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Abstract Organizations maintain process models that describe or prescribe how cases

(e.g., orders) are handled. However, reality may not agree with what is modeled. Con-

formance checking techniques reveal and diagnose differences between the behavior

that is modeled and what is observed. Existing conformance checking approaches tend

to focus on the control-flow in a process, while abstracting from data dependencies,

resource assignments, and time constraints. Even in those situations when other per-

spectives are considered, the control-flow is aligned first, i.e., priority is given to this

perspective. Data dependencies, resource assignments, and time constraints are only

considered as “second-class citizens”, which may lead to misleading conformance

diagnostics. For example, a data attribute may provide strong evidence that the wrong

activity was executed. Existing techniques will still diagnose the data-flow as deviat-

When conducting most of the research reported on in this paper, Dr. de Leoni was also affiliated with

University of Padua, Italy, and financially supported by the Eurostar-Eureka Project PROMPT (E! 6696).

F. Mannhardt (B) · M. de Leoni · H. A. Reijers · W. M. P. van der Aalst

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,

Eindhoven, The Netherlands

e-mail: f.mannhardt@tue.nl

M. de Leoni

e-mail: m.d.leoni@tue.nl

H. A. Reijers

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

e-mail: h.a.reijers@vu.nl

F. Mannhardt

Perceptive Software, Naarden, The Netherlands

W. M. P. van der Aalst

International Laboratory of Process-Aware Information Systems, National Research University Higher

School of Economics, Moscow, Russia

e-mail: w.m.p.v.d.aalst@tue.nl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-015-0441-1&domain=pdf


408 F. Mannhardt et al.

ing, whereas our approach will indeed point out that the control-flow is deviating. In

this paper, a novel algorithm is proposed that balances the deviations with respect to all

these perspectives based on a customizable cost function. Evaluations using both syn-

thetic and real data sets show that a multi-perspective approach is indeed feasible and

may help to circumvent misleading results as generated by classical single-perspective

or staged approaches.

Keywords Process mining · Data Petri nets · Multi-perspective conformance

checking · Log-process alignment

Mathematics Subject Classification 68U35

1 Introduction

The practical relevance of process mining is on the rise as event data is readily available

due to advances in data monitoring and storage. Process mining techniques aim to

discover, monitor and improve real processes by extracting knowledge from event

logs [1]. The two most prominent process mining tasks are: (i) process discovery:

learning a process model from example behavior recorded in an event log, and (ii)

conformance checking: diagnosing and quantifying discrepancies between observed

behavior and modeled behavior. This paper focuses on conformance checking while

considering multiple perspectives (i.e. control-flow, data, resources, time) at the same

time. Deviations identified using conformance checking may, for example, point at

users in a process using undesirable workarounds, activities that are often executed

too late for a particular group of customers, or violations of the four-eyes principle for

cases that follow a particular path.

Up to this point, conformance checking techniques have almost exclusively focused

on the control-flow perspective [1,9,26]. This means that the order of steps is being

analyzed to determine the conformance between prescribed and actual behavior. Of

more recent date is the approach described in [15], which extends such a view with other

important perspectives that may be subject to quality requirements: data, resources,

and time. This paper follows the latter, multi-perspective approach. However, the

approach taken in this paper is distinctively different from the work in [15]: we do not

consider the control-flow first and the other perspectives only at a later stage. As will

be shown, following [15] may provide misleading results if control-flow and the other

perspectives are closely inter-related.

Compared to existing approaches, this paper provides two important contributions.

First of all, we address the potential concern that a multi-dimensional approach may

not be feasible to apply to real-life event logs, considering the longer computations

that are required compared to a single-perspective approach. Secondly, and in contrast

to the multi-dimensional approach in [15] in which control-flow is considered as the

most important perspective in identifying deviations, the proposed approach in this

paper allows for balancing the different perspectives in a fully customizable manner.

By doing so, we claim that we can provide more meaningful analysis results than by

fixing one perspective as the most dominant one.
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Balanced multi-perspective checking of process conformance 409

Our claims have been validated through an empirical evaluation using a real-life

event log and a process model, both of which are provided by the local police of

an Italian city. The log contains information about more than 140,000 road-traffic

fines. Events relate to notifications, payments, and appeals. The evaluation shows

that the approach described in [15] may return unlikely or even wrong explanations

from a business viewpoint. That is, although formally correct, the explanations are not

possible if the specific context of the business process is taken into consideration. As

will be shown, this is caused by the fact that the control-flow is considered initially

without any attention for the other perspectives, which are considered separately in a

second stage. Using the techniques and tools developed as part of our research, the

analysis in this evaluation took roughly 6 min, which seems acceptable considering the

large size of the event log and the complexity of the problem. To further support the

feasibility of the approach, we also used a number of synthetic event logs to evaluate

its performance for logs of various sizes.

Against this backdrop, this paper is structured as follows. We provide a motivating

example in Sect. 2 and some essential background information in Sect. 3. The main

explanation of our approach can be found in Sect. 4, whereas Sect. 5 contains a brief

description of the implementation. Section 6 presents the outcome of our real-life case

study as well as the analyses of the synthetic event logs. Section 7 provides a review

of the existing literature on conformance checking, in particular emphasizing the

distinctive nature of the multi-perspective conformance checking we propose against

the state of the art. Finally, concluding remarks are given in Sect. 8.

2 Motivating example

A process model describes the life cycle of instances of a business process (also known

as cases). Process models consists of a number of activities as well as constraints that

describe which activities must be executed and in which order, depending on the char-

acteristics of a specific case. To clarify the purpose of a process model, let us consider

the model in BPMN notation shown in Fig. 1 (taken from [15]), which describes the

process of handling credit requests from a credit institute. An initial Credit Request

activity is executed for each case, which is to be followed by a Verify activity.

However, variables are associated to cases, which are subject to modification by the

execution of activities. In Fig. 1, it can be seen that during the initial Credit Request

the Amount of the loan is recorded. Also, the Verify activity results in a Verification

result. Paths taken during the execution of a process are often governed by guards

and conditions defined over these case variables. In Fig. 1, the choice between the

execution of the activities Renegotiate Request, Advanced Assessment, and Simple

Assessment is determined on the basis of the values for Verification and Amount. The

data perspective of the process refers to the handling and use of such case variables.

In addition, it may also be relevant to capture the behavior of a process in terms of the

resource restrictions on the execution of activities. An activity is typically associated

with a particular role, i.e., a selected group of resources (also known as actors, agents

or users). In Fig. 1, it can be seen that the Verify activity must be performed by a

resource playing the role of Assistant. There may be additional assignment rules in
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410 F. Mannhardt et al.

Fig. 1 BPMN diagram describing a process to handle credit requests [15]

place such as the “four-eyes principle”, i.e. the same resource cannot execute two

related activities for the same case. Adding this resource perspective to conformance

checking is necessary to detect resource-related deviations.

In addition to data and resource constraints, there may be time-related constraints

that are important to govern. For example, if a renegotiation activity occurs, it needs

to follow an assessment within 7 days. The process model in Fig. 1 shows that a final

decision is made 1 week after the Renegotiate Request activity is initiated. This adds

a time perspective to a process model.

If conformance checking would only consider the control-flow perspective, the

activities themselves and their ordering are the only issues of concern. However, to fully

grasp whether a model conforms with reality other perspectives may be important as

well. In this paper, we focus on the additional perspectives on data, resource, and time.

This paper is grounded in the belief that even though resource and time are separate

concerns from a business or modeling perspective, they can be encoded into the data

perspective. Therefore, in the remainder of this work, we use the data perspective to

capture any perspective different from control-flow. We will show that the resource

and time dimensions can be handled through dedicated data elements. However, also

other perspectives such as costs and risks could be encoded in the same way.

To explain the different perspectives relevant for conformance, consider the fol-

lowing example trace:1 σexample = 〈(a, {A = 3, 000, R = Michael, Ea = Pete, Ta =

3 Jan}), (b, {V = f alse, Eb = Sue, Tb = 4 Jan}}), (c, {I = 530, D =

true, Ec = Sue, Tc = 5 Jan}), (f, {Ef = Pete, Tf = 17 Jan})〉. Trace σexample

consists of 4 events. Lower-case bold letters refer to activities using the mapping

in Fig. 1, e.g., a = Credit Request. Upper-case bold letters refer to data objects.

A = 3,000 describes that the amount is 3,000 (A is a shorthand for Amount) and

R = Michael describes that credit request is initiated by Michael (R is a shorthand for

1 Notation (act, {attr1 = val1, . . . , attrn = valn}) is used to denote the occurrence of activity act in

which variables attr1, . . . , attrn are assigned values val1, . . . , valn , respectively.
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Balanced multi-perspective checking of process conformance 411

Requester). Ex and Tx respectively denote the last executor of x and the timestamp

when x was executed last.

Conformance checking techniques that only consider the control-flow perspective

cannot find any conformance violations for this trace. After all, the trace shows the

subsequent execution of activities a, b, c, and f , which is indeed permitted by the

process model of Fig. 1. By considering more perspectives, however, more deviations

between the process model and this trace can be identified. For example, only by

explicitly considering the data perspective, one can detect that activity c is performed

even though A’s value of 3,000 does not meet the guard for this activity (>5,000).

