cover in a graph. MinVC
is a prominent combinatorial optimization problem with
important applications, including network security, industrial
machine assignment and applications in sensor networks
such as monitoring link failures, facility location and data
aggregation [Kavalci et al., 2014]. It is also closely related
to the Maximum Independent Set (MaxIS) problem, which

has applications in social networks, pattern recognition,
molecular biology and economics [Jin and Hao, 2015].

MinVC is a classical NP-hard problem which remains
intractable even for cubic graphs and planar graphs with
maximum degree at most three [Garey and Johnson, 1979].
Furthermore, it is NP-hard to approximate MinVC within
any factor smaller than 1.3606 [Dinur and Safra, 2005],
although one can achieve an approximation ratio of 2− o(1)
[Karakostas, 2005].

1.1 Previous Heuristics and Motivations
Due to its NP-hardness, the research of MinVC solving is
concentrated on heuristic algorithms for finding a “good”
vertex cover in reasonable time. One of the most popular
and efficient heuristic approaches is local search, and there
has been considerable interest in local search algorithms for
MinVC in last decade, e.g., [Shyu et al., 2004; Richter et al.,
2007; Andrade et al., 2008; Pullan, 2009; Cai et al., 2010;
2011; 2013]. Especially, a recent algorithm called NuMVC
[Cai et al., 2013], which clearly dominates other local
search MinVC algorithms, makes a significant improvement
in MinVC solving.

Previous local search algorithms for MinVC are mainly
evaluated on standard benchmarks from the academy commu-
nity, particularly the DIMACS and BHOSLIB benchmarks
[Richter et al., 2007; Andrade et al., 2008; Pullan, 2009; Cai
et al., 2010; 2011; 2013]. To improve the performance of the
algorithms on these benchmarks, researchers have proposed
sophisticated heuristics for local search for MinVC. Recent
heuristics include max-gain vertex pair selection [Richter et
al., 2007], edge weighting [Richter et al., 2007; Cai et al.,
2010], k-improvement (also called (k−1, k) swap) [Andrade
et al., 2008], configuration checking [Cai et al., 2011],
minimum loss removing and two-stage exchange [Cai et al.,
2013]. Most of the previous heuristics do not have sufficiently
small complexity. Because the benchmark graphs used for
testing previous algorithms are not large (usually with less
than five thousand vertices), the complexity of heuristics did
not show an obvious impact on the performance. However,
for massive graphs where the size is much larger (e.g., with
millions of vertices), the high complexity severely limits the
ability of algorithms to handle these data sets.

Massive graphs call for new heuristics and algorithms.
However, there is little (if any) work being done on local

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

747

search algorithms for massive graphs. In particular, we are
not aware of any research on local search for MinVC on
massive graphs. In this work, we make a first step and provide
key insights in this direction. In our opinion, more attention
needs to be applied to the time complexity of heuristics when
designing algorithms for solving massive graphs. The key
issue is on making a good balance between the time efficiency
and the guidance effectiveness of heuristics.

1.2 Contributions and Paper Organization
In this paper, we design and implement a new local search
algorithm for MinVC called FastVC, which is dedicated to
solving massive graphs. The main principle is to use low-
complexity approximate heuristics rather than those accurate
heuristics with high complexity. To achieve good perfor-
mance on massive graphs, we propose two new heuristics,
which form the two key components of FastVC.

Firstly, we propose a fast heuristic for constructing a
vertex cover. The obtained vertex cover will be used as
the initialized candidate solution for local search. The
heuristic considers an edge in each iteration, and if the edge
is uncovered, it picks the endpoint with the higher degree
to cover it. After a vertex cover is obtained, redundant
vertices are removed by a read-one procedure on the vertex
cover. This heuristic has a complexity of O(|E|), compared
to O(|V |2) for the greedy construction heuristic used in
previous algorithms.

We also propose a cost-effective heuristic for choosing the
vertex for removing in each step. The heuristic is named
Best from Multiple Selections (BMS), which approximates
the minimum loss removing heuristic [Cai et al., 2013] very
well and lowers the complexity from O(|V |) to O(1).

We carry out experiments to compare FastVC with
NuMVC on a broad range of massive real world graphs.
Experimental results show that FastVC finds significantly
better quality vertex covers (and thus also independent sets)
than NuMVC on most instances. Note that this improvement
is remarkable, as it rarely happens in the literature to find
a better solution. Previous MinVC algorithms often obtain
the same quality solutions and they focus on comparing the
success rate of finding a solution of such a quality.

In the next section, we introduce some necessary back-
ground knowledge. Then, we describe the FastVC algorithm
in Section 3, and present two key functions based on the
two new heuristics and provide some theoretical results in
Section 4. Experimental evaluations of FastVC are presented
in Section 5. Finally, we give some concluding remarks.

