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Abstract. The estimation of the epipolar geometry is especially dif-
ficult where the putative correspondences include a low percentage of
inlier correspondences and/or a large subset of the inliers is consistent
with a degenerate configuration of the epipolar geometry that is totally
incorrect. This work presents the Balanced Exploration and Exploita-
tion Model Search (BEEM) algorithm that works very well especially for
these difficult scenes.

The BEEM algorithm handles the above two difficult cases in a uni-
fied manner. The algorithm includes the following main features: (1)
Balanced use of three search techniques: global random exploration, lo-
cal exploration near the current best solution and local exploitation to
improve the quality of the model. (2) Exploits available prior informa-
tion to accelerate the search process. (3) Uses the best found model to
guide the search process, escape from degenerate models and to define
an efficient stopping criterion. (4) Presents a simple and efficient method
to estimate the epipolar geometry from two SIFT correspondences. (5)
Uses the locality-sensitive hashing (LSH) approximate nearest neighbor
algorithm for fast putative correspondences generation.

The resulting algorithm when tested on real images with or without
degenerate configurations gives quality estimations and achieves signifi-
cant speedups compared to the state of the art algorithms!

1 Introduction

The estimation of the epipolar geometry is an important task in computer vision.
The RANdom SAmple Consensus algorithm (RANSAC) [1] has been widely used
in computer vision in particular for recovering the epipolar geometry.

The estimation of the epipolar geometry is especially difficult in two cases.
The first difficult situation is when the putative correspondences include a low
percentage of inliers. In such a situation, the number of required iterations is
usually high. A popular stopping criterion in a RANSAC like algorithm is

I = log(1 − p)/ log(1 − αs) ≈ log(1 − p)/αs, (1)
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where s is the size of the random sample, I is the number of iterations, α is the
inlier rate, and p is the required probability [1, 2]. For example, for α = 0.15 the
number of needed iterations for s = 7 and s = 2 are I = 2, 695, 296 and I = 202
respectively, for p = 0.99.

Several approaches have been suggested to speed-up the RANSAC algorithm.
In [3] the random sampling was replaced by guided sampling. The guidance of
the sampling is based on the correlation score of the correspondences. PROSAC
[4] exploits the linear ordering defined on the set of correspondences by the simi-
larity function used in establishing putative correspondences. PROSAC samples
are drawn from progressively larger sets of top-ranked correspondences. LO-
RANSAC [5] exploits the fact that the model hypothesis from an uncontami-
nated minimal sample is often sufficiently near the optimal solution and a local
optimization step is applied to selected models. In our previous work [6] the algo-
rithm generates a set of weak motion models (WMMs) and generates an outlier
correspondence sample. Using these the probability that each correspondence is
an inlier is estimated and enable to guide the sampling. In [7, 8] it was suggested
to use three affine region to region matches to estimate the epipolar geometry
in each RANSAC sample. Under this framework s in Eq. (1) is changed from
seven to three, reducing considerably the number of iterations.

The second difficult situation is when a large subset of inliers is consistent
with a degenerate epipolar geometry. This situation often occurs when the scene
includes a degeneracy or close to degenerate configurations. In this case stan-
dard epipolar geometry estimation algorithms often return an epipolar geometry
with a high number of inliers that is however totally incorrect. The estimation
of the fundamental matrix in such situations has been addressed before. In [9]
a RANSAC-based algorithm for robust estimation of epipolar geometry in the
possible presence of dominant scene plane was presented. The algorithm detects
samples in which at least five correspondences are consistent with an homogra-
phy. This homography is then used to estimate the epipolar geometry by the
plane and parallax algorithm.

