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Balanced boundary layers used in hurricane models
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Abstract:
We examine the accuracy of various approximations made in representing the boundary layer in simple axisymmetric hurricane
models, especially those that assume strict gradient wind balance in the radial direction. Approximate solutions for a steady
axisymmetric slab boundary layer model are compared with a full model solution. It is shown that the approximate solutions
are poor in the inner core region of the vortex, where the radial acceleration is important and not generally negligible. These results
have implications for a range of theoretical studies of hurricane dynamics that employ balanced boundary-layer formulations.
Copyright c© 2008 Royal Meteorological Society

KEY WORDS Hurricane; tropical cyclone; typhoon; boundary layer; friction layer; gradient wind balance

Received January 30, 2008; Revised ; Accepted

1 Introduction

The boundary layer of a mature hurricane has been long
recognized as an important feature of the storm. In partic-
ular, it controls the radial distribution of moisture, vertical
motion and absolute angular momentum that ascends into
the eyewall clouds. Early attempts to isolate the dynamics
of the boundary layer of a mature hurricane were made by
Rosenthal (1962) and Smith (1968). These studies high-
lighted a feature already well known from other areas
of fluid dynamics that the boundary layer induces a sec-
ondary (overturning) circulation in the vortex above and
that this circulation is associated with the imbalance of
forces in the layer brought about by surface friction (see
e.g. Greenspan 1968). A scale analysis of the boundary
layer equations shows that the vertical gradient of pertur-
bation pressure can be neglected to a first approximation
so that the radial pressure gradient in the boundary layer
is equal to that in the flow above the layer (see e.g. Vogl
and Smith 2008). However, surface friction reduces the
tangential wind speed and hence the centrifugal and Cori-
olis forces in the layer, leaving for a cyclonic vortex a net
inward residual force. It is this net force that drives inflow
in the layer, thereby inducing a secondary circulation in
the vortex itself. Consistent with mass continuity, there is
induced subsidence at outer radii and induced ascent at
inner radii. In a hurricane, the inflowing air acquires mois-
ture through evaporation at the sea surface and the moist
air ascends to feed the eyewall clouds.

Despite that fact that the induced flow in the bound-
ary layer is associated with gradient wind imbalance in
the layer, many representations of the boundary layer have
taken the tangential flow there to be in strict gradient

∗Correspondence to: Roger K. Smith, Meteorological Institute, Uni-
versity of Munich, Theresienstr. 37, 80333 Munich, Germany. E-mail:
roger.smith@lmu.de

wind balance, but have included a sink of absolute angu-
lar momentum at the surface (Ogura 1964, Ooyama 1969,
Schubert and Hack 1983, Emanuel 1986, 1989, 1995,
1997, 2004, Frisius 2005, 2006, Wirth and Dunkerton
2006). We are unaware of any reasoned justification for
such a formulation, but one could imagine that the dynam-
ics of the hurricane boundary layer is essentially different
from that in which friction plays an active role, since any
inflow in these balance models cannot be ”driven” directly
by frictional imbalance. At best they may be expected
to be a valid first approximation only where the radial
flow is sufficiently slow. A natural questions then arises,
how severe are their limitations? We have shown recently
(Smith et al. 2008) that the assumption of balance is
poor in Emanuel’s steady-state hurricane model (Emanuel
1986) and by implication in his theory for potential inten-
sity (Emanuel 1995, Bister and Emanuel 1998).