Similarly, the value of V is ‘false’, which would have required activity c to be skipped

altogether given the process model of Fig. 1.

The identification of non-conformance in its different forms clearly has value in

itself. Nonetheless, organizations are often interested in explanations that can steer

measures to improve the quality of the process. What may happen is that alternative

explanations exist for a deviating trace. For the identified deviations in our example

trace, the explanation may be (1) that all data values were written correctly but that

activity c did not need to be performed, or (2) that activity c was performed properly

but that the variables A and V were both not set correctly.

The approach in [15] seeks for explanations that put the control-flow first. This

approach would prefer explanation (2) even when the other perspectives strongly sug-

gest an alternative explanation with more control-flow deviations. Such explanations

can be constructed quickly, at the potential expense of the inability to guarantee the

optimality of the solution (e.g., the explanation may not be the simplest or most likely).

Indeed, explanation (2) requires one to accept that two observed data values are incor-

rect, which in this particular case may actually be less likely than only one activity

being executed incorrectly. Hence, explanation (1) may be more likely in certain set-

tings. This shows that there are tradeoffs between the different perspectives.

The approach in this paper allows for balancing the control-flow, data, resources,

and time perspectives in identifying explanations for deviations. If all perspectives

would be equally important it identifies explanation (1) as the best explanation, since

it minimizes the number of deviations to explain the erratic trace and as such delivers

the simplest explanation among the two alternatives. However, the approach is cus-

tomizable and one may assign different weights to the different types of deviations. In

fact, there are many situations where we know that the data can be considered to be

reliable. This can be reflected in the weights. Recall, that we will use data perspective

to capture any perspective different from control-flow for the remainder of this paper.

3 Background

In this section, we introduce preliminaries such as the process model, event logs, and

alignments.

3.1 Petri nets with data

Our conformance-checking technique is independent of the specific formalism used

to capture processes in a model. Therefore, BPMN, EPCs, or any other formalism can

123



412 F. Mannhardt et al.

be employed to represent these perspectives. However, we need a simple modeling

language with clear semantics to explain our technique. We use Petri nets as a well-

known language with clear semantics. To capture the interactions of the control-flow

perspective with the other perspectives, we use Petri nets with data.

A Petri net with data (DPN-net) is a Petri net [11] in which transitions can write

variables [16]. A transition performs write operations on a given set of variables and

may have a data-dependent guard. Note that, without loss of generality, we do not

explicitly consider read operations as a source of deviations for this work. The main

reason is that they are hardly ever recorded. A transition can fire only if its guard is

satisfied and all input places are marked. A guard can be any formula over the process

variables using relational operators (<,>,=) as well as logical operators such as

conjunction (∧), disjunction (∨), and negation (¬). We denote with Formulas(X) the

universe of such formulas defined over a set X of variables. We also introduce a prime-

operator: in a guard of a transition t , a variable v can also appear as v′ (i.e., with the

prime symbol). In this case, it refers to the value after the occurrence of t .

Definition 1 (DPN-net) A Petri net with data (DPN-net) N = (P, T, F, V, U, Val, W,

G) consists of:

– a set of places P;

– a set of transitions T ;

– a flow-relation F ⊆ (P × T ) ∪ (T × P);

– a set V of variable names;

– a (potentially infinite) set U of variable values;

– a function Val : V → 2U that defines the values admissible for each variable

v ∈ V , i.e. Val(v) is the domain of variable v and is potentially infinite;

– a write function W : T → 2V that labels each transition with a set of write

operations, i.e. with the set of variables whose value needs to be written/updated;

– a guard function G : T → Formulas(V ∪ {v′ | v ∈ V }) that associates each

transition with a different guard.2

Some transitions do not correspond to actual pieces of work and are only added for

routing purposes. Formally, there is no reason to distinguish such transitions from

others. In practical terms, such routing transitions are characterized by not leaving any

explicit trails in event logs. That is why these transitions are commonly referred to

as invisible. The preset of a transition t is the set of its input places: •t = {p ∈ P |

(p, t) ∈ F}. The postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}.

Example 1 Figure 2, taken from [15], shows the DPN-net that models the same process

as the BPMN model in Fig. 1. In particular, Fig. 2a depicts the control-flow and the

write operations. In addition to the variables depicted in the figure, there exists a set of

variables to model the resource and time perspective, i.e., for each transition t , there

are two variables Et and Tt . Moreover, these two variables are associated with a write

operation of t . Figure 2b contains the data-perspective guards Gd(t) for each transition

t . When defining guards, we assume that string values can be lexicographically ordered

and, hence, it is also possible to use inequality operators (i.e., < and >) for strings. To

2 If a transition t should be associated with no guard, we set G(t) = true.
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(a)

(b) (c)

Fig. 2 The DPN-net of the working example [15]

also model the resource and time perspective, a second guard Gr (t) can be associated

with each transition t (see Fig. 2c). Formally, only one guard G(t) can be assigned to

t and, hence, we set G(t) = Gd(t) ∧ Gr (t).

Given a set X , B(X) denotes the set of all multi-sets over a set X . In addition, given

a multiset M ∈ B(X), for each x ∈ X , we use M(x) ∈ N to indicate the number of

duplicates of element x present in M .

Definition 2 (State of a DPN-net) Let N = (P, T, F, V, U, Val, W, G) be a DPN-net.

The set of possible states of N is formed by all pairs (M, A) where M ∈ B(P), i.e.

a multi-set of the places in P , and A is a partial function that associates a value with

some of the variables, i.e. A : V �→ U such that A(v) ∈ Val(v) for v ∈ dom(A).3

3 We use �→ to denote partial functions, i.e. the function’s domain is a subset of V . dom(A) ⊆ V denotes

the domain of partial function A.
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For any state (M, A), M is known as the marking of Petri net (P, T, F) and we say the

marking assigns to each place p ∈ P a number of tokens. Often we use the shorthand

A(v) = ⊥ to denote that v �∈ dom(A). A special value ⊥ is assigned to variables that

have not been initialized (can be seen as undefined or missing).

Each DPN-net defines two special markings MI , MF : the initial and final marking.

The initial state of a DPN-net is (MI , AI ) with AI (v) = ⊥ undefined for each v ∈ V .

A non-empty set of final states exists and includes every state (M, A) with M = MF .

In any state, zero or more transitions of a DPN-net may be able to fire.

Definition 3 (Valid and Invalid Transition Firings) Let N = (P, T, F, V, U, Val, W,

G) be a DPN-net. A transition firing s is a pair (t, w) ∈ T × (V �→ U ). Transition

firing s = (t, w) is valid in a state (M, A) of N if four conditions are satisfied:

1. each place in the preset of t contains at least one token, i.e. for each place p ∈ •t ,

M(p) > 0;

2. t writes new values to the defined set of variables, i.e. dom(w) = W (t);

3. each variables takes on an admissible value, i.e. for each variable v ∈ dom(w),

w(v) ∈ Val(v);

4. guard G(t) evaluates to true with respect to assignment A.

A transition firing s is invalid in (M, A) when at least one of the above conditions is

not satisfied.

In the remainder, the set of possible transition firings, both valid and invalid, for a

DPN-net N is denoted as SN , i.e. SN = T × (V �→ U ).

We introduce the following functions to easily access the components of a transition

firing s = (t, w): #vars(s) = w and #act (s) = t . Function #vars is also overloaded

such that #vars(s, v) = w(v) if v ∈ dom(#vars(s)), or #vars(s, v) = ⊥ if v �∈

dom(#vars(s)). On firing of a transition the DPN-net moves from current state (M, A)

to next state (M ′, A′).

Definition 4 (Transitions Between DPN-net States) Let N = (P, T, F, V, U, Val, W,

G) be a DPN-net and (M, A) be a state of the DPN-net. Let s = (t, w) be a valid

transition firing in (M, A). Firing s in state (M, A) leads to state (M ′, A′) where:

1. for each place p ∈ P , if p ∈ •t , M ′(p) = M(p) − 1 or, if p ∈ t•, M ′(p) =

M(p) + 1 or, otherwise, M ′(p) = M(p);

2. for each v ∈ V , A′(v) = A(v) if #vars(s, v) = ⊥, otherwise A′(v) = #vars(s, v).

This is denoted as (M, A)
s
−→ (M ′, A′).

The concept of single transition firings can easily be extended to sequences

σ = 〈s1, . . . , sn〉 of valid transition firings: (M0, A0)
σ
−→ (Mn, An) corresponds to

(M0, A0)
s1
−→ (M1, A1)

s2
−→ · · ·

sn
−→ (Mn, An)

In the remainder, PN ,MI ,MF
denotes the set of valid process traces of a DPN-net

N that lead from the initial marking MI to final marking MF : PN ,MI ,MF
= {σ ∈ S∗

N |

∃A′ (MI , AI )
σ
−→ (MF , A′)}. A valid trace σ is such that (MI , AI )

σ
−→ (M ′, A′) with

(M ′, A′) belonging to the set of final states of N , i.e., M ′ = MF .