Consider the following two examples. Figure 1(a) shows the flowerpot im-
age scene in which the inlier rate is low and it includes a dominant degenerate
configuration. In this scene 17% out of 252 putative correspondences are inliers
and 70% of the inliers lie in a small part of the scene which yields a degenerate
configuration. A computation of the fundamental matrix based on only inliers
from this small space results in a very unstable fundamental matrix. On this
scene RANSAC often fails to find the correct fundamental matrix. Figure 1(a)
shows a typical result of RANSAC. A dot represents inliers from the degenerate
configuration, a circle represents inliers not belonging to the degenerate config-
uration and the × represents an outlier that RANSAC detected as inlier. In this
example RANSAC succeeded to find all the inliers that belong to the degenerate
configuration but failed to find any inliers outside it. This is demonstrated in
Figure 1(b), which shows the square root of the symmetric epipolar distance
of the inlier from the fundamental matrix. The distances of the inliers outside
the degenerate configuration are large. Although, a large number of inliers were
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found, the precision of the resulting fundamental matrix is very low. The number
of iterations for this scene according to Eq. (1) for p = 0.99 is over one million.
Figure 1(c) shows another example in which the inlier rate is 16.5% out of 310
putative correspondences and it includes a dominant plane degenerate configu-
ration. In this scene 78% of the inliers lie near the plane. Figure 1(c) shows a
typical result of the RANSAC which succeed to find part of the inliers that lie
near the plane and failed to find any inliers not close to the plane. As a result,
the fundamental matrix is totally incorrect as can be seen in Figure 1(d). The
number of iterations for this scene according to Eq. (1) is again over one million.

(a) Flowerpot scene
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(b) Result evaluation of
the flowerpot scene

(c) Book scene
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(d) Result evaluation of
the book scene

Fig. 1. Image scenes and quality evaluation

In this paper we propose a novel algorithm for robust estimation of epipo-
lar geometry. The algorithm handles the above two difficult cases in a unified
manner. The algorithm can handle not only planar degeneracy, but scenes that
include a variety of degeneracies or close to degenerate configurations.

The balanced exploration and exploitation model search (BEEM) algorithm
includes a balanced use of three search techniques: global random exploration,
local exploration near the current best solution and local exploitation to improve
the quality of the model. Moreover, it exploits available prior information, the
distance ratio of the closest to second-closest neighbors of a keypoint, to accel-
erate the search process. Also, it uses the best found model to guide the search
process, escape from degenerate models and define an efficient stopping crite-
rion. This is done by indirectly updating the probability that a correspondence
is an inlier and by a smart sampling strategy. In addition, a simple and efficient
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method to estimate the epipolar geometry from two SIFT correspondences is
presented. The matching is sped up using the LSH [10] approximate nearest
neighbor algorithm. The generation of the SIFT features can be sped up using
the approximation described in [11].

The resulting algorithm when tested on real images with or without degen-
erate configurations gives quality estimations and achieves significant speedups,
especially in scenes that include the aforementioned difficult situations.

2 Exploration and Exploitation

Any efficient search algorithm must use two general techniques to find the global
maximum: exploration to investigate new and unknown areas in the search space
and exploitation to make use of knowledge found at points previously visited to
help find better points. These two requirements are contradictory, and a good
search algorithm must strike a balance between them. A purely random search
is good at exploration, but does no exploitation, while a purely hill climbing
method is good at exploitation, but does little exploration. Combinations of
these two strategies can be quite effective, but it is difficult to know where the
best balance lies.

Robust estimation of the fundamental matrix can be thought of a search
process. The search is for the parameters of the fundamental matrix and the
set of inliers. Therefore, algorithms that estimate the epipolar geometry can be
analyzed according to the way they combine the above techniques. The RANSAC
algorithm [1] samples in each iteration a minimal subset of points and computes
from it a model. This random process is actually an indirect global exploration
of the parameter space. In the PbM algorithm [12, 13] each exploration iteration
is followed by a standard exploitation step. A hill climbing procedure over the
parameter space is performed using a local search algorithm. The LO-RANSAC
algorithm [5] makes an exploitation step only when a new good model is found
in an exploration iteration. The exploitation step is performed by choosing the
random sample only from the set of suspected inliers, the model’s support set. In
cases that there exists a degenerate configuration the exploitation step tends to
enlarge the support set but it includes only inliers belonging to the degeneracy.