Two of the early pioneering models of hurricanes,
those of Ooyama (1969) and Sundqvist (1970), were
balanced in the sense that the tangential, or primary
circulation was taken to be in gradient wind balance,
and both models were considered to produce reasonably
realistic simulations of hurricanes. Indeed, the gradient
balance assumption is thought to be a relatively accurate
one over most of the free troposphere, except in the upper-
level outflow layer, and the assumption is supported by
an elementary scale analysis for a rapidly-rotating vortex
in which the radial component of flow is much less
than the tangential component (Willoughby 1979). It is
supported also by aircraft reconnaisance measurements
in the lower troposphere (Willoughby 1977). These early
models assumed, however, that the boundary layer is
also in gradient wind balance. Ooyama was aware of
the limitations of the latter assumption and wrote in an
unpublished manuscript in 1968 ” ... it appears that the
weakest hypothesis in the original model is the use of
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the balance approximation in the boundary layer”. In the
manuscript, Ooyama went on to show that the solutions
in a calculation with a more complete boundary layer
formulation were more realistic than those with a balanced
boundary-layer formulation. As far as we are aware, most
authors have not seriously questioned the accuracy of
the balanced assumption in the hurricane boundary layer,
even though a scaling analysis of the layer (Smith 1968,
Vogl and Smith 2008) shows that it is unlikely to be an
accurate approximation in the inner core boundary layer
of a hurricane vortex, a finding supported also by more
recent numerical simulations of hurricanes (Persing and
Montgomery 2003, Appendix; Kepert and Wang 2001).

In this paper we compare the predictions of vari-
ous approximate formulations of the boundary layer in a
steady slab model, including those that assume gradient
wind balance, with that of a unapproximated formulation.
Using the unapproximated solution as a control, we exam-
ine the accuracy of the various approximate formulations.
We begin by examining the features of balanced models
in general, reviewing the role of friction in the secondary
circulation as described by the Sawyer-Eliassen equation.

2 Balanced hurricane models

The cornerstone of all balance theories for vortex evolu-
tion is the Sawyer-Eliassen (SE-) balance model which
describes the slow evolution of an axisymmetric vortex
forced by heat and (azimuthal) momentum sources. Here
the flow is assumed to be axisymmetric and in strict gra-
dient wind and hydrostatic balance. We summarize the
SE model here for the simplest configuration, namely
the axisymmetric flow of an incompressible Boussinesq
fluid with constant ambient Brunt-Väisälä frequency, N .
The hydrostatic primitive equations of motion may be
expressed in cylindrical polar coordinates (r, λ, z) as
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where (u, v, w) is the velocity vector in this coordinate
system, C = v2/r + fv is the sum of the centrifugal and
Coriolis terms, P = p/ρ̄ is the pressure p divided by the
mean density ρ̄, σ is the buoyancy force, Ḃ is the diabatic
source of buoyancy, and Fr and Fλ are the radial and
tangential components of frictional stress, respectively.

With the additional assumption of gradient wind
balance, Eq. (1) reduces to

C =
∂P

∂r
. (6)

If P is eliminated by cross-differentation with the hydro-
static equation (3), we obtain the thermal wind equation
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= −ξ ∂v
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, (7)

where ξ = 2v/r + f . The SE equation is obtained by dif-
ferentiating (7) with respect to time, eliminating the time
derivatives of v and σ using Eqs. (2) and (4) and introduc-
ing a streamfunction ψ for the secondary circulation such
that the continuity equation (5) is satisfied, i.e. we write
u = −(1/r)(∂ψ/∂z) and w = (1/r)(∂ψ/∂r). Then, with
a little algebra we obtain:
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where S = ∂v/∂z is the vertical wind shear and ζa =
(1/r)(∂rv/∂r) is the absolute vorticity. More general
derivations of this equation are found, for example,
in Willoughby (1979), Shapiro and Willoughby (1982)
and Smith et al. (2005). The SE-equation is elliptic
if the vortex is symmetrically stable (i.e. if the iner-
tial stability on isentropic surfaces is greater than zero).
It is readily shown that symmetric stability is assured
when (N 2 + ∂σ/∂z)ζaξ − (ξS)2 > 0 (Shapiro and Mont-
gomery 1993). Given suitable boundary conditions this
equation may be solved for the streamfunction of the sec-
ondary circulation ψ at a given time. Being a balance
model only one prognostic equation is used to advance the
system forward in time. The set of equations (2) (or (4)),
(7) and (8) thus provide a system that can be solved for
the balanced evolution of the vortex. Equation (2) (or (4))
along with the diagnostic equation (7) is used to predict
the future state of the primary circulation with values of u
and w at a given time being computed from the stream-
function ψ obtained by solving Eq. (8). The secondary
circulation given by (8) is just that required to keep the
primary circulation in hydrostatic and gradient wind bal-
ance in the presence of the processes trying to drive it
out of balance. These processes are represented by the
radial gradient of the rate of buoyancy generation and the
vertical gradient of ξ times the tangential component of
frictional stress. It follows that surface friction can induce
radial motion in a balanced formulation of the boundary
layer.