2 Preliminaries
2.1 Basic Definitions and Notation
An undirected graph G = (V,E) consists of a vertex set V
and an edge set E where each edge is a 2-element subset of
V . For an edge e = {u, v}, we say that vertices u and v
are the endpoints of edge e. Two vertices are neighbors if and
only if they both belong to some edge. The neighborhood of a
vertex v is denoted as N(v) = {u ∈ V |{u, v} ∈ E}, and the
closed neighborhood as N [v] = {v} ∪ N(v). The degree of
a vertex v is defined as deg(v) = |N(v)|. An edge e ∈ E is

covered by a vertex set S if at least one endpoint of e belongs
to S, and otherwise it is uncovered.

For an undirected graph G = (V,E), a vertex cover of a
graph is a subset of V which contains at least one of the two
endpoints of each edge, and an independent set is a subset of
V where no two vertices are neighbors. A vertex set S is a
vertex cover of G if and only if V \S is an independent set of
G. We are concerned in this paper with the problem of finding
a vertex cover as small as possible (MinVC). Equivalently,
this problem can be viewed as seeking for an independent set
as large as possible, which also has important applications.

2.2 Preliminaries of Local Search for MinVC
One popular way to solve the MinVC problem is based on
iteratively solving its decision version — given a positive
integer number k, searching for a k-sized vertex cover. The
general scheme is as follows: In the beginning, a vertex cover
is constructed; whenever the algorithm finds a vertex cover
of k vertices, one vertex is removed from the vertex cover1,
and the algorithm starts from the resulting vertex set to search
for a vertex set of k − 1 vertices that covers all edges (i.e., a
vertex cover of k − 1 vertices) by performing local search.

We denote the current candidate solution as C, which is a
vertex set containing the vertices selected for covering. For a
vertex v ∈ C, the loss of v, denoted as loss(v), is defined as
the number of covered edges that would become uncovered
by removing v from C. For a vertex v /∈ C, the gain of v,
denoted as gain(v), is defined as the number of uncovered
edges that would become covered by adding v into C. Both
loss and gain are scoring properties of vertices. The age of a
vertex is the number of steps since its state was last changed.

For local search MinVC algorithms based on iteratively
solving the decision problem, each search step consists of
exchanging a pair of vertices: a vertex u ∈ C is removed
from C, and a vertex v /∈ C is put into C. Such a step is
called an exchanging step. In the literature, there are two
ways to perform an exchanging step. The first one is adopted
by algorithms before NuMVC, which chooses a vertex pair
from candidate vertex pairs, and then exchanges them and
updates scoring properties accordingly. The second method,
proposed in NuMVC and named two-stage exchange, works
in a “separate” fashion: it first chooses a vertex u ∈ C and
removes it, and updates scoring properties accordingly, and
then chooses a vertex v /∈ C and adds it, and updates scoring
properties accordingly.

3 FastVC: the Top-Level Algorithm
This section describes the FastVC algorithm on a top level.
Details of important functions in FastVC and further analysis
will be presented in the next section.

FastVC solves the MinVC problem by iteratively solving
its decision version. For the exchanging step in local search,
FastVC adopts the two-stage exchange framework, as it has
lower complexity than the alternative paradigm based on
vertex pair exchange. Indeed, as shown in [Cai et al.,
2013], thanks to the two-stage exchange framework, NuMVC

1if after removing one vertex, the vertex set remains a vertex
cover, then more vertices are removed until it is not a vertex cover.

748

Algorithm 1: FastVC (G, cutoff)
Input: graph G = (V,E), the cutoff time
Output: vertex cover of G
C := ConstructV C();1
gain(v) := 0 for each vertex v /∈ C;2
while elapsed time < cutoff do3

if C covers all edges then4
C∗ := C;5
remove a vertex with minimum loss from C;6
continue;7

u := ChooseRmV ertex(C);8
C := C\{u};9
e := a random uncovered edge;10
v := the endpoint of e with greater gain, breaking ties in11
favor of the older one;
C := C ∪ {v};12

return C∗;13

performs several times more steps per second than other local
search MinVC algorithms, which is a main factor of its good
performance.

The top-level algorithm of FastVC is outlined in Algorithm
1, as described below. In the beginning, a vertex cover is
constructed by the ConstructV C function, which is taken
as the initialized candidate solution C for the algorithm.
The loss values of vertices in C are calculated in the
ConstructV C function. For vertices outside C, their gain
values are set to 0, as at this point all edges are covered by C
and adding any vertex into C would not increase the number
of covered edges.

Now we introduce the exchanging step in FastVC. At each
step, the algorithm first chooses a vertex in u ∈ C to remove,
which is accomplished by the ChooseRmV ertex function.
Then, the algorithm picks a random uncovered edge e, and
chooses one of e’s endpoints with the greater gain and adds it
intoC, breaking ties in favor of the older one. Note that along
with removing or adding a vertex, the loss and gain values
of the vertex and its neighbors are updated accordingly.

4 Main Functions and Analysis
Two important components of the FastVC algorithm are
the ConstructV C function and the ChooseRmV ertex
function. In this section, we present these two functions in
detail, and provide some theoretical analysis on them.

