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Abstract: Predictive maintenance (PdM) combines the Internet of Things (IoT) technologies with
machine learning (ML) to predict probable failures, which leads to the necessity of maintenance for
manufacturing equipment, providing the opportunity to solve the related problems and thus make
adaptive decisions in a timely manner. However, a standard ML algorithm cannot be directly applied
to a PdM dataset, which is highly imbalanced since, in most cases, signals correspond to normal
rather than critical conditions. To deal with data imbalance, in this paper, a novel explainable ML
method entitled “Balanced K-Star” based on the K-Star classification algorithm is proposed for PdM
in an IoT-based manufacturing environment. Experiments conducted on a PdM dataset showed
that the proposed Balanced K-Star method outperformed the standard K-Star method in terms of
classification accuracy. The results also showed that the proposed method (98.75%) achieved higher
accuracy than the state-of-the-art methods (91.74%) on the same data.

Keywords: machine learning; predictive maintenance; Internet of Things; explainable artificial
intelligence; classification; manufacturing

1. Introduction

In communication and information technology-related fields, the Internet of Things
(IoT), as an emerging technology for smart interconnections, has been represented in recent
years to link any object from anywhere at any time. It has been widely used in various areas
such as manufacturing [1], agriculture [2], health [3], retail [4], military [5], and transporta-
tion [6]. IoT overcomes challenges in data mobility by the means of auspicious technologies
such as cloud computing for different tasks, real-time applications, smart devices, and
functional platforms to enable the availability of information/services and to improve the
quality of human life as a facilitator and flourishing concept, especially in healthcare [7],
energy systems [8], business development [9], and industrial performance [10].

With the emergence of IoT, industrial systems have experienced a revolution from var-
ious standpoints. However, regarding a wide variety of industrial IoT frameworks, some
challenges are revealed, such as as cyber security and privacy, scalability, interoperability,
dependability, massive deployment, energy efficiency, decentralization, and reconfigura-
bility [11–14]. Nowadays, manufacturing systems are able to monitor and control their
surroundings, enable communication between machines and humans, protect industrial
machines from failure, and make intelligent decisions, thereby contributing to thriving
intelligent manufacturing phenomena, particularly on the basis of machine learning mod-
els [15]. A recent application of such technologies is predictive maintenance. Although
combining industrial IoT and predictive maintenance is associated with some challenges,
together, they are widely utilized in various industries [16–19] as a leading strategy to
promote uncertainty reduction in environments.
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The main objective of predictive maintenance (PdM) is to control the status of machines
to prevent the occurrence of expensive failures and perform maintenance when it is essential.
PdM has long history, from the visual investigation of machines [20] to recently proposed
intelligent approaches that automate the processing of received signals from machines [21].
IoT-enabled PdM systems generally comprise the following main steps: data collection,
data preprocessing, model construction for fault diagnostics and prognostics, and, finally,
making supportive decisions for maintainence of industrial machines.

Nowadays, there is an essential requirement for the implementation of predictive
maintenance models in industry [22]. PdM, with the ability to decrease industrial costs by
predicting machine failures as a prognosis approach before they happen, thereby prolonging
the life cycle of machinery, encourages different plants to monitor their systems under
working conditions [23]. Diagnosis methods have the ability to determine the type of
faults by investigating the current status of machines [24]. PdM is also needed to improve
accuracy in alignment with prediction explicitness for users to achieve higher efficiency in
industry-based applications [25]. Industries are currently becoming more acquainted with
different machine learning techniques to attain accurate predictions for the maintainence of
industrial assets with sustainable considerations [26].

Machine learning (ML) enables a computer application to make predictions by learn-
ing from historical data [27]. It is possible to categorize the learning process into four
groups: supervised, unsupervised, semisupervised, and reinforcement learning [28]. As
a supervised learning method, the K-Star algorithm [29] uses entropy to compute the
distances between training samples during the classification process. Although K-Star
usually provides a strong generalization ability and high classification performance on
balanced data [30–34], it has difficulty in handling imbalanced data. However, predictive
maintenance datasets are usually imbalanced since there are few machine failures relative
to the number of normal conditions. Therefore, in this study, we propose an improved
method called Balanced K-Star, which can make correct predictions on imbalanced data.

Machines are getting smarter and wiser through ML models, and people are getting
less and less visibility to know how to automate predictions. For many, an ML model is
like a black box, which leads to questions about how people can be part of the feedback
loop in this process and how to promoted a two-way conversation with predictive models.
The recently provided answer to such questions is explainable artificial intelligence (XAI)
models. Various types of machine learning models, namely explainable, human-centered,
complying, ethical, explicit, secure, and interpretable ML models, can be termed reasonable
ML, which leads to the opening of the ML black box by providing more understandable
predictions, transparency in ML processes, insights for results, and the sharing of learning
with users through explanatory interfaces [35]. The underlying reason behind this is to
enable humans to trust a model’s result by understanding how it works [36]. Based on
this motivation, in this study, we focus on the K-Star method, which can be considered an
explainable ML method relative to complex ML models such as deep learning methods.

The main contributions and novelty of this paper can be summarized as follows.

(i) This paper proposes an improved method called “Balanced K-Star”. This is an
effective attempt to enable the K-Star algorithm to deal with imbalanced data;

(ii) Our work is also original in that it contributes to representing an explainable arti-
ficial intelligence model based on the K-Star algorithm with efficient prediction on
predictive maintenance datasets in industrial IoT environments;

(iii) The results of the experiments showed that the proposed Balanced K-Star method
outperformed the standard K-Star method on the same dataset;

(iv) The proposed method achieved higher classification accuracy (98.75%) than the state-
of-the-art methods (91.74%) [37–52]. Therefore, our method demonstrated its superi-
ority over the others with an average of 7% improvement.