The Sawyer-Eliassen equation can be simplified by
using potential radius coordinates in which the radius r is
replaced by the potential radius, R, defined by 1

2fR
2 =

rv + 1
2fr

2, the right-hand-side being the absolute angu-
lar momentum (Schubert and Hack 1983). In this case
surfaces of absolute angular momentum are vertical and
the assumption that these surfaces are coincident with
the moist isentropes provides an elegant way to formu-
late the zero-order effects of moist convection (Emanuel
1986, 1989, 1995, 1997). It is for this reason, perhaps, that
balanced models remain popular. Nevertheless, the ques-
tion remains whether the boundary layer in such models
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BOUNDARY LAYER 3

is sufficiently accurate? We explore this question below in
the context of a simple slab formulation for the boundary
layer and approximations thereto.

3 A slab model for the boundary-layer

We review first the slab boundary layer model described
by Smith and Vogl (2008: henceforth SV08), which pro-
vides a suitable framework to examine the accuracy of var-
ious approximations in boundary-layer formulations. For
simplicity we assume the boundary layer to have uniform
depth†, h, and constant density. In our cylindrical coor-
dinate system, the vertically-integrated equations for the
radial momentum, azimuthal momentum and mass conti-
nuity can be written in the following form:
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(v2
gr − v2

b )
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r
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h
, (11)

where ub and vb are the vertically-averaged radial and
azimuthal components of wind speed in the boundary
layer, vgr(r) and wh are the tangential wind speed and
vertical velocity at the top of the boundary layer, f is
the Coriolis parameter, CD is the surface drag coefficient
and wh− = 1

2 (wh − |wh|). The terms involving wsc rep-
resent turbulent fluxes at the top of the boundary layer
(arising from rainbands, shallow convection, or smaller-
scale turbulent structures), but for simplicity we do not
consider them here, setting wsc equal to zero. Consistent
with the slab formulation, the quantities ub and vb are
assumed to be independent of depth. Note that wh− is
nonzero only when wh < 0, in which case it is equal to
wh. Thus the terms involving wh− represent the transport
of properties from above the boundary layer that may be
different from those inside the boundary layer. As in SV08
we take CD = CD0 + CD1|ub|, where CD0 = 0.7 × 10−3

andCD1 = 6.5 × 10−5 for wind speeds less than 20 m s−1

and CD = 2.0 × 10−3, a constant, for larger wind speeds.
These values are based on our interpretation of Fig. 5 from
Black et al. (2007).

Substitution of Eq. (11) into Eq. (9) gives an expres-
sion for wh:
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h
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1
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b
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+
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h
(u2

b + v2
b )

1
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)
− ub

r

]
,

(12)

†SV08 considered also the variable depth case, but for simplicity the
focus here is on the constant depth boundary layer assumed by Emanuel
(1986).

where α is zero if the expression in square brackets is posi-
tive and unity if it is negative. With this expression for wh,
Eqs. (9), (10) and (12) form a system of ordinary differen-
tial equations that may be integrated radially inwards from
some large radius R to determine ub and vb as functions
of r, given values of these quantities at r = R as well as
the radial profile vgr(r).

We discuss now various rational approximations pos-
sible to the foregoing equations as discussed below.