One disadvantage of the above methods is that they do not have a step similar
to the local exploration step that exists in methods like simulated annealing,
i.e. even if they find a relatively good model that includes a large number of
inliers, they do not use this information after the exploitation step. Once the
exploitation step is over, they return to random sampling hoping to find by
chance a better model. We suggest to add an intermediate technique that uses
the previous best solution and explores its neighborhood looking for a better
solution whose support set is larger and includes most of the support set of the
previous best solution. To achieve this we need to generate a sample of inliers
which includes beside members of the support set other correspondences. Once
we have a “good” previous solution it can be assumed that the vast majority of
its support set are inliers. Therefore, when choosing a subset for the RANSAC
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step, we choose most of the subset from the support set and the rest from points
that are outside the support set. When such a subset consists only of inliers the
support set of the resulting model tends to break out from the confines of the
set of inliers belonging to degeneracy yielding a more correct solution.

When incorporating a local exploration step into the algorithm several ques-
tions have to be addressed. First, local exploration is only effective when the best
previous support set includes nearly only inliers. So, it is essential to be able to
recognize such sets. Second, depending on the quality of the set a balance be-
tween the application of global exploration, local exploration and exploitation
has to be struck. Finally, how to incorporate available prior information about
the quality of each putative correspondence into the general scheme.

Prior

estimation

Global

exploration

Local

exploration

Exploitation

Model
quality

estimation

Fig. 2. State diagram of the balanced exploration and exploitation model search
(BEEM) algorithm

The BEEM algorithm includes all the above components. Its state diagram
is presented in Figure 2. The algorithm includes the following states:

– Prior estimation. Use prior available information to estimate the proba-
bility that a correspondence is an inlier. This probability is used to guide
the sampling in the other states.

– Global exploration. Sample a minimal subset of correspondences and in-
stantiate the model from the subset. If the size of the support set of the
formed model is larger than all the models that were formed in this state
goto the exploitation state, otherwise goto to the model quality estimation
state.

– Model quality estimation. Estimate the quality of the best model found
until now based on the size of its support set and the number of iterations
that the algorithm has performed until now. Use this quality estimate to
choose probabilistically the next state, global exploration or local exploration.

– Local exploration. Sample a subset of correspondences from the support
set of the best model and sample a subset of correspondences from the rest
of the correspondences. Instantiate the model from the union of the two
subsets. If the size of its support set is larger than all the models that were
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previously formed in this state goto the exploitation state, otherwise goto to
the model quality estimation state.

– Exploitation. Iteratively try to improve the last formed model.

The various components of the algorithm are described in the following sections.

3 Using Prior Information of the Match

The best candidate match for each SIFT keypoint from the first image is found
by identifying keypoints in the second image whose descriptor is closest to it in
a Euclidian distance sense. Some features from the first image will not have any
correct match in the second image. Therefore, it is useful to have the ability to
discard them. A global threshold on the distance to the closest feature does not
perform well, as some descriptors are much more discriminative than others. A
more effective measure as suggested by [14] is obtained by comparing the distance
of the closest neighbor to that of the second-closest neighbor. This measure per-
forms well because for correct matches the closest neighbor is significantly closer
than the closest incorrect match. For false matches, there will likely be a number
of other false matches within similar distances due to the high dimensionality
of the feature space. We can think of the second-closest match as providing an
estimate of density of the false matches within this region of the feature space
and at the same time identifying specific instances of feature ambiguity.

Let ri be the distance ratio of the closest to the second-closest neighbors of
the ith keypoint of the first image. Figure 3(a) shows the value of this measure
for real image data for inliers and outliers. In [14] it was suggested to reject all
matches in which the distance ratio is greater than rtresh = 0.8. The probabilistic
meaning of this is that each correspondence whose score is below this threshold
is sampled uniformly. PROSAC exploits this ratio even more and its samples are
drawn from progressively larger sets from the set of correspondences ordered by
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Fig. 3. (a) The empirical distributions of the distance ratio, r, for inlier and outliers
were generated based on twenty image pairs. (b) The probability that a correspondence
is an inlier as a function of r for several values of the inlier rate, α. (c) The distributions
of the estimated probability Pin() of the inliers and the outliers, for the book scene
image pair.
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this ratio. This improves the performance of the algorithm. In this work we make
an additional step by giving an empirical probabilistic meaning to this ratio.