The remainder of this article is organized as follows. Section 2 presents the related
works. Section 3 explains the proposed Balanced K-Star method. Section 4 presents
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the experiments and their results. Section 5 summarizes the study and gives possible
future directions.

2. Related Works

As one of the major application domains of IoT, the notion of the Industrial Internet
of Things (IIoT) has been presented, which is related to applications in manufacturing
and production to make possible coherent communications between machines. Such
IoT-enabled systems can monitor industrial machines, provide real-time production data,
distinguish the occurrence of wear-and-tear damage to avoid machine failures, and assure
continuity of production [53]. Rhe extensive use of wearable devices [54], sensors [55],
robots, and unmanned vehicles [56] in the IIoTs is inevitable and facilitated by rapid
developments of software and hardware. Therefore, the number of these connected devices
is rapidly growing, leading to an increase in big data produced by the IoT and considered in
terms of location, time, and data quality. Moreover, smart processing and analysis of such
real-world big data contribute to the development of intelligent IoT applications [57]. As a
result, utilizing the mentioned technologies in real-time applications and combining them
with machine learning approaches can improve the predictive maintenance of production
lines and machinery in industrial environments.

An IIoT method for edge artificial intelligence and knowledge graphs is essential to
control the condition of operating environments of industrial plants by predictive mainte-
nance and condition monitoring approaches, which can contribute to supporting workers in
the production supervision and decision-making process. In [58,59], the application of pre-
dictive maintenance in the decision-making process was investigated. In [58], the authors
studied the use of knowledge graphs to obtain the necessary knowledge by connecting
an edge device to different sensors on an asset. In addition, semantic artificial intelligence
techniques were used in the PdM processes for the estimation of the remaining useful life
(RUL) of industrial machines. In the another work [59], a novel decision support system
was discussed that guides the decision-making process of PdM implementation based on
machine learning models. The system was provided by decision trees considering various
parameters of industrial environments. The authors also analyzed the huge amount of data
from machinery sensors with the aim of increasing efficiency, reliability, and detection of
probable machine failures.

In a previous study [60], two important aspects were reported to increase produc-
tion quality and efficiency in industrial manufacturing. The first is to proactively detect
and eliminate expected defects in machine tools, and the second is to establish a supply
network with remote monitoring and maintenance methods when a malfunction occurs.
In another article [61], a comprehensive study was presented on ultraprecision machin-
ing (UPM) processeses in terms of prediction and monitoring. Since UPM can provide
considerably high accuracy, it is necessary to understand machinery systems thoroughly
in terms of different parameters and tool features that can influence the efficiency of ma-
chining, tooling components, and working environments. The future perspective of UPM
as the ultimate capability in the industrial processing of materials at their atomic scale
is discussed via artificial intelligence models in real-time applications for prediction and
monitoring procedures.

As artificial intelligence is one of the critical supporters of Industry 4.0, machine learn-
ing models in environments with a high rate of data generation, such as IIoT applications,
will be necessary to meet time requirements and support big data platforms. In [62–68], the
application of various ML models in predictive maintenance was investigated. In [62], an
Industry 4.0 platform was presented in which a PdM service was constructed and installed
on the cloud. Various techniques were discussed to apply the predictor, and the k-nearest
neighbor algorithm was selected to construct a predictor since it produces answers at high
speed and accuracy. In another study [63], the precise time for maintenance of manufac-
turing equipment was forecasted by investigating a PdM system that combines machine
learning models with industrial IoT technologies to apply an adaptive decision-making
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process. A real-world milling dataset was chosen to implement a PdM structure to monitor
the wear level of machinery, preventing the breakdown of industrial tools, refining the
interaction between humans and machines, and optimizing the production process. A
smart manufacturing method was presented in [64] for the predictive maintenance of
intelligent transportation systems such as railways. In this method, the collaboration
among digital twins as a representation of real-world physical objects was improved by
considering the main requirements, namely real-time predictive analysis, intelligent digitial
twin technologies, and blockchain integration. In another study [65], a novel PdM system
was proposed using different metrics and key performance indicators (KPIs) for effective
condition monitoring in industrial manufacturing processes. This system was applied to
both autonomous transfer vehicles and electric motors to detect early faults and anomalous
situations. The data collection and fault classification of the system was enhanced by the use
of automated machine learning (AutoML) models and workflow automation techniques.
In another work [66], the authors presented an interpretable machine learning method
for engineering change management (ECM) decision support based on real-world data
from the automotive industry. Stacking and community detection algorithms were applied
to construct more reliable models, which led to high efficiency, quality, and transparency
of the process. In [67], the authors reported that using supervised machine learning as
a state-of-the-art technology on product state data of the industrial environment was a
helpful approach to control quality in the manufacturing process. In another study [68], a
novel method was introduced to predict the electrical impedance of rolling bearings via
ML techniques that determine the health of bearings as a critical part of all machinery. The
applied ML-based method achieved a nearly constant difference between the measured
and calculated impedance of rolling bearings through the PdM process. Different ML
algorithms were compared and investigated considering the prediction accuracy of the
results. The rotational speed of bearings was also predicted based on the impedance values
by order analysis methods, which could lead to the omission of speed sensors in machinery
and high prediction quality.

In computer science, the domain knowledge of a specific field is necessary to simulta-
neously achieve explainability and improve the scientific consistency of machine learning
models. Therefore, XAI attempts to represent ML models with an explanation that is under-
standable by humans through explanatory interfaces. Local interpretable model-agnostic
explanations (LIMEs) and Shapley additive explanation (SHAP) are widely used techniques
related to XAI. In the LIME technique, a surrogate model is trained to learn how a global
black box model makes predictions. As a game-theoretic approach, SHAP was developed
to explain machine learning predictions via reasoning with respect to the contributions of
various features [69]. In another study [70], different applications of explainable machine
learning in natural science were discussed by considering three main elements, namely
interpretability, explainability, and transparency. The authors used XAI in combination
with domain knowledge from the various application areas. In another work [71], a novel
XAI model for credit risk management was presented. This model applies a correlation
network to Shapley values in order to group the predictions of artificial intelligence consid-
ering similarity in the explanation. The analysis of various companies revealed that similar
financial characteristics of borrowers lead to efficient prediction of their future behaviors.