The alignment technique described in this paper requires DPN-nets to be relaxed

data sound: at least one sequence of transition firings exists that leads from the initial
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state to a final state. We use the word relaxed in comparison to stricter notions of data

soundness, such as described in [15].

Definition 5 (Relaxed Data Soundness) Let N = (P, T, F, V, U, Val, W, G) be a

DPN-net. Let MI be the initial marking and let MF be the final marking. A DPN-

net N is relaxed data sound iff the set of valid process traces contains at least one

valid trace: PN ,MI ,MF
�= ∅.

3.2 Alignment of event logs and process models

Event logs serve as the starting point for process mining. An event log is a multi-set

of traces. Each trace describes the life-cycle of a particular process instance (i.e., a

case) in terms of the activities executed.

Definition 6 (Event Log) Let N = (P, T, F, V, U, Val, W, G) be a DPN-net. Let SN

be the set of possible transition firings. A trace σL ∈ S∗
N is a sequence of transition

firings. An event log L over SN is a multi-set of traces: L ∈ B(S∗
N ).

Multiple instances of a process may consist of the exact same sequence of transition

firings and, hence, result in the same trace. This motivates the definition of an event log

as a multi-set. Transition firings in an event log are usually known as events. We assume

that L only contains events that are part of the DPN-net N . Any event referring to a

transition that is not part of the process model is filtered out. Please note that transition

firings in L are not necessarily in line with the behavior that is described by DPN-net N .

Conformance checking requires an alignment of event log L and process model

N . The events in the event log need to be related to transitions in the model, and vice

versa. Such an alignment shows how the event log can be replayed on the process

model. Building this alignment is far from trivial, since the log may deviate from the

model at an arbitrary number of places.

We need to relate “moves” in the log to “moves” in the model in order to establish

an alignment between a process model and an event log. However, it may be that some

of the moves in the log cannot be mimicked by the model and vice versa. We explicitly

denote such “no moves” by ≫. Figure 3a and b show alignments of the process model

Log Trace Process

a {A = 3000, a {A = 5001,

R = Michael} R = Michael}

b {V = false) b {V = true}

c {I = 530, c {I = 530,

D = true} D = false}

Inv3

Inv4

f {} f {}

Inv5

(a) Complete alignment γ1

Log Trace Process

a {A = 3000, a {A = 3000,

R = Michael} R = Michael}

b {V = false) b {V = false}

Inv1

c {I = 530, D = true}

f {} f {}

Inv5

(b) Complete alignment γ2

Fig. 3 Examples of complete alignments of σexample and N
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in Fig. 2 and the log trace σexample from Sect. 2. For convenience, we introduce the

set S
≫
N = SN ∪ {≫}.

Definition 7 (Alignments) Let N = (P, T, F, V, U, Val, W, G) be a DPN-net with ini-

tial marking MI and final marking MF . A legal move in an alignment is represented

by a pair (sL , sM ) ∈ (S
≫
N × S

≫
N ) \ {(≫,≫)} such that:

– (sL , sM ) is a move in log if sL ∈ SN and sM = ≫,

– (sL , sM ) is a move in model if sL = ≫ and sM ∈ SN ,

– (sL , sM ) is a move in both with correct write operations if sL ∈ SN , sM ∈ SN and

#act (sL) = #act (sM ) and ∀v ∈ V #vars(sL , v) = #vars(sM , v),

– (sL , sM ) is a move in both with incorrect write operations if sL ∈ SN , sM ∈ SN

and #act (sL) = #act (sM ) and ∃v ∈ V #vars(sL , v) �= #vars(sM , v),

All other moves are considered as illegal. AN = {(sL , sM ) ∈ (S
≫
N × S

≫
N ) \ {(≫,≫)}

| sL = ≫ ∨ sM = ≫ ∨ #act (sL) = #act (sM )} is the set of all legal moves. The

alignment of two execution traces σ ′, σ ′′ ∈ S∗
N is a sequence γ ∈ A∗

N such that,

ignoring all occurrences of ≫, the projection on the first element yields σ ′ and the

projection on the second yields σ ′′.

In particular, given a log trace σL ∈ L , γ is a complete alignment of σL and N

if σ ′ = σL and σ ′′ ∈ PN ,MI ,MF
. The alignments in Fig. 3a and b are both complete

alignments. In the remainder, given an alignment γ of σ ′ and σ ′′, γ |L = σ ′ and

γ |P = σ ′′ are referred to as the log and the process projection of γ .

Note that we do not aim to find just any complete alignment. Our goal is to find a

complete alignment of σL and N with minimal deviation cost. In order to define the

severity of a deviation, we first introduce a cost function on legal moves and, then,

generalize it to alignments. The alignment with the lowest cost is called an optimal

alignment.

Definition 8 (Cost Function and Optimal Alignment) Let N and σL be a DPN-net and

a log trace, respectively. Assuming AN as the set of all legal alignment moves, a cost

function κ assigns a non-negative cost to each legal move: AN → R
+
0 . The cost of an

alignment γ between σL and N is computed as the sum of the cost of all constituent

moves: K(γ ) =
∑

(sL ,sM )∈γ κ(sL , sM ). Alignment γ is an optimal alignment if, for

any complete alignment γ ′ of N and σL , K(γ ) ≤ K(γ ′).

This cost function can be used to favor one type of explanation for deviations over the

other. The cost of each legal move depends on the specific model and process domain

and, hence, the cost function κ needs to be defined specifically for each setting. Note

that an optimal alignment does not need to be unique, i.e. multiple complete alignments

with the same minimal cost may exist.

Example 2 We can define the following cost function for the alignment of log trace

σexample to the DPN-net N . Let us shortcut W (#act (sM )) as W (sM ), then we choose

κ to be:4

4 We indicate the size of a set X as |X |.
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κ(sL , sM ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (sL , sM ) move in log

1 + |W (sM )| if (sL , sM ) move in model and

#act (sM ) �∈ {Inv1, . . . , Inv5}

|{v ∈ W (sM ) : #vars(sL , v)

�= #vars(sM , v)}| if (sL , sM ) move in both

with incorrect write operations

0 otherwise.

Using this cost function, the cost of the alignment γ1 in Fig. 3a is K(γ1) = 3 and

the cost of the alignment γ2 in Fig. 3b is K(γ2) = 1. For this cost function γ2 is an

optimal alignment, as no other alignment with lower cost exists.

It is worth noting that moves for transitions Inv1, . . . , Inv5 are always assigned a cost

of 0. We previously referred to these as invisible transitions, i.e. they are never recorded

in the event log. As such, there is no cost involved in not having observed them.

When focusing on the fitness dimension of conformance, we are not only interested

in finding the optimal alignment and, hence, diagnosing where a log trace does not

conform to a model. Also, we wish to quantify the fitness level of traces and logs. For

this reason, we introduce a fitness function F : (S∗
N × N ) → [0, 1]. F(σL , N ) = 1 if

σL can be replayed by the model from the beginning to the end with no discrepancies.

Conversely, F(σL , N ) = 0 denotes the poorest level of conformance. K cannot be

used as fitness function directly as we are interested in expressing the fitness level as

a number between 0 and 1. Normalization can be done in multiple ways. Here, we

divide the cost of an optimal alignment by a reference cost, which is obtained using

a “worst case” alignment that is always possible. Therefore, the fitness level of a log

trace is defined with respect to this “worst case” scenario.

The fitness level definition as well as the following section require two additional

notations. Given two sequences x = (x0, . . . , xn), y = (y0, . . . , yn) the concatenation

of both sequences is defined as x ⊕ y = (x0, . . . , xn, y0, . . . , yn). prefix(x) denotes the

set of all prefixes of x . If z ∈ prefix(x) then a sequence w exists such that z ⊕ w = x .

Definition 9 (Fitness Level) Let σL = (s1, . . . , sn) ∈ S∗
N be a log trace and let N be

a DPN-net. Let γO ∈ A∗
N be an optimal alignment of σL and N and γE ∈ A∗

N be an

optimal alignment of the empty trace and N . Let γR ∈ A∗
N be the reference alignment

given by γR = γE ⊕ 〈(s1,≫), . . . , (sn,≫)〉 with si ∈ σL . The fitness level of σL and

N is defined as follows:

F(σL , N ) = 1 −
K(γO)

K(γR)

To compute the fitness, the cost of the optimal alignment is confronted with the cost

of the reference alignment K(γR), which is computed by concatenating moves in

log for all events of σL with the alignment of the empty trace. γR is used as reference

alignment as it contains no move in both, which is not desirable. Since γO is an optimal

alignment; thus by definition: 0 ≤ K(γO) ≤ K(γR) and, thus, 0 ≤ F(σL , N ) ≤ 1.
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4 Balanced multi-perspective alignments

In this section, we present a technique to construct multi-perspective alignments that

are balanced. As stated, earlier approaches focused on a single perspective or dealt

with the different perspectives sequentially. To illustrate, for the trace σexample, using

cost function κexample defined in Example 2, the technique presented in [15] would

return the alignment γ1 in Fig. 3a. This alignment is sub-optimal in comparison with

γ2.