The distance ratio can be thought of as a random variable and is modeled as
a mixture model:

fr(ri) = fin(ri)α + fout(ri)(1 − α),

where fin(ri) = f(ri|pi ↔ p′i inlier), fout(ri) = f(ri|pi ↔ p′i outlier), and α is
the mixing parameter which is the probability that any selected correspondence
is an inlier. The probability, Pin(i), that correspondence pi ↔ p′i is an inlier can
be calculated using Bayes’ rule:

Pin(i) =
fin(ri)α

fin(ri)α + fout(ri)(1 − α)
. (2)

We estimate this probability in a non-parametric manner. We generate two
samples from real images:

– Sin, a sample of Ñin inlier ratio distances.
– Sout, a sample of Ñout outlier ratio distances.

We estimates fin() and fout() using a kernel density estimator over Sin and Sout

respectively.
We estimate α for a given image pair using curve fitting of the empirical

cumulative distribution function (cdf) of Sin, Sout and the set of ratios of the
putative correspondences. Once α has been estimated Pin() can be estimated
for all putative correspondences using Eq. (2). Figure 3(b) shows the probability
Pin() for several values of α. Figure 3(c) shows the distributions of the estimated
Pin() of the inliers and the outliers, for the book scene image pair. As can be seen
in the graph, a large portion of the correspondences that got high probabilities
are indeed inliers. In this example the inlier rate is 16.5% and the estimated α
is 15.7% which is quite accurate.

4 Epipolar Geometry from Two SIFT Correspondences

In [7, 8] it was suggested to use three affine region to region matches to estimate
the epipolar geometry in each RANSAC sample. The novelty here is to use the
SIFT descriptor in the computation in a similar manner. The SIFT descriptor
is a very powerful descriptor for image matching. This descriptor is invariant to
the similarity transformation. The ability to generate epipolar geometry from
two SIFT correspondences instead of seven point correspondences is expected
to reduce significantly the run-time according to Eq. (1). We suggest a simple
method to estimate the epipolar geometry from two SIFT correspondences. Each
SIFT keypoint is characterized by its location p = (x, y), orientation θ of the
dominant gradient and its scale s. We generate for each SIFT keypoint a set of
four points ((x, y), (x + ls cos(θ), y + ls sin(θ), (x + ls cos(θ + 2π

3 ), y + ls sin(θ +
2π
3 ), (x + ls cos(θ + 4π

3 ), y + ls sin(θ + 4π
3 )). We set l = 7

8
w
2 , where w is the

width of the descriptor window. Thus, the three additional points lie within
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the descriptor window. A set of two SIFT correspondences gives a set of eight
point correspondences. These can be used to estimate the fundamental matrix
using the linear normalized eight-point algorithm [15]. A SIFT correspondence is
consistent with the hypothesized epipolar geometry only when all coincident four
point correspondences, (ps1, ps2, ps3, ps4) ↔ (p′s1, p

′
s2, p

′
s3, p

′
s4), are consistent.

The location of the first point in the set is quite accurate, whereas, the location
of the last three points are less accurate because they are approximated from
the SIFT characteristics. We use the error thresholds d for the first point in the
set and d

√
s′s for the other three, where s and s′ are the scale SIFT parameters

of the keypoints of the first and the second SIFT descriptors respectively and d
is a threshold parameter.