It is possible to combine the concept of XAI with PdM to achieve more efficient
results through explicit predictions, as considered in [72,73]. In [72], semisupervised, data-
driven models were built to implement a predictive maintenance system by learning from
the historic data of assets. Nevertheless, the major issues for the authors were finding
new failures, achieving improved accuracy in inconsistency recognition, and flexibility in
altering the environmental and operational conditions (EOCs). The authors conquered these
challenges by using principal component analysis (PCA), one-class support vector machine
(OC-SVM), and extreme learning machines (ELMs). Additionally, XAI techniques were
used to detect abnormal signals to encourage the utilization of PdM systems in intelligent
plants. In the another work [73], a new data investigation framework for predictive
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maintenance (PredMaX) was presented that suggests automatic periodic clustering and
identifies sensitive parts of industrial machines. PredMaX also applis an explainable deep
convolutional autoencoder to data with PCA to reduce data dimensionality. A case study
was presented within the PredMaX framework to identify the most important signals used
for the prediction of oil degradation in an industrial gearbox with minimum human aid
and without initial knowledge of the machine.

Predictive maintenance datasets are usually imbalanced, including a small proportion
of machine failures and a large proportion of normal cases that dominates the learning
accuracy. In the literature, different methods have been presented to deal with imbalanced
data, such as by artificially increasing minority class instances or removing some majority
class instances. The use of generative adversarial networks (GANs) is a prominent tech-
nique used to handle data imbalance. In a previous study [74], a GAN model was trained,
and new synthetic image samples were generated. Vakharia et al. [75] also used the GAN
technique as a potential synthetic data generation method based on images.

Recent advances in artificial intelligence contribute to the processing of an enormous
amount of data to attain more accurate PdM models in manufacturing and other industries.
Here, machine learning methods play an important role. K-Star is an effective machine
learning algorithm that is based on the lazy learning concept. K-Star has been applied
to different fields, e.g., transportation [76], health [31], and agriculture [30], proving its
superiority in terms of accuracy. In [31], the K-Star algorithm achieved the best results
compared to random forest (RF) and radial basis function networks according to the
different validation metrics. In [76], the K-Star method was determined as the most
successful method amongst its counterparts, such as support vector machines, decision
trees (DT), RF, k-nearest neighbors (KNN), artificial neural network (ANN), and naive
Bayes. In another study [77], K-Star also achieved higher accuracy than other lazy learning
algorithms, including locally weighted learning (LWL) and KNN, when classifying gearbox
faults. In [78], K-Star was reported as the best-performing method among others, including
ANN and DT. Therefore, our study focuses on the K-Star method, given its effectiveness.
K-Star has several advantages, including ease of implementation, as well as the ability to
manage noisy data and handle missing values; it is considered an XAI method that uses
both prediction and classification to address various types of attributes and manipulate
smoothness problems [79].

Despite the advantages of K-Star, it is limited in handling imbalanced data. In this
study, we improved K-Star to enable it to deal with data imbalance problems. Our study
differs from existing studies in several aspects. First, we propose a novel improved method
called “Balanced K-Star”. Second, this study contributes the representation of an explain-
able artificial intelligence model based on the K-Star method with high-accuracy prediction
on a predictive maintenance dataset Industrial IoT environments.

3. Material and Methods
3.1. The Proposed Model

The main aim of this study is to propose an explainable machine learning model that
considers machine failure modes for predictive maintenance in an IoT-enabled environment.
In other words, the main objective is to develop an intelligent model that controls the status
of machines to prevent the occurrence of expensive failures and perform maintenance when
it is essential.

Figure 1 shows a general overview of the proposed predictive model. In the first
step, values are collected from sensors on industrial equipment by the IoT system. These
sensors have the ability to convert real-world phenomena (e.g., vibration, movement,
temperature, or force) to current signals or voltages through analog-to-digital converters
(ADCs). The collected data are transferred and stored in data storage devices. In the data
preparation step, raw data are transformed into processed data by handling missing values,
correcting inconsistent data, applying normalization, encoding certain values, dropping
outliers, removing irrelevant features, and performing feature engineering techniques to
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make them suitable for further analysis. Visualization and statistical analysis of data are
also implemented in this step to better identify and understand the characteristics of data
attributes and their values. Here, data are prepared for the application of the Balanced
K-Star learning algorithm. In the training phase, this method computes the classification
probability for each instance in the majority class using the Bayes theorem. The classification
probability is the value of a data object assigned to a class label (i.e., failure or normal).
The method then selects objects with probability values that exceed a threshold. Therefore,
the method builds a classifier based on observations to predict factors that depend on the
classification probability. In the testing step, the effectiveness of the developed model is
evaluated on a test set by using several measures, such as accuracy, precision, recall, F-
measure, and the area under the receiver operating characteristic curve (AUC-ROC). Here, it
is always recommended to use the ten-fold cross-validation technique. If data are randomly
split between a training and testing set (i.e., 70% and 30%, respectively), the prediction
results are biased. In the prediction step, an output is produced by using the model for a
previously unseen test instance. Then, the predicted result is presented to the user via an
application to provide feedback about the status of the industrial equipment. Finally, in the
maintenance actions phase, various types of operations based on the technical attributes
of the machinery can be applied, including inspection, measurement, replacement, and
repair. The output of the model is taken into consideration by a worker for decision making,
providing significant benefits, such as decreased repair costs, reduced machine downtime,
increased safety, and improved efficiency.
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3.2. The Proposed Method: Balanced K-Star