We formulate the problem of finding such an optimal alignment as a search problem

in a directed graph and employ the A* algorithm [10] to find a least expensive path

through the graph. Let Z = (ZV , Z E ) be a directed graph with edges weighted based

on a predefined cost structure. The A* algorithm, as initially proposed in [10], finds

the path with the overall lowest cost from a given source node v0 ∈ ZV to a node of

a given goal set, i.e., a set of target nodes ZG ⊆ ZV . Each node v ∈ ZV is associated

with a cost that is determined by an evaluation function f (v) = g(v) + h(v), where

– g : ZV → R
+ gives the smallest path cost from v0 to v;

– h : ZV → R
+
0 gives an estimate of the smallest path cost from v to any goal node

vG ∈ ZG from v.

Function h is admissible if it always underestimates the remaining cost to reach any

goal node vG from v: for each node v ∈ ZV and for each goal node vG ∈ ZG that is

reachable from v, h(v) ≤ g(vG) − g(v) holds. If h is an admissible function, then A*

always returns a path that has the lowest overall cost.

In the remainder, given an alignment γ ∈ A∗
N with γ = 〈(s1

L , s1
M ), . . . , (sn

L , sn
M )〉,

we define Ctrl(γ ) as returning an alignment γ ′ ∈ A∗
N with γ ′ = 〈(p1

L , p1
M ), . . . ,

(pn
L , pn

M )〉 that is obtained from γ by removing all write operations (i.e., only the fired

transitions are retained). More precisely, for each 1 ≤ i ≤ n, if si
L = ≫, then pi

L = ≫,

otherwise #act (pi
L) = #act (s

i
L) and dom(#vars(pi

L)) = ∅, as well as if si
M = ≫, then

pi
M = ≫, otherwise #act (pi

M ) = #act (s
i
M ) and dom(#vars(pi

M )) = ∅.

In order to use A* to find an optimal alignment, the search space needs to be defined

along with the cost of search-space nodes:

Definition 10 (Search space and path costs) Let N = (P, T, F, V, U, Val, W, G) be a

DPN-net and σL be a log trace. The search space to find an optimal alignment of N and

σL is a graph Z = (ZV , Z E ). The set ZV contains prefixes of complete alignments

between σL and N :

ZV = {γ ∈ A
∗
N | γ |L ∈ prefix(σL) ∧ ∃σN ∈ PN : γ |P ∈ prefix(σN )}.

The set Z E contains all (γ ′, γ ′′) ∈ ZV × ZV , where γ ′′ is obtained by adding one

legal move to γ ′:

Z E = {(γ ′, γ ′′) ∈ ZV × ZV | ∃(sL , sM ) ∈ AN s.t. Ctrl(γ ′′) = Ctrl(γ ′ ⊕ (sL , sM ))}.

The set of goal nodes ZG ⊆ ZV contains all complete alignments of σL and N :

ZG = {γG ∈ A
∗
N | γG |L = σL ∧ γG |P ∈ PN }.
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In a refinement of the proposal in [5], we add a small negligible cost ǫ ∈ R
+ to the

cost function K so as to guarantee termination (see Theorem 2). Adding ǫ does not

affect the optimality of the returned alignment as long as it is chosen sufficiently small.

The cost associated with a path leading to a graph node γ ∈ ZV is then defined as

follows:5

g(γ ) = K(γ ) + ǫ |γ |

As the search space Z consists of prefixes of complete alignments, from now on we

use γ to denote nodes in Z . To find an optimal alignment of N and σL , we search a

path in Z with the lowest cost from the source node γ0 = 〈〉 to a goal node γG ∈ ZG .

The A* algorithm guarantees to find such a path only if the cost is monotonically

increasing while more nodes are added to the path. The following theorem proves that

the cost from Definition 5 satisfies a stricter form of this property:

Theorem 1 (Cost g is strictly increasing) Let N = (P, T, F, V, U, Val, W, G) be a

DPN-net and σL be a log trace. Let γ ′, γ ′′ ∈ ZV be two nodes in the search space with

(γ ′, γ ′′) ∈ Z E , i.e. there is an edge from γ ′ to γ ′′. Let g(γ ) = K(γ )+ǫ |γ | be the cost

associated with a path leading to a graph node γ ∈ ZV . Then ∀γ ′′ : g(γ ′) < g(γ ′′).

Proof By contradiction: assume that there is an alignment γ ′′ ∈ ZV with lower cost

than γ ′: g(γ ′′) < g(γ ′). As (γ ′, γ ′′) ∈ Z E , it follows that there exists (sL , sM ) ∈ AN :

γ ′′ = γ ′ ⊕ (sL , sM ). The cost of an alignment is defined as the sum of the cost of all

moves that led to this alignment: g(γ ) = K(γ )+ǫ |γ | =
∑

(sL ,sM )∈γ κ(sL , sM )+ǫ |γ |.

Therefore, the cost of γ ′′ can be expressed as g(γ ′′) = g(γ )+κ((sL , sM ))+ ǫ. Using

the assumption g(γ ′′) = g(γ ′) + κ((sL , sM )) + ǫ < g(γ ′) ⇔ κ((sL , sM )) + ǫ < 0

should hold, but κ ∈ SA → R
+
0 is non-negative and ǫ ∈ R

+ is positive. ⊓⊔

Here, we use the heuristic function introduced in [5], which exploits the Petri-net mark-

ing equation to rule out most nodes for which all goal states have become unreachable.

A formal introduction is out of scope here. Furthermore, a comprehensive explanation

would require the introduction of several concepts related to the marking equation.

We limit ourselves to argue that this heuristic is also admissible when other perspec-

tives are considered. To see this, imagine gc(γ ) to be the cost of an alignment/node γ

that only considers control-flow deviations. We can take an alignment prefix γ in our

search space ZV and remove all information about the other perspectives (i.e. write

operations) to calculate this cost. In fact, such an alignment prefix would be part of

the search space in [5] and gc would be the same cost function that is used in [5]. In

that work, h(γ ) is proven to be admissible, i.e. for each alignment γ , gc(γ ) ≥ h(γ ).

Our cost function g(γ ) as defined above only adds additional costs for deviations

with respect to other perspectives. Such deviations can only be caused by incorrect

write operations and we require a non-negative cost for any such deviation. There-

fore, g(γ ) ≥ gc(γ ) ≥ h(γ ) and, hence, h will remain admissible when all process

perspectives are taken into consideration.

5 We indicate the number of moves in an alignment γ with |γ |.
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Before introducing the actual algorithm, we need to introduce the concept of control-

flow successors. Let N = (P, T, F, V, U, Val, W, G) be a DPN-net and MI , MF be

the initial and final marking, respectively. The set of control-flow successors of an

alignment γ of a trace σL and a DPN-net N with initial and final markings MI and

MF , denoted with ctrl_succσL ,N ,MI ,MF
(γ ), consists of every alignment that can

be obtained by adding one legal move, ignoring variables, guards, and write operations.

Formally, let us introduce N ′ = (P, T, F,∅, U ′, Val′, W ′, G ′) as a DPN-net with

dom(Val′) = dom(U ′) = dom(W ′) = dom(G ′) = ∅. Its control-flow structure

is that of the DPN Net N but no variables, write operations and guards are defined.

Therefore, the set of control-flow successors of an alignment γ of a trace σL and a

DPN-net N with initial and final markings MI and MF is:

ctrl_succσL ,N ,MI ,MF
(γ ) = {γC ∈ A∗

N | γC = γ ⊕ 〈(sL , s′
L)〉 ∧

γC |L ∈ prefix(σL) ∧ ∃σN ′,MI ,MF
∈ PN ′ : γC |P ∈ prefix(σN ′)}.

Please note that γC is generally not a prefix alignment of the original DPN-net N since

its process projection may not be a valid execution trace in N .

Algorithm 1: balancedConformance

Input: DPN-net (N), Initial and Final Markings (MI , MF ), Log trace (σL),
Cost Function (K)

Result: Balanced alignment (γ)

γ ← γ0 = 〈〉
Queue Q = 〈〉
while γ|P /∈ PN ∧ γ|L �= σL do

foreach γ′

C in ctrl succσL,N,MI ,MF
(γ) do

γ′ ←augmentWDσL,N(γC)

if γ′ �= ⊤ then

f(γ′) ← K(γ′) + ǫ · |γ′| + h(γ′)
enqueue(Q, γ′, f(γ′))

end

end

γ ← pollLowestCost(Q)

end

Algorithm 1 illustrates how we use the A* algorithm to search for an optimal

alignment. The algorithm takes a DPN-net N and a log trace σL as input and returns

the optimal alignment γ that is balanced according to a given cost function κ . Instead

of building the graph Z beforehand—which is potentially infinite—we build up the

search space incrementally. Starting with the empty alignment γ0 = 〈〉 as its source

node, we build the set ctrl_succσL ,N ,MI ,MF
with all successors of γ by taking

only the control-flow perspective into account. As indicated, not every control-flow

successor γC is a node of search space Z . To be part of Z , γC needs to be augmented

with the variable’s write operations. Please note that process variables can be defined

on infinite domains and, as a result, γC may have an infinite number of successors.