One may wonder how accurate is the estimation of the fundamental matrix
using the 2-SIFT method. The 2-SIFT method generates four point correspon-
dences from each SIFT keypoint. These four points are usually quite close to
each other and the last three points are estimated less accurately. Therefore, a
fundamental matrix which is based on such point correspondences is expected
to be less accurate. To check the severity of this problem, the estimation quality
of the 2-SIFT method, 7-point algorithm, normalized 8-point algorithm with 8
and 9 point correspondences were checked. Two types of real scenes without any
dominant degenerate configurations were checked: a scene moving sideways and
a scene moving forward. For each scene the inlier SIFT correspondences were
found. For each algorithm in each scene 10, 000 samples were taken from the in-
lier correspondences. For each sample a fundamental matrix was calculated and
the number of correspondences consistent with the model was checked. Figure 4
shows the results. The results of the 2-SIFT method are less accurate than the
7-point algorithm and the 9-point algorithm as expected. However, it usually re-
covers enough supporting inliers to initialize the fundamental matrix estimation
process. Clearly, the use of the exploitation step after the 2-SIFT method is very
important. To improve the estimation quality, we checked one more method, the
2-SIFT without singularity constraint (2-SIFT-NSC) method. In this method
the singularity constraint of the fundamental matrix is not enforced. The result
is usually an illegal model, but in the sample step of the algorithm it is not
necessary to work with legal models, because the main purpose of the sample
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Fig. 4. Algorithm evaluation
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step is to detect large amounts of supporting inliers. The results of the 2-SIFT-
NSC method which are also shown in Figure 4 outperform the 2-SIFT method.
The reason for this is that the singularity constraint enforcement applied in the
8-point algorithm is not optimal since all the entries of the fundamental matrix
do not have equal importance. Note also that the 2-SIFT-NSC method requires
less computational cost, because it does not enforce the singularity constraint.
For the above reasons we use the 2-SIFT-NSC method in our algorithm.

5 Best Found Model Quality Estimation

In the model quality estimation state the algorithm estimates the quality of the
best found model as an inlier model, i.e. a model that nearly all the members of
its support set are inliers. When an inlier model is detected it can help accelerate
the search process using the local exploration state, whereas using an outlier
model in that state is useless. In such situations we want to cause the BEEM
algorithm to perform global exploration. To achieve this we have to estimate the
probability that the model is supported by outliers that are by chance consistent
with it. Let Pom(i) be the probability that at most i outliers support an outlier
model. Let Nbest = max{Ni}I

i=1 be the maximal size of the support set after I
iterations achieved by model Mbest, where Ni is the size of the support set of
the ith iteration. Using the above definitions, the probability, Pq, that Mbest is
not an outlier model is estimated. This is equivalent to the probability that in
all of the I iterations the support set of size Nbest could not be achieved by an
outlier model. Thus,

Pq = ∀I
i=1Prob(Ni < Nbest) =

I∏

i=1

Prob(Ni < Nbest) = (Pom(Nbest − 1))I .

The BEEM algorithm uses the probability Pq as an estimate to the quality of
the best found model. We estimate Pom() using several unrelated image pairs in
a non-parametric manner. We ran the algorithm for the above image pairs and
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Fig. 5. (a) The cdf Pom() as function of the inlier rate, α. (b) The probability Pq as
function of Nbest for I = 10, I = 100 and I = 1000 where the number of putative
correspondences is set to 400.
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recorded the size of the support sets of the outlier models. Figure 5(a) shows the
cdf Pom() as a function of the inlier rate, α. Figure 5(b) shows the probability
Pq as function of Nbest for I = 10, I = 100 and I = 1000, where the number of
putative correspondences is set to 400. Note that when the number of iterations
increases the “belief” of the algorithm in small subsets decreases. As a result,
the algorithm tends to do more global exploration.

6 The Algorithm

Up to this point, we have described the principles of the BEEM algorithm.
Now, we will combine them all together, yielding the complete epipolar geometry
estimation algorithm. The algorithm is summarized in Algorithm 1. The details
of the algorithm are as follows:

Fundamental matrix generation. The generation of the fundamental matrix
given a subset S of SIFT correspondences is done as follows: if 2 ≤ |S| < 7
then we use the normalized eight-point algorithm, where each SIFT correspon-
dence provides four point correspondences, as described in Section 4. If |S| = 7
then we use the seven-point algorithm with seven points, one from each SIFT

Algorithm 1. The BEEM algorithm.
1: Prior estimation.