In this study, a new explainable machine learning method, entitled “Balanced K-Star
(BKS)”, is proposed based on the K-Star classification algorithm. The aim of the study
is to address the data imbalance problem in predictive maintenance applications. Data
imbalance is a situation in which the number of instances in one class is significantly smaller
than that in another class. The class with fewer data samples is called the minority class,
whereas the class with a large number of data samples is called the majority class. The class
distribution can be balanced either by increasing minority class instances by oversampling
or by removing majority class instances via undersampling. The oversampling approach
can increase the possibility of overfitting since it duplicates samples. Moreover, adding
synthetic samples to the minority class increases the data size, which obviously increases
the training time. For these reasons, the proposed BKS method was designed based on the
undersampling approach.
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Let D be a dataset with n data objects such that D = {di}n
i=1. A data object (di)

comprises an input vector (xi) and its corresponding class label (yi) such that di = (xi, yi).
Each input vector (xi) consists of m features such as F = 〈F1, F2, . . . , Fm〉. Thus, xi can be
represented as xi =

(
x1

i , x2
i , . . . , xm

i
)
, where xj

i is the value of the j-th attribute of the i-th data
object. The correct output (yi) is a value of a variable described in a set of L distinct class
labels such as yi ε Y = {c1, c2, . . . , cL}. In other words, yi = cj means that data object di
belongs to the j-th class in the label set. Here, the objects in one class (ci) (majority class) far
outnumber those in the other class (cj) (minority class) such that |ci| �

∣∣cj
∣∣. For example,

in a binary classification for a predictive maintenance application, the labels of the objects
are c1 = normal and c2 = failure. In multiclass classification, the labels of the instances can
be expressed as c1 = heat dissipation failure, c2 = tool wear failure, c3 = overstrain failure,
c4 = power failure, c5 = random failure, and c6 = normal (non-failure). The aim of the BKS
method is to balance the dataset by considering the classification probabilities of instances
and then learn a mapping function ( f : X → Y ) between the input and output spaces by
minimizing the prediction error.

The BKS method selects strong objects from the majority class to balance the data
using the Bayes theorem.

Definition 1. (Strong Object) A strong object is an observation that can be assigned to a
class with a high probability.

Definition 2. (Probability-Based Selection) Given a collection of observations, probability-
based selection is the choice of data objects that can be classified by a classifier with a high
probability.

For each data instance (xi) in the dataset, the algorithm calculates the probability
distribution over all the classes using the Bayes theorem and then identifies maximum
instance, as given in Equation (1).

P(xi) = arg max
jε{1,...,L}

p
(
cj
) m

∏
q=1

p(xq
i |cj) (1)

where P(xi) is the maximum posterior probability of a class for a given data instance (xi),
p(c) is the prior probability of class c, and p(x|c) is the likelihood that a feature is assigned
to a given class. The maximum probability values (P = {p1, p2, . . . , pn}) are computed for
the objects in the dataset. These values are then used in the selection of the samples. All
data objects have a different probability of being selected as the sample, and the conclusion
is a sample set involving strong objects.

The advantages of the Balanced K-Star method can be summarized as follows:

• Imbalanced data make the detection of patterns from a minority class more difficult
and lead to unsatisfactory classification performance. The proposed method provides
a way to alleviate class imbalance; therefore, the algorithm can successfully learn from
samples belonging to all classes during the training process. It builds a robust model
by eliminating the dominance of majority classes during training.

• The other advantage of the proposed method is that it can be used for both balanced
and imbalanced data. However, many standard classification algorithms are only suit-
able for balanced data due to their limitations. Our method overcomes this limitation,
thereby expanding the application field of standard classification algorithms.

• One of the key advantages of Balanced K-Star is its implementation simplicity. After
determining and selecting strong objects by using the Bayes theorem in a straightfor-
ward manner, the classification task can be easily performed.

• Another advantage is that the proposed method was designed to process any type of
dataset that is suitable for classification. The method can easily be applied to a dataset
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without background information about the data. Thus, it does not require any specific
knowledge of the given data.

3.3. Formal Description

As an instance-based approach, the K-Star algorithm classifies the test instances
through comparison with the training instances using a similarity function. Similar in-
stances are assumed to have a class label in common. The algorithm uses entropic distance
to determine the similarity between instances. It calculates the probability of transforming
an instance into another instance by randomly selecting between all possible transformations.

The probability function P* calculates the probabilities of all paths from one instance to
another instance. The probability of a test sample (x) belonging to category C is calculated
by summing the probabilities (x) of each sample being a member of C.

P∗(C|x) = ∑
xj∈C

P∗
(
xj
∣∣x) (2)

The K-Star function (K*) is defined in terms of complexity units by applying a loga-
rithm to P*, as given in Equation (3).

K∗(C|x) = − ∑
xj∈C

log2 P∗
(
xj
∣∣x) (3)

In the K* function, the relative probabilities are considered to estimate class distribu-
tions. First, the probability of classifying a test sample for each category is calculated; then,
the test sample is assigned to the class with the maximum probability.

The pseudocode of the Balanced K-Star method is given in Algorithm 1, considering
the input of the predictive maintenance dataset and the output of predicting failures in
industrial machines. In the first step, based on the Bayes theorem, the algorithm calculates
a set of probabilities by considering the frequencies and combinations of values for each
attribute from a given dataset (D). Here, the algorithm assumes that the attributes are
independent of each other. Then, the classification probability (pi) is determined separately
for each instance in the majority class. If the probability of a sample being assigned to a
respective class is higher than a threshold, it is referred to as a strong object and added to a
special list (O). On the other hand, the instances of the minority class are directly inserted
into the same list. In this way, the imbalanced data becomes relatively balanced through
the use of an undersampling method to eliminate the impact of class imbalance. In the next
step, the balanced data are trained using the K-Star algorithm, and a model is built. In the
last loop of the algorithm, in each iteration, a previously unseen test instance is classified
using the developed model. Finally, the predicted class labels are collected in an output
list (C).