4.1 Fast Construction of Vertex Cover
Local search algorithms for MinVC based on iteratively
solving the decision problem starts with a vertex cover, and
we call it the starting vertex cover. A small starting vertex
cover can save the subsequent local search from too much
unnecessary search before beginning the search for a good
solution. A balance much be struck between the quality of the
starting vertex cover and the time consumed in constructing
it. Otherwise, the resulting algorithm may be inefficient in
practice. For convenience of discussions on complexity, let
us denote n = |V |, m = |E|.

Previous Construction Heuristic
Previous local search algorithms for MinVC construct the
starting vertex cover using an intuitive greedy procedure
[Papadimitrious and Steiglitz, 1982] which works as follows:

Repeat the following operations until C becomes a vertex
cover: select a vertex v /∈ C with the maximum gain to add
into C, breaking ties randomly.

The number of iterations of this procedure equals the size
of the obtained vertex cover C, and is denoted as `. We
analyze the worst case complexity for two implementations
of the above algorithm as follows:

A straight-forward implementation is to scan the vertex set
V in each iteration in order to find the objective vertex, which
has a complexity of Θ(n) for each iteration. Therefore, the
complexity is Θ(` · n) = O(n2).

A more “clever” implementation is to maintain the C set
and also a set of vertices not in C, which is denoted as H .
In each iteration, we scan the H set to find a vertex with the
maximum gain. To be precise, we use Ci and Hi to denote
the C set and H set at the beginning of the ith iteration. We
have |Ci| = i− 1 and |Hi| = n− |Ci| = n− (i− 1). Thus,∑`
i=1 |Hi| =

∑`
i=1(n − (i − 1)) = 1

2`(2n + 1 − `). Since
1 ≤ ` ≤ n ⇒ 1

2`(n + 1) ≤ 1
2`(2n + 1 − `) ≤ `n, we

have
∑`
i=1 |Hi| = Θ(` ·n). Therefore, the complexity of this

implementation is
∑`
i=1 |Hi| = Θ(` · n) = O(n2).

Although using “clever” implementations can accelerate
the heuristic, the complexity remains square. We will see
from the experiment results in Section 5.3 that, a square
complexity is too high for massive graphs and makes the
algorithms inefficient so that they may fail to provide a vertex
cover within reasonable time (like 1000 seconds).

The ConstructVC Procedure
Our first step to build a fast local search algorithm for MinVC
is to propose a fast vertex cover construction procedure,
which is the ConstructV C procedure in FastVC.

The proposed procedure (Algorithm 2) consists of an
extending phase and a shrinking phase.

The extending phase: Starting with an empty set C, the
algorithm extends C by checking and covering an edge in
each iteration: if the considered edge is uncovered, the
endpoint with a higher degree is added into C. Obviously,
we obtain a vertex cover at the end of the extending phase.

The shrinking phase: First, we calculate the loss values of
vertices in C; then, we scan the C set and if a vertex v ∈ C
has a loss value of 0, it is removed, and loss values of its
neighbors are updated accordingly.
Theorem 1. The vertex set returned by the ConstructV C
procedure is a minimal vertex cover.2

Proof. Let us denote the vertex cover produced by the
extending phase as C = {vi1 , vi2 , vi3 , ..., vi`}, which may
be modified in the shrinking phase. In the jth iteration of the
shrinking phase, we consider vertex vij .

(a) We first prove that the vertex set returned by the
procedure is a vertex cover. At the beginning of the shrinking

2A vertex cover is minimal if taking any vertex out of it would
make it not a vertex cover.

749

phase, C is a vertex cover. Suppose at the jth iteration of the
shrinking phase, C is a vertex cover, we will prove that at the
(j + 1)th iteration, C is a vertex cover. If loss(vij+1

) > 0,
then C does not change; if loss(vij+1

) = 0, then vij+1
is

removed, but according to the definition of loss, removing
such a vertex would not generate any new uncovered edge.
Hence, C is a vertex cover after the shrinking phase.

(b) Now we prove that the vertex cover C after the
shrinking phase is minimal. Suppose after the shrinking
phase, there exists a vertex in C whose removal keeps C a
vertex cover. Without the loss of generality, let this vertex be
vij , the one considered at the jth iteration of the shrinking
phase. From the assumption, we have loss(vij) = 0 at the
end of the shrinking phase. Notice that during the shrinking
phase, the loss value of any vertex in C does not decrease
(according to Lemma 1). Thus, the value of loss(vij) at the
jth iteration is at most 0, but loss values are non-negative, so
it is 0. Therefore, vij would have been removed at the jth
iteration. This completes the proof by contradiction.

Algorithm 2: ConstructVC (G)
Input: graph G = (V,E)
Output: vertex cover of G
C := ∅;1
//extend C to cover all edges2
foreach e ∈ E do3

if e is uncovered then4
add the endpoint of e with higher degree into C;5

//calculate loss of vertices in C6
loss(v) := 0 for each v ∈ C;7
foreach e ∈ E do8

if only one endpoint of e belongs to C then9
for the endpoint v ∈ C, loss(v)++;10

//remove redundant vertices11
foreach v ∈ C do12

if loss(v) = 0 then13
C := C\{v}, update loss of vertices in N(v);14

return C;15

Lemma 1. For any iteration of the shrinking phase, the
execution of the iteration does not decrease the loss value
of any vertex in C.

