
Balance Principles for
Algorithm-Architecture Co-design

Kent Czechowski, Casey Battaglino, Chris McClanahan,
Aparna Chandramowlishwaran, Richard Vuduc

(Georgia Tech)

May 31, 2011

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Position

Position: Principles (i.e, “theory”) informing practice (co-design)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Position

Position: Principles (i.e, “theory”) informing practice (co-design)

Hardware/Software Co-design?
Algorithm-Architecture Co-design?

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Position

Position: Principles (i.e, “theory”) informing practice (co-design)
For some computation to scale efficiently on a future parallel
processor:

1. Allocation of cores?

2. Allocation of cache?

3. How must latency/bandwidth increase to compensate?

Or alternatively, given a particular parallel architecture, what
classes of computations will perform efficiently?

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Why theoretical models?

The best alternative (and perhaps the “status quo”) in co-design is
to put together a model of your chip and simulate your algorithm.

Very accurate, but by this point you’ve already invested lots of
time and effort into a specific design.

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Why theoretical models?

We advocate a more principled approach that can model the
performance of a processor based on some of its most high-level
characteristics known to be the main bottlenecks (communication,
parallel scalability)...

Such a model can be refined and extended as needed, i.e based on
cache characteristics, heterogeneity of the cores

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Balance

We define balance as:

For some algorithm: Tmem ≤ Tcomp

1

For principled analysis, we need theoretical models for Tmem, Tcomp

To be relevant for current/future processors, these models must
integrate:

1. Parallelism

2. Cache/Memory Locality

1Similar to classical notions of balance: [Kung 1986], [Callahan, et al 1988],
[McCalpin 1995]

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Why Balance?

Importance of considering balance:

1. Inevitable trend towards imbalance: peak flops outpacing
memory hierarchy.

2. Imbalance may be nonintuitive (make an improvement to
some aspect of a chip without realizing that other areas must
also improve to compensate) — for a particular algorithm

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Why Balance?

Balance is a particularly powerful lens for maintaining more
realistic expectations for performance. Processor makers present
raw figures for performance: peak flops, memory specs– very
one-dimensional figures on their own. (i.e CPU vs. GPU wars)

Balance marries the two in a way that allows parallel scalability to
also enter the picture– and recognizes that not all architectures are
suitable for all applications.

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Assumptions

For our particular “principled” approach we use two models:
Tmem: External Memory Model (I/O Model)
Tcomp: Parallel DAG Model / Work-Depth Model
For these models alone to be expressive we have assumptions...

1. We are modeling work on a single socket. n is large enough to
not fit completely in the outer level of cache.

2. For our algorithm, we can easily deduce the structure of a
dependency DAG for any n

3. The developer can overlap computation and communication
arbitrarily well

4. Communication costs are dominated by misses between cache
and RAM(∴ Tcomm ∝ cache misses = Q(n)).

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Parallel DAG Model for Tcomp (Tmem ≤ Tcomp)

2

Inherent parallelism: W (n)
D(n) . . . spectrum between embarrassingly

parallel and inherently sequential (application: CPA)
Desired: work optimality, maximum parallelism

2Source: Blelloch: Parallel Algorithms
Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Parallel DAG Model for Tcomp (Tmem ≤ Tcomp)
Brents Theorem [1974]: Maps DAG model to PRAM model

Tp(n) = O(D(n) +
W (n)

p
)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Parallel DAG Model for Tcomp (Tmem ≤ Tcomp)
We model Tcomp with:

Tcomp(n; p,C0) = (D(n) +
W (n)

p
) ·

1

C0

This gives us a lower bound that an optimally-crafted algorithm
could theoretically achieve.

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model for Tmem (Tmem ≤ Tcomp)

Q(n;Z , L): Number of cache misses.
Thus, the volume of data transferred is Q(n;Z , L)× L

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model for Tmem (Tmem ≤ Tcomp)

Our intensity is thus
W (n)

Q(n;Z , L)× L

Desired: minimize work (work-optimality) while maximizing
intensity (by minimizing cache complexity).