3.1 Linear approximation

A common simplification of the full boundary-layer equa-
tions is to neglect the terms involving the vertical advec-
tion through the top of the layer and to linearize Eqs. (9)
and (10), treating the magnitudes of ub and v′ = v − vgr

as small compared with vgr (Eliassen and Lystad 1977,
Kepert 2001). The linearized boundary layer equations
then become

ξ(vgr − vb) = −CD

h
(u2

b + v2
b )

1
2ub, (13)

ζaub = −CD

h
(u2

b + v2
b )

1
2 vb, (14)

where ξ and ζa are as defined in section 2. The equations
may be solved locally for ub and vb in terms of vgr,
ξ and ζa, the last two quantities being calculated from
vgr . It is convenient to write (ub, vb) = vgr(bu, v), where
b2 = ξ/ζa. Dividing (13) by (14) and rearranging gives the
equation for an circle

u2 +
(
v − 1

2

)2

=
1
4
. (15)

Also, squaring Eq. (14) gives a second equation relating u
and v:

v = +b

({
1
4
u4 +

c2

b2
u2

} 1
2

− 1
2
u2

) 1
2

, (16)

where c = hζa/(Cdvgr).
Families of curves given by (15) and (16) for typical

values of the parameters b and c are shown in Fig. 1 (see
section 4. The intersections of these curves in the region
u < 0, v > 0 (assuming a cyclonic vortex for vgr) give the
required solutions for (u, v) and hence for (ub, vb). These
solutions may be readily obtained by a simple Newton-
Rapheson algorithm as explained in SV08 (see appendix
therein). The fact that all solutions for (u, v) lie on a circle
of radus one half implies a bound on the magnitude of the
ratios bu = ub/vgr and v = vb/vgr, which may not exceed
1
2 b and unity, respectively. Therefore the occurrence of
supergradient winds is ruled out in these linear depth-
averaged formulations, but ub could exceed vgr if b is
sufficiently large.

Despite this ability to obtain a solution to the lin-
earized equations with the quadratic friction terms intact,
one might argue that a consistent formulation of the lin-
earized equations would include also a linearization of the

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–9 (2008)
DOI: 10.1002/qj
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Figure 1. The circle corresponding with Eq. (15) and the curves
given by Eq. (16) for typical values of the parameters b and c
derived from the radial profile of vgr used to construct Fig. 2. The
straight lines are those given by Eq. (17) for the same parameters.
The numbers marking the curves are the radii in km at which the
parameters b and c are calculated. Blue curves correspond to radii

≤ 250 km and red curves for radii ≥ 300 km.

friction terms, approximating (u2
b + v2

b )1/2 by vgr . In this
case, Eq. (15) does not change, but Eq. (16) becomes sim-
ply

v = −μu, (17)

where μ = bc = hI/(Cdvgr) and I is defined by I2 = ξζa.
The straight lines represented by Eq. (17) are shown
also in Fig. 1. The intersection of these lines with the
corresponding circle gives the solution for u and v when
the quadratic terms in Eqs. (13) and (14) are linearized.
Note that there are moderate differences between the
solutions with and without the linearization of the friction
terms for most values of the parameters.

If in addition to the linear approximation we make the
small Rossby number assumption, ξ and ζagr may both be
approximated by f . Then Eqs. (13) and (14) become the
slab equivalent of the Ekman layer equations. In this case,
b = 1 so that (ub, vb) = vgr(u, v), while c in (16) reduces
to cg = hf/(Cdvgr).

3.2 Balanced approximation

If we make the strict gradient wind balance approximation
as well as the linear approximation, i.e. if we assume that
the tangential wind speed in the boundary layer is equal to
that above, Eq. (13) is by necessity trivial

vgr = vb, (18)

and Eq. (14) gives directly an expression for the radial
wind speed, i.e.

ζaub = −CD

h
(u2

b + v2
gr)

1
2 vgr , (19)

whereupon

ub = −vgr

(
1

c2 − 1

) 1
2

. (20)

3.3 Emanuel’s balanced approximation

Emanuel (1986) made the additional assumption that the
radial wind component can be neglected when calculating
the total wind speed in the friction term. In this case the
radial wind speed is given by

ub = −1
c
vgr, (21)

which is similar to the dimensional form of Eq. (17)
except that vb is approximated by vgr.