Proof. Consider any iteration in the shrinking phase. For
simplicity, we use v to denote the vertex under consideration.

If loss(v) > 0, the iteration does nothing and thus the
lemma holds.

Now we consider the case loss(v) = 0. This indicates all
vertices in N(v) belong to C. Otherwise, if there is a vertex
v′ ∈ N(v) such that v′ /∈ C, then removing v would would
make the edge e = {v, v′} uncovered, which means loss(v)
is at least one. So, in the case loss(v) = 0, v is removed,
and along with that, the loss value of each vertex v′ ∈ N(v)
is increased by one, as after this iteration, the removal of v′
would make the edge e = {v, v′} from covered to uncovered.
For vertices not inN(v), their loss values do not change.

Complexity of ConstructVC: The ConstructVC proce-
dure can be divided into three parts: the first part (lines 3-
5) performs the extending phase, the second part (lines 7-10)
initializes the loss values, while the last one (lines 12-14)
removes redundant vertices.

Let C+ denotes the vertex cover obtained by the extending
phase. It is clear that the complexity of the extending
phase is O(m). For the second part, the complexity is
O(|C+| + m). Since at most one vertex is added in each
iteration of the extending phase, we have |C+| ≤ m, and
thus the complexity for the second part is O(m). For
the last part, the complexity depends on the total number
of updating operations of loss values, which is calculated
as

∑
v∈C+ deg(v) <

∑
v∈V deg(v) = 2m. Therefore,

the ConstructV C procedure has a complexity of O(m),
which is lower than O(n2) in most cases. Especially, most
massive real world graphs are sparse graphs [Barabási and
Albert, 1999; Eubank et al., 2004; Lu and Chung, 2006], and
heuristics with O(m) complexity are much faster than those
with O(n2) for such graphs.

4.2 Best from Multiple Selections (BMS)
A critical function of FastVC is ChooseRmV ertex, which
returns a vertex from the candidate vertex set C to remove.
We propose a fast and effective heuristic for doing this task,
which strikes a good balance between the time complexity
and the quality of the selected vertex (w.r.t. the loss value).

Local search algorithms usually need to select an element
from a candidate set. Perhaps the most commonly used
strategy is to choose the best element according to some
criterion, which we refer to as “best-picking” heuristic. With
a suitable criterion, this heuristic guides the search towards
the most promising area, and is thus widely adopted in
local search algorithms. Recent examples of such heuristics
for MinVC include the max-gain pair selection heuristic
in COVER [Richter et al., 2007] and the minimum loss
removing heuristic in NuMVC [Cai et al., 2013]. More
examples can be found in local search algorithms for other
famous NP-hard problems, such as the Satisfiability problem
[Selman et al., 1992; Hoos and Stützle, 2004; Li and Huang,
2005; Cai and Su, 2013]. Indeed, a lot of works on local
search have been focused on the criterion for filtering the
candidate set and the function for comparing elements, and
once this is done, they simply pick the best one. The “best-
picking” heuristic works well in most cases, but not for
massive data sets where the candidate set is usually very large
and finding the best element is very time-consuming.

We propose a cost-effective heuristic called Best from
Multiple Selections (BMS), for picking a good element from
a set, and we use it for the ChooseRmV ertex function. For
a set S, the BMS heuristic works as follows:

Choose k elements randomly with replacement from the
set S, and then return the best one (w.r.t. some comparison
function f), where k is a parameter.

A more formal description of the BMS heuristic is given
in Algorithm 3. Let us look at how well the BMS heuristic
approximates the “best-picking” heuristic. For a real number
ρ ∈ (0, 1), the probability of the event E = {the f value of
the element chosen by BMS is not greater than ρ|S| elements

750

Algorithm 3: Best from Multiple Selection (BMS) Heuristic
Input: A set S, a parameter k, a comparison function f
//assume f is a function such that we say an element is better
than another one if it has smaller f value
Output: an element of S
best :=a random element from S;1
for iteration := 1 to k − 1 do2

r :=a random element from S;3
if f(r) < f(best) then best := r;4

return best;5

in the set S} is Pr(E) ≥ 1−(ρ|S|−1
|S|)k > 1−ρk (the first “≥”

because there might be the case that more than one elements
in those ρ|S| elements have the same f value, which is the
minimum among f values of all the ρ|S| elements).

For ChooseRmV ertex, the comparison function f is
simply the loss function on vertices, and we set k = 50.
Then, the probability that the BMS heuristic chooses a vertex
whose loss value is not greater than 90% vertices in C is
Pr(E) > 1 − 0.950 > 0.9948. The above calculations
illustrate that the BMS heuristic returns a vertex of very good
quality with a very high probability.

The complexity of the BMS heuristic is O(k) = O(1),
since k is a constant parameter. This is lower than O(|C|)
for the minimum loss heuristic used by previous local search
algorithms for MinVC. Note that BMS is a generic heuristic
and can be also applied to improve the time efficiency of local
search algorithms for large scale instances of other problems.