Since we aim to minimize the alignment cost, we only take one of the augmentations

with the lowest cost. Here, we perform the augmentation in the same way as discussed

in [15] with the notable difference that we also augment alignments of prefixes of the
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Log Trace Process

a {A = 3000, R = Michael} a {}

b {V = false) b {}

c {I = 530, D = true} c {}

(a) Control-flow successor

Log Trace Process

a {A = 3000, R = Michael} a {A = A1, R = R1}

b {V = false) b {V = V1}

c {I = 530, D = true} c {I = I1, D = D1}

(b) The skeleton of all possible augmenta-

tions of the control-flow successor

min V1 + I1 + A1 + R1 + D1

V1 = true

I1 > 0.1 A1

I1 < 0.15 A1

A1 > 5000

A1 = 3000 ⇔ A1 = 0

R1 = Michael ⇔ R1 = 0

V1 = false ⇔ V1 = 0

I1 = 530 ⇔ I1 = 0

D1 = true ⇔ D1 = 0

(c) The MILP problem

to find the augmenta-

tions with the lowest

cost in deviations

Fig. 4 Illustration of the augmentation of a control-flow successor of an alignment/node of the search space

log trace with the process model. By contrast, in the previous work only alignments of

entire log traces are augmented. At this point, we will not elaborate on this technique

but provide an example.

Example 3 Let us consider the alignment in Fig. 4a. This alignment is not a search-

space node to compute an optimal alignment of σexample and the DPN-net in Fig. 2,

since its process projection is obviously not a prefix of any process trace: the write

operations need to be added. Figure 4b shows the skeleton of all possible augmen-

tations where variables Amount, Requester, Verification, Interest and Decision need

to be assigned values, which are represented by placeholders A1, R1, V1, I1 and D1.

These values need to be chosen so as to not violate any guard, i.e. the sequence of

transition firings need to be a prefix of a valid process trace. Moreover, we aim to

minimize the cost of the deviations from what observed in the corresponding events in

the log. According to what proposed in [15], we need to solve a Mixed integer linear

programming (MILP) problem, which is Fig. 4c in this case. The placeholders men-

tioned above become MILP variables. When an optimal solution is found, the values

of these MILP variables are, in fact, the values to set in the alignments. Two sets of

constraints can be observed. The first set corresponds to the guards associated with

the transitions, defined over these MILP variables. Moreover, for each variable, e.g.

A1, there is a constraint that says that a boolean variable, e.g. Â1, is given a value 0 if

and only if A1 is assigned the same value as observed in the corresponding event, e.g.

A1 = 3,000 ⇔ Â1 = 0.6 The objective function is the cost in term of severity of the

deviations, i.e. the sum of such boolean variable, e.g. Â1, weighted with coefficient

corresponding to the cost for deviation of the respective process variable, which is

equal to 1 for all variables for this example.

In the remainder, the augmentation is abstracted as a function augmentWDσL ,N :

A∗
N → ZV , which takes a control-flow successor and returns an alignment γ ∈ ZV .

6 Although these constraints are not expressed in a linear form, each of these can be translated into a pair

of linear inequations as discussed in [15].
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Since N is assumed to be only relaxed data sound, it may happen that γC cannot be

augmented with other perspectives (i.e., the MILP problem has no solutions). In this

case, the function is assumed to return the special value ⊤. Note that the augmentation

γ ′ for γC needs to be computed from scratch, ignoring the predecessor γ . Indeed, the

last move may refer to a transition t that is not allowed to fire in the DPN-net state

reached by firing sequence γ |P .

If an augmentation γ ′ exists, i.e. γ ′ �= ⊤, the cost f (γ ′) is computed and γ ′ is

inserted into the priority queue Q using the function enqueue. If it does not exist,

γC does not yield to any valid alignment to be added to Q. Once all the control flow

successors are considered, a new alignment γ is picked from the head of Q using the

function pollLowestCost, i.e. one of the alignments associated with the lowest

cost. If γ is a complete alignment, it is returned as the optimal alignment. Since

the heuristic function is admissible and the cost g is monotonically increasing, the

application of A* guarantees that the returned alignment has the lowest cost of all

complete alignments. Otherwise, the node is expanded and successors are added to

the queue. Therefore, the search-space successors of a given node are only created

when such a node is visited, without unnecessarily using the machine memory to store

information for search-space nodes that are never going to be visited.

Example 4 Figure 5 shows the portion of the search space that Algorithm 1 constructs

to find an optimal alignment of σexample and N when the standard cost function is

used. Each node γ ∈ ZV is represented by a circle, which includes both the values for

the actual cost g(γ ) and the estimated cost h(γ ) to extend the alignment to obtain a

complete one. Nodes emphasized with a gray background are those which have been

visited during the search (i.e., the nodes that are polled from the priority queue). The

other nodes have been constructed and the values of functions g and h computed,

because they are successors of nodes that have been visited. The gray nodes are also

associated with numbers #1, . . . , #10, indicating the order in which they have been

visited. Goal nodes γG ∈ ZG are depicted with a double-line border. An edge between

two nodes/alignments γ ′ and γ ′′ is labelled with the move (s′, s′′) with which γ ′ has

been extended, i.e. γ ′′ = γ ′ ⊕ 〈(s′, s′′)〉. For readability, the labels do not show the

variable assignments but they only show the transition names; for the same reason, we

omit some labels when they are not very significant. As a matter of fact, Example 3

refers to one of the control-flow successors of the node/alignments with label #2,

namely the successor associated with a move in both for transition c. It is easy to see

that two is the cost of the optimal solution of the associated MILP problem, shown

in Fig. 4c, which is also the cost of such an alignment, i.e. the function K . To get the

cost g(γ ), ǫ is added for each of the three steps in the alignment.

The optimal alignment is associated with the alignment/node γO with label #10.

Note that Fig. 5 indicates a different target node/alignment γ ′
O as well. In fact, g(γ ′

O) =

g(γO) and, hence, γ ′
O is also an optimal alignment. The choice between γ ′

O and g(γO)

is totally arbitrary since there is no reason to prefer one alignment over the other.

Theorem 2 (Algorithm 1 terminates) Let N = (P, T, F, V, U, Val, W, G)be a relaxed

data sound DPN-net with MI initial marking and MF final marking. Let σL =

〈l1, . . . , ln〉 be a log trace. Let K be a cost function. Algorithm 1 terminates with

inputs N , MI , MF , σL , K .
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(c, c)

(c, ) ( , Inv1)

(f, f) (f, f)

( , Inv5) ( , Inv5)

Fig. 5 Portion of the search space constructed to find an optimal alignment of σexample and the DPN-net

in Fig. 2. Write operations omitted for readability

Proof Since N is relaxed data sound, there exists at least one valid process trace

σM = 〈p1, . . . , pm〉 ∈ PN . Therefore, there exists at least one complete alignment

γO = 〈(l1,≫), . . . (ln,≫), (≫, p1), . . . , (≫, pm)〉, which belongs to the target node

of the search space used by Algorithm 1. Suppose that Algorithm 1 does not terminates

with inputs N , MI , MF , σL , K . It means that for each q ∈ N, there exists an alignment

γq composed by q moves such that f (γq) ≤ f (γO). In particular, it holds for q ′ =

⌈
f (γO )

ǫ
+ 1⌉. Since each alignment move adds at least a cost ǫ, f (γq ′) ≥ ⌈

f (γO )
ǫ

+

1⌉ · ǫ ≥ f (γO) + ǫ. This cannot be true since we assumed f (γq) ≤ f (γO). ⊓⊔

So, Algorithm 1 will always terminate although, in theory, an arbitrary large number of

non-complete alignments need to be visited. In practice, this number is kept reasonably

small by the fact that models are usually designed in a way that there is no possibility

to have arbitrary long sequences in an alignment where each move takes on a zero

cost (i.e., the corresponding arcs in the search space is associated with a cost ǫ).

As discussed in [10], the worst-case complexity of the A* algorithm is exponential

in the length of the path that leads from the initial search-space node to the nearest

goal node. Applied to the problem of finding an optimal alignment, this means that

the worst-case complexity is exponential in the length of the alignment. This is of the
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same order of magnitude as the log-trace traces, assuming that, on average, each trace

event is associated with one or two moves (e.g., a move in both or a move in log plus

a move in model). For each node that is visited, a MILP problem needs to be solved.

So, the number of problems to be solved is exponential in the length of log trace. The

worst-case complexity of solving an MILP problem is exponential in the number of

variables and constraints, which, in our setting, is translated to the number of variables

written by and guards associated to transitions. In summary, the worst-case complexity

is double exponential.

Finding a balanced alignment comes at the price of a higher computation cost in

comparison with the technique presented in [15]. Recall that in [15] one cannot bal-

ance the different perspectives. Nevertheless, efficiency is of the utmost importance.

Hence, we provide a number of optimizations to speed up the computation. For fur-

ther information, readers are referred to [20]. Along with our choice of the heuristic

function, these optimizations limit the number of nodes to be visited and, hence, the

number of MILP problems to be solved. As also discussed in Sect. 6 for what con-

cerns the real-life case study, in all the experiments, the double-exponential worst case

complexity is never encountered in practice.