Estimates α and Pin() of the set C of putative correspondences.
2: Global exploration.

a) Sample according to Pin() a subset of two SIFT correspondences from C.
b) Instantiate the fundamental matrix F .
c) If the support set S of F is the best found in this state then goto Exploitation

else goto Model quality estimation.
3: Exploitation.

a) Execute local optimization with inner RANSAC over S until Il repetitions
without improvement.

b) If found model with largest support until now keep its support set in Sbest.
4: Model quality estimation.

a) Estimate Pq.
b) If the stoping criterion is satisfied terminate.
c) Choose with probability Pq to goto Local exploration

else goto Global exploration.
5: Local exploration.

a) Sample according to Pin() a subset of SIFT correspondences from Sbest.
b) If Pq < 1 then sample according to Pin() a single SIFT from C \ Sbest.

else choose the next SIFT correspondence from C \ Sbest.
c) Instantiate the fundamental matrix F .
d) If the support set S of F is the largest found in this state then goto Exploitation

else goto Model quality estimation.
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correspondence. If |S| > 7 then we use the standard normalized eight-point
algorithm with |S| keypoints provided from the SIFT correspondences.

Exploitation. This state is very similar to the local optimization method de-
scribed in [5] with a small improvement. In this state a new sampling procedure
is executed. Samples are selected only from the support set S of the previous
state. New models are verified against the whole set of putative correspondences.
The size of the sample is set to min(S/2, NF ), where NF is set to 14. For each
fundamental matrix generated from a sample, all the correspondences in its
support set are used to compute a new model using the linear algorithm. This
process is repeated until no improvement is achieved. The modification we made
to the original LO-RANSAC is that whenever a larger support set is found the
exploitation process restarts again with it. The algorithm exits this state to the
model quality estimation state after ten iterations without improvement.

Local exploration. The parameter space close to the best model found so far is
searched in this state by choosing a sample of size min (|Sbest|/2, NF − 1) SIFT
correspondences from Sbest and a single SIFT correspondence from C \ Sbest.
The fundamental matrix is instantiated from the union of the above subset and
the single SIFT correspondence, where the single SIFT correspondence always
contributes four point correspondences. This way, the algorithm has a better
chance to escape from degenerate configurations.

Once Pq is equal to one, the sampling strategy for correspondences from
C \ Sbest changes. Each time a new maximum is found, i.e. Sbest was updated,
the correspondences in C\Sbest are sorted in decreasing order according to Pin().
In each iteration a single SIFT correspondence is chosen from C \Sbest according
to the sorting order.

Stopping criterion. The BEEM algorithm terminates if in the last |C|−|Sbest|
exploration samples the subset Sbest was not updated and if Pq is equal to one
in these samples. This criterion ensures with high confidence that nearly all
the inliers will be detected. This suggested stopping criterion usually terminates
much earlier than in the standard approach, because once the algorithm finds a
model with an adequate number of inliers, Pq is estimated as one and the algo-
rithm enters the final local exploration iterations. Because the correspondences
in C \ Sbest are sorted in decreasing order according to Pin(), the rest of the
inliers are rapidly found. Once Sbest ceases to change |C| − |Sbest| iterations are
performed. In the experiments that we have performed, the number of iterations
until an adequate number of inliers are found is usually very small, thanks to the
various components of the BEEM algorithm. As a result, the total number of
iterations of the BEEM algorithm is in practice slightly higher than the number
of outliers in the putative correspondence set. This number is much lower than
the bound given by Eq. (1).
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7 Experiments

The proposed algorithm was tested on many image pairs of indoor and out-
door scenes several of which are presented here. The cases that are presented
here are difficult cases in which the inlier rate is low and include a dominant
degeneracy.

For each image we applied the SIFT method to detect the keypoints. The
descriptors of the first image were then stored in an LSH data structure and the
descriptors of the second image were used for querying the data structure to find
their approximate nearest neighbors to generate putative correspondences. We
used the adapted version of the LSH [16] with data driven partitions. The LSH
algorithm is simple for implementation and efficient. For example, the running
time for the generation of the putative correspondences of the book scene was
reduced from 25.6 seconds using a simple linear search to 0.45 seconds using the
LSH algorithm on a Pentium 4 CPU 1.70GHz computer.

For illustration reasons, we divided the set of putative correspondences into
three sets: outliers, inliers belonging to the degenerate configuration and the rest
of the inliers of which most of them have to be part of the support set in order to
generate an accurate fundamental matrix. The images of the scenes are shown
in Figures 1 and 6. Their details are given in Table 1.