5 Experimental Evaluation
In this section, we carry out extensive experiments to evaluate
FastVC on a broad range of real world graphs, compared
against the state of the art local search MinVC algorithm
NuMVC.

5.1 Benchmarks
For our experiments, we collected all undirected simple
graphs (not including DIMACS and BHOSLIB graphs) we
could find from the Network Data Repository online [Rossi
and Ahmed, 2015].3 Many of these real world graphs have
millions of vertices and dozens of millions of edges. Some of
these benchmarks have recently been used in testing parallel
algorithms for Maximum Clique and Coloring problems
[Rossi and Ahmed, 2014; Rossi et al., 2014].

The graphs in our experiments can be grouped into 10
classes, including biological networks, collaboration net-
works, facebook networks, interaction networks, infrastruc-
ture networks, amazon recommend networks, scientific com-
putation networks, social networks, technological networks,
and web lint networks, in the order of their appearance in
the tables. There is also a group of temporal reachability
networks, where the graphs are small (usually with several
hundreds or several thousands of vertices) and the two
algorithms find the same quality solution on all the graphs,
and thus is not included in our experiment.

3http://www.graphrepository.com/networks.php

5.2 Experiment Setup
For comparisons, we use the NuMVC algorithm [Cai et al.,
2013] to represent the state of the art in solving MinVC (and
also MaxIS) problem. Based on experiments on DIMACS
and BHOSLIB benchmarks, NuMVC succeeds more reliably
to find the optimal or best known solution at speeds at
least several times faster than earlier MinVC and MaxIS
algorithms [Cai et al., 2013]. It is acknowledged as the latest
breakthrough for MinVC solving in the literature [Fang et al.,
2014; Rosin, 2014; Jin and Hao, 2015]. Slightly better results
have been reported for two algorithms that build on the top
of NuMVC [Fang et al., 2014; Cai et al., 2015], but this does
not materially change our conclusions below.

We implement our algorithm FastVC in the C++ pro-
gramming language. NuMVC is open-source and also
implemented in C++.4 Both algorithms are complied by
g++ (version 4.4.5) with the ‘-O3’ option. For NuMVC, we
adopt the parameter setting reported in [Cai et al., 2013].
For the BMS heuristic in the ChooseRmV ertex function
of FastVC, we set the k parameter to 50, as mentioned in
the previous section. The experiments are carried out on
a workstation under Ubuntu Linux, using 2 cores of i7-
4800MQ 2.7 GHz CPU and 8 GByte RAM.

Both algorithm are executed 10 times on each instance with
a time limit of 1000 seconds. For each algorithm on each
instance, we report the minimum size (“Cmin”) and averaged
size (“Cavg”) of vertex covers found by the algorithm. To
make the comparison clearer, we also report the difference
(“∆”) between the minimum size of vertex cover found by
NuMVC and that found by FastVC. A positive ∆ means
FastVC finds a smaller vertex cover, and a negative ∆ means
NuMVC finds a smaller vertex cover. For some instances,
NuMVC fails to find a vertex cover within the time limit,
then the column for NuMVC is marked as “n/a” and the “∆”
column is marked as “max” (since FastVC finds one).

5.3 Experiment Results
We present the main experiment results in Tables 1 and 2. For
the sake of space, we do not report the results on graphs with
less than 1000 vertices, for which both algorithms find the
same quality solutions quickly. Also, three extremely large
graphs are not reported as they are out of memory for both
algorithms.

From the results in Tables 1 and 2, we observe that:
1) Out of the 86 graphs, FastVC finds better vertex covers

than NuMVC for 46 graphs, and finds the same quality
solutions for 37 graphs. FastVC finds worse solutions only
for 3 graphs.

2) The two algorithms have similar performance on two
classes of benchmarks, namely the biological networks
and interaction networks; for other classes of benchmarks,
FastVC significantly outperforms NuMVC.

3) There are 10 graphs for which NuMVC fails to provide a
vertex cover within the time limit, while FastVC finds vertex
covers for all the graphs. This indicates the effectiveness of
our construction heuristic. In fact, further observations show

4http://lcs.ios.ac.cn/~caisw/Code/NuMVC-Code.zip

751

Table 1: Experimental results on biological networks, collab-
oration networks, facebook networks, interaction networks,
infrastructure networks and recommend networks