4 Some solutions

In this section we assess the accuracy of the linear and
balanced approximations made in subsections 3.1, 3.2 and
3.3 by comparing the solutions of these systems with that
from the full equations (9), (10) and (12), which we refer
to as the control calculation. The profile of vgr is the
same as that used in SV08, i.e. vgr = v1s exp (−α1s) +
v2s exp (−α2s), where s = r/rm and rm the radius at
which the tangential wind speed is a maximum and equal
to vm. In the calculations here, vm and rm are taken to
be 40 m s−1 and 40 km, respectively corresponding with
the values: α1 = 1.4118, α2 = 0.3, v1 = 103.34 and v2 =
20.0. The Coriolis parameter is taken to be f = 5 × 10−5

s−1. The geostrophic solution is used to initialize the
control calculation at a radius of 500 km, where the local
Rossby number vgr(R)/(fR) = 0.24 is small enough for
the geostrophic solution to be reasonably accurate (here
vgr(R) = 5.88 m s−1.

4.1 Constant depth boundary layer

The results of the various calculations are summarized
in Fig. 2 for a boundary layer with a constant depth
of 800 m. The figure shows radial profiles of (inward)
radial and tangential wind components in the boundary
layer and the vertical velocity component at the top of the
boundary layer. The latter is calculated analytically from
Eq. (12) for the control calculation and from the continuity
equation (11) for the approximations to it. Figure 2 shows
also the profile of tangential wind assumed at the top of
the boundary layer (vgr) and the radial variation of the
parameters b in Eq. (15) and c in Eqs. (16) and (21).

The behaviour of all solutions shows an increase
in vb with decreasing radius together with an increase
in the magnitude of ub down to a radius of 47 km
in the case of vb and 84 km in the case of ub. In
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BOUNDARY LAYER 5

Figure 2. Radial profiles of: (a) tangential, and (b) radial wind components in the slab boundary layer calculation described in section 3
and in the various approximations to it. The solid black line is the assumed tangential wind profile at the top of the boundary layer, vgr and
the solid red line is the unapproximated boundary layer solution. [Units m s−1] For plotting convenience the sign of ub has been reversed.
”L” represents the linear solution, ”La” the linear solution with the friction terms linearized, ”g” the geostrophic solution, ”b” the balanced
solution and ”e” Emanuel’s balanced approximation. (c) The corresponding profiles of vertical motion at the top of the boundary layer. (d)

The radial variation of the parameters b, c and cg (labelled ”cg”) for the assumed tangential wind profile.

the control solution, the tangential wind speed becomes
supergradient (vb > vgr) in the inner core region (r <
69 km) and because of this, the radial flow suffers a
rapid deceleration (SV08). In contrast, all the approximate
solutions remain subgradient. The tangential wind speed
in the linear and geostrophic solutions is close to that in
the control calculation at radii larger than about 300 km,
but the geostrophic solution shows a very large deviation
from it at smaller radii. In contrast, the radial wind in the
geostrophic calculation follows the control rather closely
except at radii less than 100 km, whereas that in the linear
and Emanuel balanced approximations show a significant
deviation from the control at most radii, being significant
overestimates at radii between about 200 km and 400
km and moderate underestimates at radii around 100 km.
The balance approximation in subsection 3.2 shows an
enormous deviation from other solutions, a feature that is
attributed to the fact that, at least for the profile chosen
for vgr, the parameter c in (20) approaches unity so
that the denominator in Eq. (20) becomes relatively large

(Fig. 2d). Emanuel’s balanced approximation is superior
in this respect and the radial wind remains close to the
linear solution at all radii, although like the latter, it
shows significant departures from the control calculation.
There is very little difference between the radial and
tangential wind components in linear calculation and the
form thereof in which the friction term is linearized.