The complexity of the BKS algorithm is O(T + L(n)), where T refers to the time required
for the probability-based selection process, and L(n) is the time needed for the execution of
the K-Star algorithm on n objects.

3.4. Dataset Description

In this study, we used the AI4I 2020 predictive maintenance dataset [52] to demonstrate
the effectiveness of the Balanced K-Star method. The abstract information of this dataset is
described in Table 1. It is publicly available from the University of California Irvine (UCI)
data repository, with a high number of web hits. It can be utilized for both regression and
classification tasks. Missing data are not available in the dataset.
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Algorithm 1. Balanced K-Star

Inputs:
D: the dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Threshold: the probability value determined to be selected as a strong object
T: test set that will be predicted

Output:
C: the predicted class labels

Begin:
H = Bayes(D)
O = Ø
for i = 1 to n do

if yi ε majority class
pi = ClassificationProbability(H, xi)
if pi > threshold

O.Add(xi, yi)
end if

else
O.Add(xi, yi)

end if
end for
C = Ø
Model = KStar(O)
foreach x in T

c = Model(x)
C = C ∪ c

end foreach
End Algorithm

Table 1. Dataset information.

Dataset
Properties

Attribute
Properties

Related
Tasks Instances Features Missing

Values Field Date Web Hits

Time Series,
Multivariate

Real,
Boolean

Regression
Classification 10,000 14 N/A Manufacturing 2020 94,531

The variables of the dataset are described in Table 2. The dataset involves 10,000 in-
stances as rows and 14 features as columns, including a unique identifier (UID) in the range
of 1 to 10,000; a product ID consisting of a letter (H (high), M (medium), or L (large)); a
variant-specific serial number; type (quality of product); air temperature (in kelvin); process
temperature (in kelvin); rotational speed (depicts the rotational speed of the tool inside
the machine); torque (normally distributed around 40 Nm, with no negative values); tool
wear (time in minutes); and machine failure based on different failure modes, including
tool wear failure (TWF), heat dissipation failure (HDF), overstrain failure (OSF), power
failure (PWF), and random failure (RNF). For the type attribute, “L”, “M”, and “H” denote
low-quality, medium-quality, and high-quality products, which account for 50%, 30%, and
20% of all products, respectively.

In the data preprocessing step, the identification columns (UID and product ID) were
removed because they had no effect on prediction. In this study, machine failure feature
is taken as the target; the class label is set to 1 if a machine fails and 0 otherwise. In other
words, if any of the failure modes (TWF, HDF, PWF, OSF, or RNF) occur, machine failure is
reported as true. The statistical properties of continuous features (minimum, maximum,
mean, and standard deviation) are given in Table 3.
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Table 2. Dataset variables.

Variable Name Variable Description

UID Unique identifier
Product ID Quality of product variants as serial numbers

Type L (low), M (medium), or H (high), representing the quality of the product
Air Temperature Temperature of air in kelvin

Process Temperature Temperature of process in kelvin
Rotational Speed Rotational speed in revolutions per minute (rpm)

Torque Torque in newton meters (the force that causes rotation)
Tool Wear Tool wear in minutes

Machine Failure Indicates whether a failure has occured or not
TWF Tool wear failure
PWF Power failure
HDF Heat dissipation failure
RNF Random failures
OSF Overstrain failure

Table 3. Statistical properties of continuous variables.

Variable Name Min Max Mean Standard
Deviation

Air Temperature 295.3 304.5 300.0 2.000
Process Temperature 305.7 313.8 310.0 1.484

Rotational Speed 1168 2886 1538.8 179.284
Torque 3.8 76.6 39.9 9.969

Tool Wear 0 253 107.9 63.654

In this explainable artificial intelligence model based on the Balanced K-Star method,
a logical failure tree is generated by considering the mentioned failure types and their
specific variables in each node. The explainable tree structure of main machine failures
is given in Figure 2. It includes four main nodes referred to as HDF, OSF, PWF, and TWF.
HDF leads to a machine failure if the difference between air and process temperature is
considerable and the rotational speed is low. It is clear that the origin of HDF is related
to air temperature, process temperature, and rotational speed. On the other hand, the
occurrence of OSF has roots in tool wear, torque, and the quality type of the product. If tool
wear and torque are above a threshold value for the L quality of the product, the machining
process fails because of overstrain. PWF depends on rotational speed and tool torque, as it
is related to the power required for the process. For example, if the power is above 9000 W
or below 3500 W, the process leads to machine failure. In addition, TWF is related to the
tool wear attribute, which refers to the replacement of the tool in a specific period of time.
In the dataset, TWF occurs 51 times, and the tool is replaced 69 times. It is expected that
each feature will have a value within its predefined range in this explainable tree. The false
or true feedback of each node is based on the sensed data in the Industrial IoT for different
types of failure. Then, the logical combination of these results leads to the final decision,
reporting information about machine failure in the equipment. Various types of failure may
cause the halting of production in a plant. Therefore, the presented tree structure makes
the prediction process of machine learning more transparent by branching the specified
features for each type of machine failure. It contributes to opening the traditional black box
of machine learning models, which may not be sufficiently clear to illustrate the causes of
target features.
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4. Experimental Studies

In this study, the effectiveness of the proposed Balanced K-Star method was vali-
dated on a predictive maintenance dataset [52]. We implemented the method with C#
programming language using the Weka machine learning library [80]. The implementa-
tions of both K-Star and Balanced K-Star methods are publicly available at the website
https://github.com/BitaGhasemkhani/Balanced-K-Star (accessed on 15 February 2023).

In the experiments, we used 10-fold cross validation as a low-bias statistical method.
Different types of evaluation metrics were used to measure the performance of the machine
learning model based on the Balanced K-Star method. The formulas of the evaluation
metrics, namely accuracy (ACC), precision (PR), recall (R), and F-measure (FM), are given
in Equations (4) to (7), respectively.