Graph |V| |E| NuMVC FastVC ∆
Cmin (Cavg) Cmin (Cavg)

bio-dmela 7393 25569 2630 (2630) 2630 (2630) 0
bio-yeast 1458 1948 456 (456) 456 (456) 0
ca-AstroPh 17903 196972 11483 (11483) 11483 (11483) 0
ca-citeseer 227320 814134 129193 (129196) 129193 (129193) 0
ca-coauthors-dblp 540486 15245729 472251 (472258) 472179 (472179) 72
ca-CondMat 21363 91286 12480 (12480) 12480 (12480) 0
ca-CSphd 1882 1740 550 (550) 550 (550) 0
ca-dblp-2010 226413 716460 121971 (121974) 121969 (121969) 2
ca-dblp-2012 317080 1049866 164952 (164956) 164949 (164949) 3
ca-Erdos992 6100 7515 461 (461) 461 (461) 0
ca-GrQc 4158 13422 2208 (2208) 2208 (2208) 0
ca-HepPh 11204 117619 6555 (6555) 6555 (6555) 0
ca-hollywood-2009 1069126 56306653 n/a 864052 (864052) max
ca-MathSciNet 332689 820644 139982 (139990) 139951 (139951) 31
socfb-A-anon 3097165 23667394 n/a 375231 (375233) max
socfb-B-anon 2937612 20959854 n/a 303048 (303049) max
socfb-Berkeley13 22900 852419 17216 (17218) 17210 (17212.7) 6
socfb-CMU 6621 249959 4986 (4986.1) 4986 (4986.5) 0
socfb-Duke14 9885 506437 7683 (7683.6) 7683 (7683) 0
socfb-Indiana 29732 1305757 23320 (23326.5) 23315 (23317.1) 5
socfb-MIT 6402 251230 4657 (4657) 4657 (4657) 0
socfb-OR 63392 816886 36558 (36560.6) 36548 (36549.2) 10
socfb-Penn94 41536 1362220 31179 (31183.3) 31162 (31164.8) 17
socfb-Stanford3 11586 568309 8518 (8518) 8517 (8517.9) 1
socfb-Texas84 36364 1590651 28174 (28180.5) 28167 (28171.1) 7
socfb-UCLA 20453 747604 15225 (15227.1) 15223 (15224.3) 2
socfb-UConn 17206 604867 13231 (13233) 13230 (13231.5) 1
socfb-UCSB37 14917 482215 11262 (11263) 11261 (11263) 1
socfb-UF 35111 1465654 27319 (27323.5) 27306 (27309) 13
socfb-UIllinois 30795 1264421 24096 (24106.4) 24091 (24092.2) 5
socfb-Wisconsin87 23831 835946 18388 (18390.6) 18383 (18385.1) 5
ia-email-EU 32430 54397 820 (820) 820 (820) 0
ia-email-univ 1133 5451 594 (594) 594 (594) 0
ia-enron-large 33696 180811 12781 (12781) 12781 (12781) 0
ia-fb-messages 1266 6451 578 (578) 578 (578) 0
ia-reality 6809 7680 81 (81) 81 (81) 0
ia-wiki-Talk 92117 360767 17288 (17288.2) 17288 (17288) 0
inf-power 4941 6594 2203 (2203) 2203 (2203) 0
inf-roadNet-CA 1957027 2760388 n/a 1001273 (100131.2) max
inf-roadNet-PA 1087562 1541514 n/a 555220 (555243) max
rec-amazon 91813 125704 47655 (47672.6) 47606 (47606) 49

that the construction heuristic in FastVC outputs a vertex
cover typically in one second.

4) The ∆ value is greater than 10 for 30 graphs. Such
big improvements on the size of vertex cover are very
exciting, when compared to those in the literature of MinVC
algorithms.

For 33 graphs where the two algorithms consistently find
vertex covers of the same size, we compare their averaged
running time to locate such a solution. The results are
reported in Table 3, which show that FastVC is much faster
than NuMVC.

6 Summary and Future Work
In this work, we develop a local search algorithm for MinVC
called FastVC, based on two new heuristics. The first heuris-
tic is a construction procedure which has a complexity of
O(|E|), compared to O(|V |2) for the construction heuristic
used in previous local search algorithms for MinVC. The
second one is the Best from Multiple Selections (BMS)
heuristic, which approximates the minimum loss heuristic

Table 2: Experimental results on scientific computation
networks, social networks, technological networks and web
lint networks
Graph |V| |E| NuMVC FastVC ∆