There are significant differences in the vertical veloc-
ity between the various approximations and the control
calculation. The control calculation breaks down at a
radius of about 50 km where the radial wind speed tends to
zero. This behaviour is not replicated by any of the other
solutions. At slightly larger radii, the vertical velocity
in the control calculation increases rapidly with decreas-
ing radius, but where there are large radial gradients, the
approximations on which boundary-layer theory is based
will no longer be valid. Again, the balanced solution
shows a large deviation compared with all other solutions
between about 200 and 400 km radius. The geostrophic
solution predicts large vertical velocities at small radii,
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Figure 3. Calculations with variable boundary layer depth. Radial profiles of: (a) assumed boundary layer depth, (b) tangential, and (c)
radial wind components in the slab boundary layer calculation described in section 3 and in the various approximations to it. The solid
black line is the assumed tangential wind profile at the top of the boundary layer, vgr and the solid red line is the unapproximated boundary
layer solution. [Units m s−1] For plotting convenience the sign of ub has been reversed. ”L” represents the linear solution, ”La” the
linear solution with the friction terms linearized, ”g” the geostrophic solution, ”b” the balanced solution and ”e” Emanuel’s balanced

approximation. (d) The corresponding profiles of vertical motion at the top of the boundary layer.

while the linear solution and Emanuel’s balanced approx-
imation show a maximum vertical velocity of about 35 cm
s−1 at a radius of about 60 km. There are significant differ-
ences also between the radii at which the vertical velocity
changes sign, this being about 170 km in the control cal-
culation, 235 km in the geostrophic calculation, 300 km in
Emanuel’s balanced calculation and 310 km in the large-
discrepancy balanced calculation.

5 Solutions for radially-varying layer depths

A scale analysis of the boundary layer equations indicate
that the boundary-layer depth is inversely proportional to
the square root of the inertial stability, I , at the top of
the boundary layer. This scaling would imply a significant
reduction in depth between the starting radius and the core
region (see e.g. Fig. 3a). Such a variation is supported
by the linear solution to the full boundary-layer equations
that accounts for vertical structure of the layer (Eliassen
and Lystad 1977, Kepert 2001) as well as full numerical

solutions (Kepert and Wang 2001, Montgomery et al.
2001). While it is not possible to determine the radial
variation of δ in the slab-model, it is straightforward to
modify Eqs. (9) - (12) to allow for a prescribed variation
δ(r) (see SV08, Appendix A). To assess the effect of
a decrease in δ with declining radius we carried out
calculations in which δ(r) = δ(R)

√
(Ig/I), where δ(R) is

the boundary layer depth at r = R and Ig is the value of I
at this radius. The solutions for δ(R) = 800 m are shown
in Fig. 3. In the control calculation the tangential wind
speeds in the boundary layer are decreased, especially
inside a region of about 200 km and the peak winds
are significantly lower in magnitude than vm. In contrast
the peak radial winds are significantly larger than in the
constant-depth calculations and the maximum occurs at
markedly smaller radius. When the boundary-layer depth
decreases with decreasing radius, the maximum vertical
velocity at the top of the layer is reduced considerably
from that in the constant-depth calculations and is more
in line with that in previous calculations (e.g. Kepert and

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–9 (2008)
DOI: 10.1002/qj



BOUNDARY LAYER 7

Figure 4. Legend as for Fig. 3, but for a narrower vortex profile.

Wang 2001: see e.g. their Fig. 3). The variable-depth
calculations still show supergradient wind speeds, but
now well inside rm in a region where radial gradients
are probably steep enough to strain the assumptions of
boundary layer theory. We have puposely omitted to show
the balanced solution of section 3.2 in Fig. 3 as the
parameter c2 in Eq. (20) has values less than unity over
a large range of intermediate radii. At these radii, the
balanced solution does not exist for the particular vgr