ACC =
TP + TN

TP + TN + FP + FN
(4)

PR =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

FM =
2TP

2TP + FP + FN
(7)

where TP (true positives) is the number of cases that the classifier correctly predicts in
the positive class, TN (true negatives) is the number of cases that the classifier correctly
predicts in the negative class, FP (false positives) is the number of cases that the classifier

https://github.com/BitaGhasemkhani/Balanced-K-Star
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misclassifies in the positive class, and FN (false negatives) is the number of cases that the
classifier misclassifies in the negative class.

4.1. Results

The proposed Balanced K-Star method was compared with the standard K-Star
method. Since we used the 10-fold cross-validation technique, the results of each fold
are given in Table 4 separately in terms of the accuracy metric. It should be noted here that
the final results were aggregated by averaging the results of these 10 folds. As can be seen
in the table, our method outperformed the other method in terms of all metrics. Balanced
K-Star (98.75%) achieved higher classification accuracy than K-Star (97.15%).

Table 4. Comparison of standard K-Star and the proposed Balanced K-Star in terms of accuracy.

Fold Number
Accuracy (%)

K-Star Balanced K-Star

1 97.20 96.91
2 97.10 98.96
3 97.10 97.92
4 97.50 97.92
5 96.80 100.00
6 96.90 98.96
7 97.10 98.96
8 97.30 98.96
9 97.40 98.96
10 97.10 100.00

Average 97.15 98.75

Figure 3 shows the results in terms of various metrics, including precision, recall,
F-measure, and AUC-ROC. According to the results, the proposed method improved
performance in terms of precision and recall because it provides a way to alleviate class
imbalance; therefore, the algorithm can better learn the underlying structure for all classes
during the training process. While the K-Star method is highly biased toward the majority
class and has difficulty in minority class prediction, the Balanced K-Star method solves this
problem with a probability-based selection technique. Therefore, the proposed method can
build a robust model with high prediction accuracy for all classes.
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The K-Star algorithm has a parameter for blending, which can be set between 0% and
100%. It is a value regarding entropy calculation. Although the default value (20%) usually
worked well in previous studies [77], varying it can produce better results in some cases.
For this reason, in this study, we investigated different blending parameters in the range of
10% to 50% with an increment of 5%. Figure 4 shows the accuracy values obtained by the
Balanced K-Star method with different parameter values. As shown in the figure, values of
15% and 20% for the blending parameter achieved the highest accuracy of 98.75% by the
Balanced K-Star method.
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To provide explainability, it is important to notify users about which feature has
the greatest effect on the occurrence of failure in industrial machines so that necessary
prerequisites can be considered. Since XAI aims to represent ML models with an under-
standable explanation, we explored the possibility of deducing the contribution of each
feature to a decision by representing the importance scores of features. For this purpose,
the chi-square technique was applied to the predictive maintenance dataset to determine
the most important features in the occurrence of machine failures. The importance scores
of features are shown in Figure 5. According to the results, the predictor importance of the
torque feature for industrial machines is the highest, with a score of 395.66., followed by the
five other features, namely rotational speed, tool wear, type, process temperature, and air
temperature, with importance scores of 349.64, 139.24, 50.70, 16.39, and 6.88, respectively.
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Table 5 illustrates the explanation of the predictions of the model on 10 sample records
since XAI leads to opening of the ML black box by providing more understandable results.
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For example, for product ID L47643, the user is provided with an explanation such that “the
classification result is a power failure (PWF) due to a high rotation speed of 2874 rpm and a
low torque of 4.2 Nm”. As shown in the table, comparably high tool wear, low rotation
speed, high or low torque, and high air temperature values are the best warning indicators
for a machinery failure. The prediction probability is also provided to the users, with the
aim of supporting trust in the model results.

Table 5. Explanation of ML model predictions.

UDI Product
ID Type Air

Temp.
Process
Temp.

Rot.
Speed Torque Tool

Wear
Failure
Type Explanation Prediction

Probability

2672 M17531 M 299.7 309.3 1399 41.9 221 TWF High tool wear
Low rotation speed 0.9643

3866 H33279 H 302.6 311.5 1629 34.4 228 TWF High tool wear
High air temperature 0.9305

4079 H33492 H 302.1 310.7 1294 62.4 101 HDF High torque
Low rotation speed 1.0000

4174 M19033 M 302.2 310.6 1346 49.2 134 HDF High air temperature
Low rotation speed 1.0000

464 L47643 L 297.4 308.7 2874 4.2 118 PWF High rotation speed
Low torque 0.9999

3001 H32414 H 300.5 309.8 1324 72.8 159 PWF High torque
Low rotation speed 0.9999

8583 M23442 M 297.5 308.1 1334 72 151 PWF High torque
Low process temperature 0.9947

5400 H34813 H 302.8 312.4 1411 53.8 246 OSF High tool wear
High air temperature 1.0000

8571 H37984 H 297.9 308.7 1545 35.9 120 No Failure Normal values 0.9999
303 H29716 H 297.8 308.4 1512 35.1 138 No Failure Normal values 0.9999

4.2. Comparison with the State-of-the-Art Methods

This section presents the comparison results, which show the superiority of our
method over previously reported methods [37–52] on the same dataset [52]. Table 6
presents the results of classical machine learning methods such as decision trees, logistic
regression (LR), neural networks (NNs), support vector machines, and k-nearest neighbors
(KNN). Compared to these standard classification methods, the Balanced K-Star achieved
higher accuracy on the same dataset. For example, our method (98.75%) performed better
than NN (91.50%) [41], KNN (96.60%) [46], and LR [46] (97.07%) methods.

Table 6. Comparison of Balanced K-Star with the state-of-the-art methods on the same dataset.