Cmin (Cavg) Cmin (Cavg)
sc-ldoor 952203 20770807 n/a 856755 (856757) max
sc-msdoor 415863 9378650 381569 (381575) 381558 (381559) 11
sc-nasasrb 54870 1311227 51244 (51246.7) 51244 (51247.3) 0
sc-pkustk11 87804 2565054 83911 (83911) 83911 (83912.5) 0
sc-pkustk13 94893 3260967 89218 (89222) 89217 (89220.6) 1
sc-pwtk 217891 5653221 207749 (207756) 207716 (207720) 33
sc-shipsec1 140385 1707759 117477 (117537) 117318 (117338) 159
sc-shipsec5 179104 2200076 147288 (147324) 147137 (147174) 151
soc-BlogCatalog 88784 2093195 20752 (20752) 20752 (20752) 0
soc-brightkite 56739 212945 21192 (21193.5) 21190 (21190) 2
soc-buzznet 101163 2763066 30613 (30613.2) 30625 (30625) -12
soc-delicious 536108 1365961 85522 (85585.6) 85586 (85596.4) -64
soc-digg 770799 5907132 103303 (103319) 103244 (103245) 59
soc-douban 154908 327162 8685 (8685) 8685 (8685) 0
soc-epinions 26588 100120 9757 (9757) 9757 (9757) 0
soc-flickr 513969 3190452 153343 (153353) 153272 (153272) 71
soc-flixster 2523386 7918801 96319 (96320.7) 96317 (96317) 2
soc-FourSquare 639014 3214986 90125 (90134.1) 90108 (90109.2) 17
soc-gowalla 196591 950327 84313 (84322.6) 84222 (84222.3) 91
soc-lastfm 1191805 4519330 78692 (78695) 78688 (78688) 4
soc-livejournal 4033137 27933062 n/a 1869046 (1869051.1) max
soc-LiveMocha 104103 2193083 43430 (43432.8) 43427 (43427) 3
soc-pokec 1632803 22301964 n/a 843422 (843435) max
soc-slashdot 70068 358647 22373 (22377) 22373 (22373) 0
soc-twitter-follows 404719 713319 2323 (2323) 2323 (2323) 0
soc-youtube 495957 1936748 146456 (146468) 146376 (146376) 80
soc-youtube-snap 1134890 2987624 277015 (277025) 276945 (276945) 70
tech-as-caida2007 26475 53381 3683 (3683) 3683 (3683) 0
tech-as-skitter 1694616 11094209 n/a 527185 (527196) max
tech-internet-as 40164 85123 5700 (5700) 5700 (5700) 0
tech-p2p-gnutella 62561 147878 15682 (15682) 15682 (15682) 0
tech-RL-caida 190914 607610 74759 (74776.5) 74930 (74938.9) -171
tech-routers-rf 2113 6632 795 (795) 795 (795) 0
tech-WHOIS 7476 56943 2284 (2284) 2284 (2284) 0
web-arabic-2005 163598 1747269 114464 (114472) 114426 (114427) 38
web-BerkStan 12305 19500 5384 (5384) 5384 (5384) 0
web-edu 3031 6474 1451 (1451) 1451 (1451) 0
web-google 1299 2773 498 (498) 498 (498) 0
web-indochina-2004 11358 47606 7300 (7300) 7300 (7300) 0
web-it-2004 509338 7178413 414738 (414755) 414671 (414676) 67
web-sk-2005 121422 334419 58199 (58205.5) 58173 (58173) 26
web-spam 4767 37375 2297 (2297) 2297 (2297) 0
web-uk-2005 129632 11744049 127774 (127774) 127774 (127774) 0
web-webbase-2001 16062 25593 2652 (2652) 2651 (2651.2) 1
web-wikipedia2009 1864433 4507315 n/a 648317 (648322) max

Table 3: Comparison of running time on instances where all
vertex covers found by the two algorithms have the same size.
The reported time is the averaged running time over 10 runs.

Graph NuMVC FastVC Graph NuMVC FastVC
time time time time

bio-dmela 0.828 <0.01 soc-BlogCatalog 448.804 1.9
bio-yeast <0.01 <0.01 soc-douban 1.374 0.06
ca-AstroPh 5.028 0.024 soc-epinions 95.104 0.138
ca-citeseer 153 1.074 soc-slashdot 774.653 0.208
ca-CondMat 80.604 0.27 soc-twitter-follows 0.798 0.19
ca-CSphd <0.01 <0.01 tech-as-caida2007 1.074 0.08
ca-Erdos992 <0.01 <0.01 tech-internet-as 9.668 0.015
ca-GrQc 0.156 <0.01 tech-p2p-gnutella 22.358 0.011
ca-HepPh 23.224 <0.01 tech-routers-rf 0.014 <0.01
socfb-MIT 6.69 41.133 tech-WHOIS 0.454 <0.01
ia-email-EU 0.2 <0.01 web-BerkStan 8.862 25.807
ia-email-univ <0.01 <0.01 web-edu 0.374 <0.01
ia-enron-large 48.738 0.049 web-google <0.01 <0.01
ia-fb-messages <0.01 <0.01 web-indochina-2004 17.242 0.091
ia-reality <0.01 <0.01 web-spam 304.682 8.674
ia-wiki-Talk 510.583 8.6 web-uk-2005 0.285 0.06
inf-power 0.79 0.21

752

very well and lowers the complexity from O(|V |) to O(1).
Thanks to these two heuristics, the FastVC algorithm

performs much better than the state of the art algorithm
NuMVC on massive graphs. Experiments on massive real
world graphs show that, FastVC finds smaller vertex covers
than NuMVC on most graphs. Also, FastVC finds a “good”
(or at least not too bad) vertex cover for all the graphs within
reasonable time (1000 seconds), while NuMVC fails to find a
vertex cover on a considerable portion of the graphs.

This work takes a first step towards local search for MinVC
on massive graphs, and also provides key insights about
balance between complexity and quality of heuristics for
massive data problems. In the future, we would like to design
more efficient heuristic algorithms for MinVC as well as
other graph problems on massive graphs.

Acknowledgement
This work is supported by China National 973 Program
2014CB340301, National Natural Science Foundation of
China 61370072, 61370156 and 61472369. We would like
to thank the anonymous referees for their helpful comments.