profile used.
The linear approximation, that with linear friction,

and the Emanuel balanced approximation predict the tan-
gential wind speed rather well, almost up to the radius at
which the tangential wind component becomes supergra-
dient in the control calculation. The geostrophic approxi-
mation remains accurate inwards to a radius of about 300
km, but greatly undersetimates the tangential wind com-
ponent inside this radius. The predictions of the radial
wind component by the approximate theories are all poor
in comparison to that in the control calculation, except,
surprisingly that of the geostrophic approximation at radii
larger than about 200 km. Inside this radius, however, the
geostrophic approximation is poor also. The Emanuel bal-
anced approximation gives by far the worst prediction of

the radial component with a maximum exceeding that of
the control calculation by 10-20 m s−1 at radii between
about 70 km and 300 km. Note that in this approximation,
the radial wind is just minus the ratio of the tangential
wind above the boundary layer divided by the profile-
dependent parameter c. All the approximate theories over-
estimate the subsidence into the boundary layer at outer
radii (≥ 320 km) and show ascent occurring inside this
radius compared with a radius of 160 km in the control.
Moreover the ascent is much larger than in the control
except within a radius of about 30 km.

Figure 4 shows plots analogous to those in Fig. 3,
but for a narrower vortex profile that has the same val-
ues of rm and vm (the functional form is the same as
before, but v1 = 90.06 m s−1, v2 = 36 m s−1, α1 = 1.601,
α2 = 0.5). The radius of gale-force winds (17 m s−1) is
317 km compared with 381 km in Fig. 3. For this profile,
the inertial stability parameter, I , has a local minimum at a
radius of about 240 km, which implies a local maximum in
the boundary-layer depth at this radius (Fig. 4a). Because
the radial gradients are larger, one would expect a nar-
row vortex profile to strain the balanced approximations
more than a broader one and this expectation is confirmed
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Figure 5. Contributions to the radial momentum balance for radii less than 200 km in the variable depth calculations in (a) Fig. 3, and (b)
the narrower vortex profile in Fig. 4. The labelling on the curves refers to the net inward force (nif), the frictional force (fri), the vertical

advection of momentum into the boundary layer (wu) and the residual force, the solid blue line.

by the solutions. Now the full linear balanced approxima-
tion is the worst of all of the approximations in capturing
the tangential wind component in the boundary layer at
radii between 60 km and 300 km. In contrast, the version
with linear friction and Emanuel’s balanced approxima-
tion being reasonably accurate until near the radius at
which the tangential wind component in the control cal-
culation becomes supergradient. However the radial wind
component is greatly overestimated by all the approxima-
tions at a radii less than about 320 km, with again the
Emanuel balanced calculation being the least accurate.
The vertical velocity at the top of the boundary layer is
likewise very poor compared with that in the control cal-
culation and worse than in the broader tangential wind
profile in Figs. 2 and 3.

The reasons for the large deviations of the radial and
vertical winds in the balance solutions from those in the
control calculation may be inferred from Fig. 5, which
shows the radial force fields for the two vortex profiles
in the calculations with variable boundary-layer depth.
The net inward driving force, the difference between the
inward pressure gradient force and the outward-directed
centrifiugal and Coriolis forces, exceeds the frictional
force by a significant fraction leaving a net inward force
which is just the radial acceleration. This net inward
force is appreciable down to the radius just inside rm,
when it begins to decrease rapidly, reversing sign about
10 km outside the radius at which the net driving force
changes sign and the tangential wind component becomes
supergradient. The foregoing remarks apply to both panels
in Figs. 5 and, as expected, the radial acceleration is a little
larger for the narrower vortex profile.

6 Conclusions

Our calculations for the chosen tangential wind profiles
vgr show that the linear solution and Emanuel’s balanced
version thereof tend to overestimate the inflow in the

boundary layer at large radii (≥ 160 km) and underesti-
mate it at inner radii. They predict the maximum vertical
motion to occur at an unrealistically large radius (more
than 250 km) and they are unable to capture the formation
of supergradient winds. We consider such formulations to
be inappropriate for representing the boundary layer in the
inner core region of a hurricane. The balanced formulation
without a linearization of the friction term is especially
unrealistic.
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