Reference Year Method Accuracy
(%) Precision Recall F-

Measure

Kong et al. [37] 2023

Data filling approach based on probability
analysis in incomplete soft sets (DFPAIS) 83.74 - - -

Simplified approach for data filling in
incomplete soft sets (SDFIS) 82.03 - - -

Souza and
Lughofer [38] 2023

Evolving fuzzy neural classifier with expert
rules (EFNC-Exp) 97.30 - - -

Self-organized direction-aware data
partitioning (SODA) 96.80 - - -

Chen et al. [39] 2022

Categorical Boosting (CatBoost) 64.23 - 0.2868 -
Synthetic Minority Over-Sampling Technique

for Nominal and Continuous (SmoteNC) +
CatBoost

88.09 - 0.7881 -

Conditional Tabular Generative Adversarial
Network (ctGAN) + CatBoost 87.08 - 0.8305 -

SmoteNC + ctGAN + CatBoost 88.83 - 0.9068 -
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Table 6. Cont.

Reference Year Method Accuracy
(%) Precision Recall F-

Measure

Vandereycken
and Voorhaar

[40]
2022

Extreme Gradient Boosting (XGBoost) 95.74 - - -
Random Forest (RF) 95.10 - - -

Tensor Trains-based Machine Learning
(TTML) + XGBoost 77.00 - - -

Tensor Trains-based Machine Learning
(TTML) + RF 78.00 - - -

TTML + Multi-Layer Perceptron (MLP) 1 76.20 - - -
TTML + Multi-Layer Perceptron (MLP) 2 65.00 - - -

Falla and
Ortega [41] 2022

Random Forest 96.81 0.9740 0.7639 0.8563
Neural Networks 91.50 0.9166 0.8611 0.8880

Iantovics and
Enachescu [42] 2022 Binary Logistic Regression (BLR) 97.10 0.9950 0.2830 0.4407

Sharma et al.
[43] 2022

Random Forest (RF) 98.40 - - -
Decision Tree (DT) 98.30 - - -

Support Vector Machine (SVM) 97.40 - - -
Logistic Regression (LR) 96.80 - - -

K-Nearest Neighbors (KNN) 97.80 - - -

Harichandran
et al. [44] 2022

Hybrid Unsupervised and Supervised
Machine Learning (HUS-ML) 98.46 0.8300 0.7500 0.7880

Conventional Machine Learning (CML) 97.99 0.6500 0.5800 0.6130

Kamel [45] 2022 Artificial Neural Networks (ANN) 98.50 0.9953 0.6866 0.8126

Jo and Jun [46] 2022

Logistic Regression (LR) 97.07 - - 0.3001
K-Nearest Neighbors (KNN) 96.60 - - 0.0000

KNN + LR 97.65 - - 0.5324
Input + LR 97.25 - - 0.4023

Autoencoder (AE) + LR 97.27 - - 0.3633
Supervised Autoencoder 97.93 - - 0.6171

Vuttipittayamongkol
and Arreeras

[47]
2022

Support Vector Machine (SVM) - 0.7229 0.5941 0.6522
Decision Tree (DT) - 0.8391 0.7228 0.7766

K-Nearest Neighbor (KNN) - 0.8108 0.2970 0.4348
Random Forest (RF) - 0.8267 0.6139 0.7045

Neural Network (NN) - 0.7333 0.2178 0.3359

Mota et al. [48] 2022 Gradient Boosting (GB), Support Vector
Machine (SVM), and proposed methodology 94.55 - 0.9200 -

Diao et al. [49] 2021 Constructing Hyper-Planes - - - 0.6200

Torcianti and
Matzka [50] 2021 Random Undersampling Boosting

(RUSBoost) Trees 92.74 0.3071 0.9085 0.4590

Pastorino and
Biswas [51] 2021 Data-Blind Machine Learning 97.30 - - -

Matzka [52] 2020 Bagged Decision Trees 98.34 0.8673 0.9874 0.9234

Average 91.74 0.8052 0.6666 0.5760

Proposed Method Balanced K-Star 98.75 0.9877 0.9875 0.9875

When we compared it with ensemble learning techniques such as bagged decision
trees, extreme gradient boosting (XGBoost), random forest (RF), and categorical boosting
(CatBoost), our method was found to outperform these models in terms of four met-
rics (accuracy, recall, precision, and F-measure). For example, Balanced K-Star (98.75%)
demonstrated its superiority over XGBoost (95.74%) [40] and RF (95.10%) [40] on the same
predictive maintenance dataset. Thus, the proposed method can be successfully used for
the prediction of machine failures.
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The accuracy of the Balanced K-Star method is also the highest in comparison with
the state-of-the-art methods, e.g., DFPAIS (83.74%) [37], SDFIS (82.03%) [37], EFNC-
Exp (97.30%) [38], SODA (96.80%) [38], RUSBoost (92.74%) [50], and Data-Blind ML
(97.30%) [51]. These results were directly taken from related papers in which the au-
thors used the same dataset [52] as that used in the present study. All measurements reveal
the outperformance of the Balanced K-Star compared to the state-of-the-art methods.

In short, Balanced K-Star achieved an accuracy of 98.75%, whereas other models
reached an average accuracy of 91.74%. Thus, our method outperformed the other models,
with an average improvement of 7%. Consequently, the proposed method can be effectively
used for IoT-based predictive maintenance in manufacturing.

5. Conclusions and Future Works

Predictive maintenance combines IoT technologies with machine learning to predict
probable equipment failures before they happen, providing significant benefits such as de-
creased repair costs, reduced machine downtime, increased safety, and improved efficiency.
However, a standard machine learning algorithm cannot be directly applied to a predictive
maintenance dataset, which is usually imbalanced since there are few machine failures
relative to the number of normal conditions. To deal with data imbalance, a novel explain-
able artificial intelligence method based on the K-Star classification algorithm, entitled
“Balanced K-Star”, is proposed in this paper.