For each scene six algorithms were tested: the BEEM algorithm, LO-RANSAC
using samples of two SIFT correspondences to generate fundamental matrixes
(2SIFT LO-RANSAC), RANSAC using samples of two SIFT correspondences
(2SIFT RANSAC), LO-RANSAC using samples of seven point correspondences
where the samples were sampled according to the probability Pin(i) (7pt

(a) Board scene (b) Car scene

Fig. 6. Image scenes

Table 1. The characteristics of the tested scenes. For each scene the table gives the
type of degeneracy, number of correspondences, inlier rate, BEEM estimation of the
inlier rate, the number of outliers, the number of inliers, the number of inliers belonging
to the degeneracy, and the number of inliers not belonging to the degeneracy.

Scene Degeneracy N α α̂ Out. In. Deg. In. Non-Deg. In.
Flowerpot Small region 252 0.17 0.25 210 42 30 12
Book Plane 310 0.17 0.16 260 50 44 6
Board Plane 276 0.27 0.25 201 75 57 18
Cars Several small regions 272 0.17 0.11 225 47 35 12
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Table 2. Experiment results

Algorithm Success Iterations In. N.Deg. Success Iterations In. N.Deg.
Flowerpot scene Book scene

BEEM 100% (5.0) 213 40.6 11.2 95% (6.3) 279 44.1 5.6
2SIFT LO-RANSAC 30% 356 29.8 3.6 5% 660 27.2 0.6
2SIFT RANSAC 0% 880 16.9 0 0% 2,449 11.2 0.2
7pt P-LO-RANSAC 65% 10,000 34.6 7.9 30% 10,000 35.1 1.8
7pt LO-RANSAC 15% 10,000 27.2 2.4 0% 10,000 19.9 0.2
7pt RANSAC 0% 10,000 19.5 1.2 0% 10,000 16.5 0.5

Board scene Car scene
BEEM 90% (1.7) 207 72.4 15.6 100% (2.5) 230 44.8 10.9
2SIFT LO-RANSAC 5% 90 57.8 1.9 30% 533 31.3 5.7
2SIFT RANSAC 0% 1,964 31.9 1.0 0% 1,236 14.8 1.0
7pt P-LO-RANSAC 15% 10,000 61.3 4.9 70% 10,000 39.2 8.2
7pt LO-RANSAC 5% 10,000 57.9 2.1 25% 10,000 27.25 3.9
7pt RANSAC 0% 10,000 53.6 1.1 0% 10,000 18.05 2.3

P-LO-RANSAC), LO-RANSAC using samples of seven point correspondences
(7pt LO-RANSAC), and RANSAC using samples of seven point correspondences
(7pt RANSAC). The termination criterion for RANSAC and LO-RANSAC was
based on Eq. (1), for p = 0.99. In cases where the number of iterations exceeded
ten thousand the algorithm also terminated. Each algorithm has been applied
to each image pair twenty times. For each algorithm the following statistics are
presented: the success rate defined as the percentage of the experiments in which
at least 75% of the inliers were found and at least 50% of the inliers outside the
degenerate configuration were found, the number of iterations until the termi-
nation of the algorithm, the number of inliers found, and the number of inliers
outside the degenerate configuration found. For the BEEM algorithm, in the it-
eration column the number of global exploration iterations is also given denoted
in parentheses.

The results clearly show that the BEEM algorithm outperforms the other
algorithms in the way that it deals with degeneracies, detecting almost always
most of the inliers outside of the degenerate configuration. The quality of the
results as represented by the overall number of detected inliers is also much
higher. Finally, the number of iterations until termination of the algorithm is
much lower than for the other algorithms. Finally, the number of global explo-
ration iteration of the BEEM algorithm is very low as a result of the use of the
prior information and the 2-SIFT method. As mentioned in the previous section,
the number of iterations of the BEEM algorithm is in practice slightly higher
than the number of outliers in the putative correspondence set. This number is
much lower than the number of iterations of the other algorithms. The results
of the other algorithms demonstrate the contribution of each component of the
BEEM algorithm to the quality of the detection.
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