5 Implementation

We implemented the algorithm of Section 4 as a plug-in for the open-source ProM

framework.7 The plug-in Balanced Data Conformance Checker, takes as input both

a process model in the form of a DPN-net and an event log in the XES format. For

these, it computes optimal balanced alignments for each trace based on the algorithm

described in Sect. 4.

MILP problems are solved through the open-source library lp_solve, which is based

on the revised simplex method combined with a branch-and-bound method for the

integers.8 However, we use a standardized interface and, hence, one is free to plug in

several solvers, including commercial ones.

The output of the plug-in is a set of alignments that can be used by other plug-ins of

the ProM framework. For example, all visualization plug-ins that are described in [15]

require such a set of alignments as input. The basic visualization plug-in presents each

alignment as color-coded trace. Colors are used for the different types of moves of

the alignment. For example, a move in both with correct write operations is colored

green and a move in log is colored yellow. Whereas this visualization is well-suited

to analyze the alignment for a single trace, it does not provide a good overview of the

deviations in the whole event log.

A helicopter view [15] on the whole event log is given by a second plug-in. It

projects the set of alignments for the entire event log onto the process model. Figure 6

depicts the output of this Projection on net plug-in for a set of alignments and the

process model of the road traffic fines management process, which is discussed in

more detail in Sect. 6. Transitions and variables are colored according to the number

7 http://www.promtools.org

8 http://lpsolve.sourceforge.net

123

http://www.promtools.org
http://lpsolve.sourceforge.net


Balanced multi-perspective checking of process conformance 425

Start

End

Create Fine Send Fine No�fica�on

Appeal to 

Prefecture

Inv3

Inv5

Inv4

Appeal to Judge

Send for Credit 

Collec�on

Inv1 Send Appeal

Receive ResultNo�fy Offender

Payment Add Penalty

Inv2

Payment Payment

Inv6

Amount

Points

Payment

Expenses

Delay

Prefecture

Delay

Judge

Delay

Send

Dismissal

Fig. 6 Output of the Projection on net plug-in of ProM using a set of balanced alignments. The darker the

color, the higher the percentage of deviations that are detected for the transition or the variable. Figure was

redrawn to improve readability (color figure online)

of deviations in the alignments, i.e. move in log, move in model, and move in both with

incorrect write operations, in relation to the number of occurrences of the transition or

variable. The darker the color, the higher is the percentage of deviations for a transition

or variable. For example, the color of the Send Appeal transition encodes the fact that

the highest percentage of deviations is related to Send Appeal.

6 Evaluation

To evaluate the usefulness and feasibility of the balanced approach we use both a real-

life and a synthetic data set. To assess the usefulness, we compare results returned

by the balanced approach with those returned by the non-balanced one from [15].

Regarding the feasibility of the balanced approach, we show that our implementation

can easily handle traces with noise. Moreover, traces of considerable length can be

handled in a reasonable amount of time. We use an event log from an information

system of the Italian police as a real-life case. We also simulated the process model

that is shown in Fig. 2 using CPN Tools9 to generate synthetic event logs. These allow

for various controlled experiments to evaluate the performance of the approach.

6.1 Real-life event log

We applied our balanced multi-perspective conformance checking approach to a real-

life event log taken from an information system of the Italian police. The information

9 http://www.cpntools.org
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Start

End

Create Fine Send Fine No�fica�on

Appeal to 

Prefecture

Inv3

Inv5

Inv4

Appeal to

 Judge

Send for Credit 

Collec�on

Inv1 Send Appeal

Receive ResultNo�fy Offender

Payment Add Penalty

Inv2

Payment Payment

Inv6

Amount (A)

Points (PO)

Payment (P)

Expenses (E)

Delay

Prefecture (DP)

Delay
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Fig. 7 DPN-net of the road traffic fine management process

Transition Guard

Send Fine Delay Send < 90 days

Appeal to Judge Delay Judge < 60 days

Appeal to Prefecture Delay Prefecture < 60 days

Receive Result Dismissal = NIL

Send for Credit Collection Payment < Amount + Expenses

Inv1 (Dismissal != NIL) ∨ (Payment ≥ Amount ∧ Points = 0)

Inv2 Payment ≥ Amount + Expenses

Inv3 Payment ≥ Amount + Expenses

Inv4 Dismissal = #

Inv5 Dismissal = NIL

Inv6 Dismissal = G

Fig. 8 Guards of the road traffic fine management DPN-net

system supports the management and handling of road traffic fines by a local police

force in Italy. The system records sufficient data to create an event log.

6.1.1 Process model

The process model shown in Fig. 7 together with the guards in Fig. 8 specify the

management of road traffic fines. We designed the process model manually using a

discovered model next to domain knowledge and information regarding traffic regu-

lations. The process starts with the Create Fine transition that writes four variables:

Amount (A), Points (PO), Payment (P) and Dismissal (D). The Amount variable refers

to the amount that needs to be paid by the offender and the Points variable records the

number of points that are deducted from the offender’s license. Payment is the total

amount that has been paid by the offender. It is always initialized as P = 0.0. Dis-
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missal contains a character that encodes the diverse reasons for a possible dismissal

of the fine. A value of NIL encodes that the fine is not dismissed (i.e. has to be paid);

any other value encodes different motivations. In general, the offender can pay the fine

(partly or fully) at many moments in time: Right after the creation, after a road fine

notification is sent by the police to the offender’s place of residence, or when such a

notification is received by the offender herself. If the entire amount is paid (or, even,

by mistake, more than that amount), the fine management is closed. This motivates

the presence of the invisible transitions I nv1, I nv2 and I nv3. If a notification is sent,

the offender needs to also pay the postal expenses. If the offender does not pay within

180 days, a penalty is added, usually as much as the fine’s amount. After being notified

by post, the offender can appeal against the fine through a judge and/or the prefecture.

If the appeal is successful, the variable Dismissal is set to value G or #, respectively,

and the case ends (by firing either I nv4 or I nv6). Otherwise, the case continues by

firing I nv5 or Receive Result. If the offender does not pay, eventually the fine ends by

handing over the case for credit collection.

The Italian laws specifies a number of time constraints. The fine notification must

be sent within 90 days since its creation. After the notification, the offender may only

appeal to a judge/prefecture within 60 days. To check the conformance of the fine

management with respect to these laws, we have introduced three additional variables

that record the various delays: Delay Send, Delay Judge, Delay Prefecture.

6.1.2 Event log

The road traffic fine management process is supported by an information system that

records data about its operations in a PostgresSQL database. The database snapshot

used here was taken in June 2013. We exported the event log to a CSV format and

converted it to the XES format,10 which is the event log format supported by tools like

ProM. From the analysis of the event log, we noticed that cases are usually completed

within 6 months, including those cases ending with a referral to credit collection. For

the analysis, we want to consider only finished cases. As a heuristic to ensure this, we

filtered out any case that started after June 2012. Since the relevant laws and procedures

are rather stable over the past years, the last year of the event log should show the

same behavior as in previous years.

The resulting event log contains 145,800 event traces, which were recorded between

January 2000 and June 2012. Most of the traces are short: on average, a trace consists

of four events only. For 43 % of the traces the process ends after two events: the fine

is paid (Payment) before the letter with information about the fine is sent out (Send

Fine). In contrast to this simple part of the log, 51 % of the traces recorded five or

more events and 62 % of the traces take longer than 100 days to finish. This suggests

that many offenders do not pay the fine in time or appeal against the decision.

Similar as for the process model, the event log has been extended to contain variables

Delay Send, Delay Judge, Delay Prefecture that record the delays.

10 http://www.xes-standard.org/
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6.1.3 Conformance checking: choice of cost function

The balanced approach has been used to check the conformance of the event log

described in Sect. 6.1.2 against the model in Sect. 6.1.1. As described in Sect. 3.2,

the approach requires the definition of a cost function κ(sL , sM ). A process analyst

chooses such a function assigning a higher cost to deviations that are considered as

more severe for the specific process. Since the fine’s amount and the deducted points

are defined by law and the expenses follow the Italian post tariffs, their values cannot

be modified to give an explanation of deviations. In order to respect this domain

characteristic, we assigned significantly higher costs to their deviations in comparison

to those for deviations of the values of Payment and Dismissal as well as the control

flow.

The cost function is as specified by two tables in Fig. 9. A tabular representation is

used to enhance the readability. However, we aim to quickly show that the so-defined

cost function is compliant with the definition κ ′(sL , sM ) → R
+
0 . The cost for a legal

move (sL , sM ) ∈ AN is obtained by looking up the costs regarding the transition and

adding the cost of missing write operations in case of a move in model, or the cost of

incorrect write operations in case of a move in both with incorrect write operations.

This definition complies with the cost-function structure as given in Definition 8. For

example, consider activity Create Fine, which writes variables Amount, Expense and

Payment. The part of the cost function referring to Create Fine is defined as follows:

κ(sL , sM ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (sL , sM ) is a move in log for Create Fine

1 + |W (#act (sM ))| (sL , sM ) is a move in model for Create Fine

3 · |{v ∈ V :

#vars(sL , v) �= #vars(sM , v)

∧ #vars(sL , v) �= ⊥}|

+ |{v ∈ V : #vars(sL , v) = ⊥

∧ #vars(sM , v) �= ⊥}| (sL , sM ) is a move in both for Create Fine

. . . . . .