References
[Andrade et al., 2008] Diogo Viera Andrade, Mauricio G. C. Re-

sende, and Renato Fonseca F. Werneck. Fast local search
for the maximum independent set problem. In Workshop on
Experimental Algorithms, pages 220–234, 2008.

[Barabási and Albert, 1999] A.L. Barabási and R. Albert. Emer-
gence of scaling in random networks. Science, 286(5439):509,
1999.

[Cai and Su, 2013] Shaowei Cai and Kaile Su. Local search for
Boolean Satisfiability with configuration checking and subscore.
Artif. Intell., 204:75–98, 2013.

[Cai et al., 2010] Shaowei Cai, Kaile Su, and Qingliang Chen.
EWLS: A new local search for minimum vertex cover. In Proc.
of AAAI-10, pages 45–50, 2010.

[Cai et al., 2011] Shaowei Cai, Kaile Su, and Abdul Sattar. Local
search with edge weighting and configuration checking heuristics
for minimum vertex cover. Artif. Intell., 175(9-10):1672–1696,
2011.

[Cai et al., 2013] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul
Sattar. NuMVC: An efficient local search algorithm for minimum
vertex cover. J. Artif. Intell. Res. (JAIR), 46:687–716, 2013.

[Cai et al., 2015] Shaowei Cai, Jinkun Lin, and Kaile Su. Two
weighting local search for minimum vertex cover. In Proc. of
AAAI-15, pages 1107–1113, 2015.

[Dinur and Safra, 2005] I. Dinur and S. Safra. On the hardness of
approximating minimum vertex cover. Annals of Mathematics,
162(2):439–486, 2005.

[Eubank et al., 2004] Stephen Eubank, V. S. Anil Kumar, Mad-
hav V. Marathe, Aravind Srinivasan, and Nan Wang. Structural
and algorithmic aspects of massive social networks. In Proc. of
SODA-04, pages 718–727, 2004.

[Fang et al., 2014] Zhiwen Fang, Yang Chu, Kan Qiao, Xu Feng,
and Ke Xu. Combining edge weight and vertex weight for
minimum vertex cover problem. In Proc. of FAW-14, pages 71–
81, 2014.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Com-
puters and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, CA, USA, 1979.

[Hoos and Stützle, 2004] H.H. Hoos and T. Stützle. Stochastic Lo-
cal Search: Foundations and Applications. Morgan Kaufmann,
San Francisco, CA, USA, 2004.

[Jin and Hao, 2015] Yan Jin and Jin-Kao Hao. General swap-based
multiple neighborhood tabu search for the maximum independent
set problem. Eng. Appl. of AI, 37:20–33, 2015.

[Karakostas, 2005] G. Karakostas. A better approximation ratio for
the vertex cover problem. In Proc. of ICALP-05, pages 1043–
1050, 2005.

[Kavalci et al., 2014] Vedat Kavalci, Aybars Ural, and Dagdeviren.
Distributed vertex cover algorithms for wireless sensor networks.
International Journal of Computer Networks & Communications
(IJCNC), 6:95–110, 2014.

[Li and Huang, 2005] Chu Min Li and Wen Qi Huang. Diversifica-
tion and determinism in local search for satisfiability. In Proc. of
SAT-05, pages 158–172, 2005.

[Lu and Chung, 2006] L. Lu and F. Chung. Complex Graphs and
Networks. American Math. Society, New York, USA, 2006.

[Papadimitrious and Steiglitz, 1982] C. H. Papadimitrious and
K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, New York, USA, 1982.

[Pullan, 2009] Wayne Pullan. Optimisation of
unweighted/weighted maximum independent sets and minimum
vertex covers. Discrete Optimization, 6:214–219, 2009.

[Richter et al., 2007] Silvia Richter, Malte Helmert, and Charles
Gretton. A stochastic local search approach to vertex cover. In
Proc. of KI-07, pages 412–426, 2007.

[Rosin, 2014] Christopher D. Rosin. Unweighted stochastic local
search can be effective for random CSP benchmarks. CoRR,
abs/1411.7480, 2014.

[Rossi and Ahmed, 2014] Ryan A Rossi and Nesreen K Ahmed.
Coloring large complex networks. Social Network Analysis and
Mining (SNAM), pages 1–52, 2014.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K. Ahmed.
The network data repository with interactive graph analytics and
visualization. In Proc. of AAAI-15, 2015.

[Rossi et al., 2014] Ryan A. Rossi, David F. Gleich, Asse-
faw Hadish Gebremedhin, and Md. Mostofa Ali Patwary. Fast
maximum clique algorithms for large graphs. In WWW (Com-
panion Volume), pages 365–366, 2014.

[Selman et al., 1992] Bart Selman, Hector J. Levesque, and
David G. Mitchell. A new method for solving hard satisfiability
problems. In Proc. of AAAI-92, pages 440–446, 1992.

[Shyu et al., 2004] Shyong Jian Shyu, PengYeng Yin, and Bertrand
M. T. Lin. An ant colony optimization algorithm for the minimum
weight vertex cover problem. Annals of OR, 131(1-4):283–304,
2004.

753