Intensity on its own is very descriptive: intuitively we know that
high-intensity operations such as matrix multiply perform well on
GPUs, whereas low-intensity vector operations perform poorly.
“W ” and “Q” underly this behavior

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model: Matrix Multiply

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model: Matrix Multiply

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model for Tmem (Tmem ≤ Tcomp)

We model Tmem with:

Tmem(n; p,Z , L, α, β) = α · D(n) +
Qp;Z ,L(n) · L

β

Q . . . # of cache misses
C0 . . . # of cycles per second
p . . . # of cores
Z . . . cache size (bytes)
L . . . line size (bytes)
α . . . latency (s)
β . . . bandwidth (bytes/s)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model for Tmem (Tmem ≤ Tcomp)

We model Tmem with:

Tmem(n; p,Z , L, α, β) = α · D(n) +
Qp;Z ,L(n) · L

β

Q1, sequential cache complexity, is well known for most algorithms.
Qp, parallel cache complexity, must be separately derived, but can
be directly obtained from Q1 if certain scheduling principles are
followed.

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



I/O Model for Tmem (Tmem ≤ Tcomp)

We model Tmem with:

Tmem(n; p,Z , L, α, β) = α · D(n) +
Qp;Z ,L(n) · L

β

3

3Blelloch, Gibbons, Simhadri (2010). Low-depth cache-oblivious algorithms.
Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Tcomp,Tmem

Tmem ≤ Tcomp

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Tcomp,Tmem: After some algebra

Tmem ≤ Tcomp

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Projections

Irony, et. al: Parallel Matrix Multiply Bound:

Qp;Z ,L(n) ≥
W (n)

√
2 · L

√

Z/p

∴

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Projections

Sort: the deterministic cache-oblivious algorithm by Blelloch
(SPAA10) in which W = n log n,D = (log n)2,Q = n/L× logZ (n).

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



“Punchline”: Projections (Matrix Multiply)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Projections (Matrix Multiply)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Consequences (Stacked Memory)
Scaling the number of PINs from memory to the processor with
the surface area of the chip rather than the perimeter: β scales at
a higher dimension.

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Limitations

Big-Oh Notation
Existing analysis is often (≈ always) in “Big-Oh” notation.
So W ,D,Q are often in the form O(f (n)). For large n,

O(f (n)) ≈ C · f (n)
C can sometimes be determined from principles, or from
static/dynamic analysis, or simply from benchmarking.

i.e, for FFT, W (n) = #flops = 5(n log n)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Limitations

Every model has limitations. We use the DAG model and External
Memory model.

Tcomp and Tmem can be changed to any model that aims to
represent memory and compute time independently, i.e if there is a
more suitable or predictable model on a particular architecture or
algorithm. Example: increasingly heterogeneous chips (many more
degrees of freedom).

We believe that balance is an ideal frame from which to focus this
principled analysis: Tmem ≤ Tcomp

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Limitations

How can we bring other metrics into play?

1. Power: Poweralg (n;Z , L, p) ∝ Q(n;Z , L, p) ?
Power efficiency necessary for exascale

2. A more general cost metric
(i.e a cluster of iPads would probably be balanced)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Bounds

Figure: Established bounds on communication in linear algebra.

M = Θ(N
2

P
) (Ballard, et. al, 2009)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Machine Balance

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Machine Balance

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Projections (CPU vs GPU)

doubling 10-year
Keeneland time increase

Parameter values (in years) factor

Cores: pcpu 12 1.87 40.7×
pgpu 448

Peak: pcpu · Ccpu 268 Gflop/s 1.7 59.0×
pgpu · Cgpu 1 Tflop/s
Memory BW: βcpu 25.6 GB/s 3.0 9.7×
βgpu 144 GB/s
Fast memory: Zcpu 12 MB 2.0 32.0×
Zgpu 2.7MB
I/O device: βI/O 8 GB/s 2.39 18.1×
Network BW, βlink 10 GB/s 2.25 21.8×

Table: Using the hardware trends we can make predictions about relative
performance of future hardware. (BW = bandwidth)

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design



Contact

Kent Czechowski
kentcz (at) gatech

Casey Battaglino
cbattaglino3 (at) gatech

Questions?

Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard Vuduc (Georgia Tech)

Balance Principles for Algorithm-Architecture Co-design