Fig. 9 Costs function κ ′(sL , sM ) for the road fines management process. The cost for move in both without

incorrect write operation is 0 for all transitions. Log moves for invisible transitions take an infinite cost: this

value is irrelevant since invisible transitions are never associated with any log’s event. The cost for move in

both with incorrect write operation is obtained by summing the specific costs associated with each variable

for which a missing or incorrect value has been written, as per right-hand side table
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A cost of one is assigned to a move in log, a move in model and each missing

write operation concerning the transition Create Fine. A higher penalty of three is

added for each incorrect write operation in case of a move in both with incorrect write

operations.

6.1.4 Conformance checking: analysis of results

After applying the balanced approach for conformance checking with the cost function

discussed in Sect. 6.1.3, we used the plug-in Projection on net to obtain an overview

of the non-conformance problems. Figure 6 shows the results of the Project on net

plug-in.

The average fitness level was 0.96, which testifies a very good conformance of the

event log with the process model. In particular, 53.1 % of log traces are characterized

by a fitness level of 1. However, as the net projection indicates, several deviations

are still present. For example, the transition Send Appeal is colored with the darkest

color: In 79.1 % of the alignments that contain Send Appeal there is a deviation from

the process model concerning this transition. Particularly, Send Appeal is executed

2,895 times with an incorrect value for Dismissal, 112 times as move in log, 3 times

as move in model and the remaining 795 times without deviations. In particular, often

the dismissal value is # instead of G. This suggests that process participants should

pay attention not to confuse the dismissal code corresponding to a successful appeal

to a judge with one referring to a successful appeal to the prefecture.

Moreover, Fig. 6 shows that the time constraints regarding Send Fine, Appeal to

Judge and Appeal to Prefecture are often not respected. The value of the Delay Send

variable is incorrect in 46.8 % of the traces, the value of Delay Judge in 18 % of the

traces, and the value of Delay Prefecture in 15.4 % of the traces. This suggests that

authorities are currently unable to handle road fines in a timely and correct manner.

Therefore, to remedy this situation more resources, i.e. police officers, should be

assigned by the municipality. Alternatively, some parts of the management should be

outsourced, e.g. the steps necessary to print fine notifications, put these in envelops,

and send them by post. Indeed, these are manual steps that require a lot of time from

the involved police officers.

A valuable insight is that there are deviations recorded for the Send for Credit

Collection transition. In 8.2 % of all traces (i.e. 11,945 times) the transition appears

as a move in model in the alignment. For 11,945 fines, within 1 year, neither have

their amount been paid in full nor have they been forwarded for credit collection.

Considering that sending for credit collection is supposed to usually occur within

6 months after the fine has been opened, this finding suggests that there may be issues

(e.g. unmotivated delays) with managing unpaid fines.

In order to compare the results of our balanced approach with those returned by a

non-balanced approach [15], we also applied the latter. Figure 10 shows a scatter plot

in which each black box represents one trace. The x-axis shows the fitness level of non-

balanced alignment and the y-axis shows the fitness level of the balanced alignment.

For all traces that are left from the main diagonal, which amounts to 21.7 % of all traces,

the balanced approach improved the alignment. For all traces on the main diagonal the

fitness level remains unchanged. The balanced approach improved the fitness level of
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Fig. 10 Comparison of the

fitness levels returned by the

non-balanced and the balanced

approach. Dots on the diagonal

correspond to cases with

unchanged fitness. Dots above

the diagonal show cases for

which the non-balanced

approach returns lower fitness

values

Start

End

Create Fine Send Fine No�fica�on

Appeal to 

Prefecture

Inv3

Inv5

Inv4

Appeal to Judge

Send for Credit 

Collec�on

Inv1 Send Appeal

Receive ResultNo�fy Offender

Payment Add Penalty

Inv2

Payment Payment

Inv6

Amount

Points

Payment

Expenses

Delay

Prefecture

Delay

Judge

Delay

Send

Dismissal

Fig. 11 Comparison of the Projection on net output returned for the non-balanced (right) and the balanced

approach (left). The darker the color, the higher the percentage of detected deviations for the transition or

the variable. The figure clearly shows that the balanced approach provides different results suggesting that

the approach to first construct control-flow alignments may provide misleading results. Figure was redrawn

to improve readability (color figure online)

the alignment for 46.4 % of the traces if one excludes the perfectly-fitting traces. Note

that for perfectly-fitting traces this is obviously impossible. 68,330 traces contain at

least one deviation.

After removing every perfectly-fitting trace from the event log, we again applied

both the balanced and non-balanced approach. In Fig. 11, the output of the Projection
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Log Trace Process

Create Fine Create Fine
{A = 131.0, D = NIL, {A = 131.0, D = NIL,

PO = 0, P = 0} PO = 0, P = 141.0}

Send Fine Send Fine
{DS = 1152, {DS = 1152,

E = 10.0} E = 10.0}

Inv2

(a) Non-balanced alignment, with a fit-
ness of F(σA, N) = 0.77

Log Trace Process

Create Fine Create Fine
{A = 131.0, D = NIL, {A = 131.0, D = Q,

PO = 0, P = 0} PO = 0, P = 0}

Send Fine
{DS = 1152,

E = 10.0}

Inv1

(b) Balanced alignment, with a fitness
of F(σA, N) = 0.85

Fig. 12 Comparison between balanced and non-balanced alignments of a trace σA taken from the real-life

event log. The non-balanced alignment contains an incorrect variable assignment for the initial payment P,

whereas the balanced alignment contains an incorrect variables assignment for dismissal D

on net plug-in for the 68,330 non-perfectly fitting traces is compared for both the

balanced, color shown on the right side of transitions and variables, and the non-

balanced approach, color shown on the left side. The comparison shows that there

are significant differences in the identification of the root-causes of the deviations.

In particular, when applying the non-balanced approach, the net projection highlights

that many traces are deviating due to wrong values of Amount and Payment. Indeed,

the color on the right side of these variables is yellow and dark yellow. Vice versa, the

left side of the corresponding variables is white-colored.

In order to understand the reason for such a significant difference in the identifica-

tion of root causes, we have inspected the alignments returned by the two approaches.

We found out that there are alignments for hundreds of log traces of the following form:

σA = 〈(Create Fine, {A = 131.0, D = NIL, PO = 0, P = 0}), (Send Fine, {DS =

1152, E = 10.0}}))〉 and a smaller number of traces of the following form: σB =

〈(Create Fine, {A = 138.0, D = NIL, PO = 6, P = 0}), (Send Fine, {DS =

3,409, E = 11.0}}), (Notification), (Appeal to Judge, {DS = 840, D = NIL}}),

(Add Penalty, {A = 275.0}}), (Payment, {P = 149.0}})〉.

Figure 12 compares the alignments returned by the balanced and non-balanced

approach for the trace σA. The non-balanced approach highlights that the fine at

creation time should have already been associated with a payment of 49 Euros. By

contrast, the balanced approach suggests that the fine should have been dismissed,

e.g. with code Q, and never sent out. It is easy to see that the alignment returned by

the non-balanced approach is not plausible, since it is impossible to create a fine that

already has a full payment associated to it. The payment by necessity can only be

made at a later stage.

Regarding Amount, any root cause that consists of changing the assignment of

such a data variable (i.e. an incorrect write operation) is not acceptable. After all, this

amount is defined by the Italian law and police officers use road-fine forms in which

the amount is predetermined. For instance, let us consider the trace σB . Clearly, this

trace has problems. First, the fine was sent too late, since the delay is longer than

what law permits. Second, the fine has been closed with a payment of 149 Euros,

which corresponds to the initial amount plus the postal expenses. Unfortunately, a

penalty was also included, which the offender did not pay. As shown in Fig. 13, both

approaches highlight the problem that the fine is send too late. For the second source of

mis-conformance, the non-balanced approach suggests that, after applying the penalty,
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(a) (b)

Fig. 13 Comparison between balanced and non-balanced alignments of a trace σB taken from the real-

life event log. In the non-balanced alignment the amount A after adding a penalty and the delay send DS

variables are marked as incorrect (underlined). In the balanced alignment the amount A is considered as

correct and instead the transition Send to Credit Collection is inserted as model move

the due amount does not change. This is definitely not plausible since adding a penalty

needs to result in a higher amount to be paid. As a matter of fact, the Italian law states

that, besides very few exceptions, the due amount should even be doubled, excluding

expenses. By contrast, the balanced approach returns a meaningful result: The fine

was not paid in full and, hence, needs to be sent for credit collection.

The reason for the differences in the returned alignments is related to the fact that

the non-balanced approach constructs alignments by initially aligning the control-flow

and, only later, by aligning the other perspectives. The non-balanced approach makes

the assumption that control-flow deviations are more costly and, hence, they can be

aligned first. If this assumption does not hold, such as for this case study, the returned

alignments are not optimal and this may lead to implausible explanations. It is not a

solution to assign lower costs to deviations related to the control-flow since this would

also return implausible explanations, being based on a wrong cost functions.