This study aims to predict the near-future machine state (failure or non-failure) by
jointly considering the concepts of predictive maintenance (PdM), explainable artificial
intelligence (XAI), machine learning (ML), and the Industrial Internet of things (IIoT).
Experiments were conducted on a predictive maintenance dataset.

The main findings of this study can be summarized as follows:

• The Balanced K-Star method achieved a higher classification accuracy than the stan-
dard K-Star method on the same dataset;

• Our method (98.75%) outperformed the traditional machine learning methods, ensem-
ble learning methods, and state-of-the-art methods (91.74%) on average;

• The proposed method demonstrated its superiority over previously reported meth-
ods [37–52], with an improvement of 7%;

• The performance of the method was evaluated with different parameter settings,
achieving the highest accuracy with 15% and 20% values of the blend parameters;

• When the importance of the features was investigated by the chi-square technique, it
was revealed that the torque feature had the highest score.

Future work based on the results of this study can include the development of software
based on the Balanced K-Star approach that runs on different datasets in real time for
industrial machines, the automatic insertion of transactional data in historical datasets, and
periodic updating of the model knowledge. In this way, determining the machine failures
and other essential information will improve the maintenance of machines in Industrial
IoT-based environments. Workers with low-level knowledge of intelligent systems can use
such explainable models more efficiently, supporting the capability of predicting probable
failure-oriented machines so that prior preparations can be made to deal with them.
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Abbreviations

The following abbreviations are used in this paper.
AE Autoencoder
ANN Artificial neural network
BKS Balanced K-Star
BLR Binary logistic regression
CatBoost Categorical boosting
CML Conventional machine learning
ctGAN Conditional tabular generative adversarial network
DFPAIS Data-filling approach based on probability analysis in incomplete soft sets
DT Decision tree
ECM Engineering change management
EFNC-Exp Evolving fuzzy neural classifier with expert rules
ELM Extreme learning machine
EOC Environmental and operational conditions
GANs Generative adversarial networks
GB Gradient boosting
HDF Heat dissipation failure
HUS-ML Hybrid unsupervised and supervised machine learning
IIoT Industrial Internet of Things
IoT Internet of Things
KNN K-nearest neighbors
LIME Local interpretable model-agnostic explanations
LR Logistic regression
LWL Locally weighted learning
ML Machine learning
MLP Multilayer perceptron
NN Neural network
OC-SVM One-class support vector machine
OSF Overstrain failure
PCA Principal component analysis
PdM Predictive maintenance
PWF Power failure
RF Random forest
RNF Random failure
RUL Remaining useful life
RUSBoost Random undersampling boosting
SHAP Shapley additive explanation
SDFIS Simplified approach for data filling in incomplete soft sets
SmoteNC Synthetic minority oversampling technique for nominal and continuous
SODA Self-organized direction-aware data partitioning
SVM Support vector machine
TTML Tensor train-based machine learning
TWF Tool wear failure
UPM Ultraprecision machining
XAI Explainable artificial intelligence
XGBoost Extreme gradient boosting

https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
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Machines 2023, 11, 322 18 of 20

References
1. Resende, C.; Folgado, D.; Oliveira, J.; Franco, B.; Moreira, W.; Oliveira-Jr, A.; Cavaleiro, A.; Carvalho, R. TIP4.0: Industrial Internet

of Things Platform for Predictive Maintenance. Sensors 2021, 21, 4676. [CrossRef] [PubMed]
2. Palomar-Cosín, E.; García-Valls, M. Flexible IoT Agriculture Systems for Irrigation Control Based on Software Services. Sensors

2022, 22, 9999. [CrossRef] [PubMed]
3. Wassan, S.; Suhail, B.; Mubeen, R.; Raj, B.; Agarwal, U.; Khatri, E.; Gopinathan, S.; Dhiman, G. Gradient Boosting for Health IoT

Federated Learning. Sustainability 2022, 14, 16842. [CrossRef]
4. Kaur, J.; Santhoshkumar, N.; Nomani, M.Z.M.; Sharma, D.K.; Maroor, J.P.; Dhiman, V. Impact of Internets of Things (IOT) in Retail

Sector. Mater. Today Proc. 2021, 51, 26–30. [CrossRef]
5. Madhiarasan, M. Design and development of IoT based solar powered versatile moving robot for military application. Int. J. Syst.

Assur. Eng. Manag. 2021, 12, 437–450. [CrossRef]
6. Mahmoud, H.H.; Alghawli, A.S.; Al-shammari, M.K.M.; Amran, G.A.; Mutmbak, K.H.; Al-harbi, K.H.; Al-qaness, M.A.A.

IoT-Based Motorbike Ambulance: Secure and Efficient Transportation. Electron. 2022, 11, 2878. [CrossRef]
7. Dang, L.M.; Piran, M.J.; Han, D.; Min, K.; Moon, H. A Survey on Internet of Things and Cloud Computing for Healthcare.

Electronics 2019, 8, 768. [CrossRef]
8. Motlagh, N.H.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494.

[CrossRef]
9. Liu, Y.; Ni, Z.; Karlsson, M.; Gong, S. Methodology for Digital Transformation with Internet of Things and Cloud Computing: A

Practical Guideline for Innovation in Small- and Medium-Sized Enterprises. Sensors 2021, 21, 5355. [CrossRef]
10. Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions.

Sensors 2021, 21, 1174. [CrossRef]
11. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Castedo, L. Towards the Internet of Smart Trains: A Review on Industrial IoT-

Connected Railways. Sensors 2017, 17, 1457. [CrossRef] [PubMed]
12. Raposo, D.; Rodrigues, A.; Sinche, S.; Sá Silva, J.; Boavida, F. Industrial IoT Monitoring: Technologies and Architecture Proposal.

Sensors 2018, 18, 3568. [CrossRef] [PubMed]
13. Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G support for Industrial IoT

Applications— Challenges, Solutions, and Research gaps. Sensors 2020, 20, 828. [CrossRef] [PubMed]
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