We conclude this section by briefly reporting on the execution time. Finding the

alignments took on average 2.3 ms per trace for the balanced approach, versus 1.2 ms

for the non-balanced one. The balanced approach required slightly more time, which

still appears reasonable and certainly justified by obtaining more meaningful expla-

nations for the deviations.

6.2 Synthetic event log

We also conducted experiments with synthetic event logs in order to show that the

balanced approach is still feasible when dealing with loops in the process model,

event logs containing longer traces, and higher levels of noise. We constructed 3 event

logs that contain traces of considerable length (between 3 and 35 events per trace) and

we introduced different levels of noise in such logs L1, L2, L3, namely 5, 10 and 15 %

of noise, respectively. Introducing xmanipulated the event logs by swapping x trace

and by changing the attribute values associated with transition firings such that x the
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(a) L1: 5% Noise (b) L2: 10% Noise (c) L3: 15% Noise

Fig. 14 Run-time per trace for different trace length and noise level. The non-balanced approach is shown

as gray diamonds, the balanced approach as black dots

respective guards are not satisfied. Figure 14 illustrates the execution time with three

scatter plots (one for each event log). A dot located at position (x, y) identifies the fact

that a trace of length x required y milliseconds to be aligned. Two series of dots are

displayed: black dots refer to the execution time of the balanced algorithm described

in Sect. 3.2, also featuring the optimizations, whereas gray dots refer to the execution

time of the non-balanced approach that is described in [15]. The balanced approach is

computationally more expensive than the unbalanced approach: The execution time

grows exponentially with log traces of increasing size. It is also easy to see that the

trend does not significantly change in the three scatter plots.

7 Related work

Conformance checking based on event logs has several aspects [3], this paper focusses

on replay fitness (rather than precision or generalization). As we explained in the

introduction, the data, resource and time perspectives are often neglected when con-

sidering conformance checking of an event log to a process model. However, there

are many papers on conformance checking that only consider the control-flow per-

spective. Therefore, we first discuss some conformance approaches that abstract from

data-flow, resources, time, etc.

One of the earlier works in this context is [9]. In [9], the log is considered as a

stream of events, which is matched to the model which is also considered as a stream

of events. In contrast to our approach, no guarantees are made about the optimality of

the result and in special cases, the approach may not even terminate. In [26] and [25],

techniques are presented that compare an abstraction of a process model with a log.

In both cases, the process model is required to exhibit finite behavior. Furthermore,

no alignment is provided. Instead, only a number that quantifies the conformance is

returned.

Token-based replay techniques [21,24,27] can handle infinite behavior but need

to resort to heuristics to deal with silent/duplicate activities. In some cases, the use

of heuristics may lead to false negatives (i.e. perfectly fitting process executions are

evaluated as non-fitting executions), as shown in [4]. Moreover, the user cannot set the
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severity of different deviations (i.e., non-conformance is measured in terms of missing

and remaining tokens).

To overcome the limitations of earlier approaches (no guarantees for correctness

and the inability to handle silent/duplicate activities), alignment-based techniques were

proposed by Adriansyah et al. [5]. These are tailored towards aligning the control flow

of a procedural process model with a trace. They show that the A* algorithm can

provide an efficient solution to the problem. Unfortunately, the approach cannot be

straightforwardly extended to account, e.g., for the data perspective. In a previous

work [17], de Leoni et al. have shown that, indeed, if the domains of all variables

are finite, a multi-perspective alignment problem can be translated into the classifical

alignment problem. However, the assumption of finite domains for any variable is too

restrictive and, hence, the practical relevance would be compromised. If the domain of

any variables is infinite, the successors of a given search space node (i.e. the alignments

obtained by adding a legal move to a non-complete alignment) are infinite in number.

Therefore, the A* algorithm is not directly applicable because it requires the number

of successors of a search space node to be finite. This paper uses a technique that limits

the number of successors to three, two of which are obtained by solving two MILP

problems.

This paper reports on a technique that is significantly different from what proposed

in [15]. The approach presented in [15] performs the alignment computation in two

steps. For each trace, a control-flow alignment is built leveraging on work [5]; then, the

alignment is augmented with the write operations by solving a MILP problem. This

approach is certainly faster since the A* algorithm only considers the control flow and

one MILP problem needs to be solved in total. Unfortunately, in certain situations, the

alignment is not optimal and, thus, can even return unlikely or wrong explanations

of deviations from a domain perspective. This has also been confirmed by real-life

experiments reported on in Sect. 6.1. By first considering only the control flow, this

approach cannot balance the costs related to data and control-flow and, therefore, might

return such wrong explanations. The technique proposed in our work is guaranteed to

return optimal solutions and, hence, more likely explanations of diagnosed deviations.

This is due to the fact that the different perspectives are considered all together rather

than sequentially.

Our approach notably advances beyond existing techniques for data-aware behav-

ioral compliance checking [8,19]. There is more work related to compliance checking

of business processes with regard to norms and regulations [7,12,13,18]. In con-

trast to our work, these approaches focus on checking whether a process model can

exhibit non-compliant behavior by analyzing the model only, thereby ignoring event

data.

Some research approaches focus on verifying the compliance of process models

with respect to a set of formulas, which are mostly intended to encode business rules

of which one wants to verify the compliance (e.g. [8,19,22]) A log trace can possibly

be represented by a set of formulas (e.g., an event for activity A is followed by an

event for activity B) and, hence, its compliance can be checked by applying existing

techniques. Unfortunately, their diagnostics are limited to highlighting which formulas

are not satisfied. We aim to pinpoint where in the process deviations occur, such as

the case that an activity has not been executed or has written a wrong value for a
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variable. It is far from easy to derive the same insights on the basis of not-satisfied

formulas. This is due to the fact that the same log trace can be “repaired” in multiple

ways to satisfy one formula. When multiple, non-satisfied formulas come in to play,

we would be interested in finding the least expensive changes that are needed to

ensure all formulas are satisfied. In fact, this is again the problem of finding the least

expensive solution in a certain search space, which is exactly what our application of

the A* algorithm aims to be. To our knowledge, the same limitation is also shared by

approaches that use alternative languages to handle verification with data variables

in processes (e.g. [6]), as well as by techniques to debug the execution of distributed

systems (e.g. [23,28]).

Efficient algorithms also exist to perform sequence alignments (e.g., the algo-

rithms of Needleman-Wunsch and Smith-Waterman). Similarly, in process mining,

Bose et al. [14] have proposed techniques to efficiently align pairs of log traces.

Unfortunately, they cannot be applied to find an alignment between a log trace and

a process model. In our setting, the process trace that is to be aligned with the log

trace is not know a priori; hence, a process trace minimizing the severity of the

deviations needs to be chosen. Moreover, sequence and trace alignments only focus

on the activity names, i.e. the control-flow perspective, ignoring the other perspec-

tives.

8 Conclusion

In recent years, many techniques have been proposed to evaluate a model’s confor-

mance with respect to given logs. As mentioned in Sect. 1, these techniques can only

evaluate the conformance with respect to control-flow considerations and, hence, are

unable to check, for example, the correctness of routing decisions, activities performed

by unqualified resources, and activities that happen outside the correct time frame.

In [15], a technique was presented to align log traces and processes for conformance

checking that takes all perspectives into account. The main drawback of that approach

is that in certain situations the returned alignments are not optimal and, hence, more

deviations are highlighted than necessary. As discussed, a sub-optimal solution may be

returned if there are trade-offs between the different perspectives. As a consequence,

the explanation of the deviations may be unlikely or, even, wrong from a business

viewpoint. As an example, consider the conformance-checking analysis on the event

log about road-fine management, which has been reported on in Sect. 6.1.4. We have

shown that, for this case study, the approach discussed in [15] would return futile results

in a number of cases, such as diagnosing non-plausible deviations on Amount. This

experiments show that the balanced approach is also feasible in practice with event

logs of a considerable, industry-strength size. Along with the evaluation of a real-life

event log, we also tested the approach on several synthetic event logs to evaluate how

the approach scales with logs of increasing size. While the problem is intrinsically

NP-hard, the experiments show that solutions can be found in a reasonable amount of

time.

In contrast to [15], our approach allows for arbitrary cost functions covering all

perspectives. This allows us to express statements such as “Skipping activity a is
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more severe than executing activity a at too late a time” and “Executing activity a by

a person not having role r is less severe than entering the wrong amount”. For future

work, we aim to investigate the nature and effects of different cost functions.

The application of the techniques described in different case studies demonstrated

the importance of providing a helicopter view that summarizes where deviations com-

monly occur. At the same time, one may be interested in looking at the specific align-

ments to dig into specific deviations at the case level. Therefore, as another part of our

future work we plan to improve the visualization such that it is easier to explore a large

set of alignments. It would also be interesting to not align traces in isolation. In several

scenarios, e.g. in process security checking, the conformance of a case depends on the

behavior observed in other cases that are being executed. The focus of this paper was

on fitness. However, it is also interesting to investigate data conformance focusing

on precision and generalization [3]. Moreover, decomposition techniques based on

the notion of so-called valid decompositions [2] can be used to further improve the

performance of our multi-perspective conformance checking approach.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.
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