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Abstract
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tion is developed. When the state space of the Markov chain is large, the computational
effort becomes a real concern. To resolve this problem, we introduce a two-time-scale
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1 Introduction

This work is concerned with balanced realizations (or canonical realizations) of regime-

switching linear systems, in which continuous dynamics and discrete events coexist. The

underlying systems are modulated by a continuous-time Markov chain with state space

M = {1, . . . , m}. The matrix coefficients of the linear systems depend on the states of the

Markov chain. At any given instant t, the Markov chain takes one of the values fromM (e.g.,

i). Then the system dynamics are determined by the matrix coefficients associated with the

state i. After a random sojourn time, the Markov chain switches to a new state j 6= i and

stays there until the next jump; at this time the system dynamics are determined by the

matrix coefficients associated with j rather than i. Such random jump linear systems arise

frequently in wireless communications, manufacturing systems, financial engineering, and

other applications, where regime changes are utilized to formulate the random environment.

For some of the recent work on jump linear systems and their applications, we refer the

reader to [10, 11, 21, 22, 23, 28] among others.

Balanced realizations have been studied for finite dimensional linear systems over the

past two decades. In the 1980s, to bridge the gap between minimal realization theory and to

treat the problem of finding lower order approximation, a “canonical” realization was first in-

troduced in the seminal paper [13], where the problem was studied with principal component

analysis of linear systems. The term “balance” was used since the realizations have certain

symmetry between the input and the output maps characterized by the controllability and

observability Grammians. Owing to its importance and its wide range of applicability, bal-

anced realizations have attracted much attention. One of its main applications is in model

reduction. While asymptotic stability of the reduced order systems was studied in [13], error

bounds between the reduced order model and the original system was obtained in [6] in

terms of associated singular values. There have been substantial extensions to time-varying

linear systems. Main existence results concerning balanced realizations are contained in [16]

and [19]. Subsequently, further work in this directions can be found in [8, 9, 14, 15] and

references therein.

In this paper, we treat regime-switching linear systems or Markov jump linear systems.

The systems under consideration are only piecewise deterministic, whereas the time-varying

random switchings result in a much more complex structure. Our focus is on the development

of “canonical realization.” We keep using the term “balanced realization” although our setup

is different from that of the deterministic linear systems studied in the literature. Important

questions concerning such models include: How should the canonical realization be defined
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in such a setting? Can the desired canonical form of these systems be reached? One of

the main thoughts used in [9] is: In lieu of using exact balancing solutions in the time-

varying case, we construct the so-called ρ-balancing solutions, where ρ grows monotonically

to ∞ and is a natural tracking parameter. [In fact, the symbol µ in lieu of ρ is used in

[9].] That is, to approximate the algebraic problems by dynamic systems with differential

Riccati equations, rather than finding the exact solutions of balancing equations (time-

varying algebraic equations). When regime switching is involved, we must solve not one, but

a system of Riccati equations. Can error bounds of the approximation still be derived in

such cases? In addition, when the number of the states of the Markov chain is large, we face

large-scale systems, for which the amount of computation could be of real concern. How can

we reduce the computation complexity? This paper aims to address these questions and to

contribute to the following:

1. We introduce a novel model for canonical or balanced realizations of systems with

regime switching. The corresponding switching mechanism regulates the moves from

one configuration to another. The resulting system is piecewise deterministic.

2. We show how the balanced realization problem can be carried out for the switching

models and demonstrate how systems with regime switching can be handled. Due to

the time-varying feature, the balancing equation is a system of time-varying equations

to be satisfied at all t. There is no feasible procedures to handle such a task. In

addition, in contrast to [9], another difficulty arises since we have to deal with a cou-

pled system of Riccati equations. As a remedy, we also use ρ-approximated balanced

realizations (solutions of systems of differential Riccati equations) to approximate the

system of algebraic balancing equations. Under such a setting, we derive error bounds

for approximating the solution of the system of balancing equations by that of the

differential system. Our numerical results show that the ρ-approximated balance pre-

serves the robustness and the ability of coping with ill-conditioned controllability or

observability Grammians.

3. We device a strategy for further reducing the computation complexity of the underlying

system to treat large-scale systems. In such a setting, on top of the difficulties men-

tioned in the previous paragraph, the Markov chain has a large state space. It follows

that solving the system of ρ-approximated balanced realization can be a computational

infeasible task due to the inherent large dimensionality. To overcome the difficulties,

we present a methods based on a two-fold approximation, namely, a two-time-scale
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approximation and a ρ-approximated balance realization. We use decomposition to

take advantage of the natural hierarchical structure of the systems, use an aggregation

procedure to reduce the total number of states under consideration, and use averaging

methods to design approximation strategy.

The rest of the paper is arranged as follows. Section 2 begins with canonical realizations

when a Markov chain is the modulating force. Section 3 is concerned with reducing complex-

ity by means of time-scale separation. Several numerical examples are presented in Section

4 for demonstration purposes. Some further remarks are made in Section 5.

2 Balanced Realizations of Regime-Switching Systems

2.1 Problem Formulation and Preliminary Results

Suppose that α(t) is a continuous-time Markov chain with finite state spaceM = {1, 2, . . . , m}
and generator

Q = (qij) ∈ Rm×m such that qij ≥ 0 for i 6= j, and
m∑

j=1

qij = 0. (2.1)

Consider the following system

d

dt
x(t) = A(α(t), t)x(t) + B(α(t), t)u(t), x(t0) = x0,

y(t) = C(α(t), t)x(t),
(2.2)

where the state x(t) ∈ Rn×1, input u(t) ∈ Rr×1, and output y(t) ∈ Rm0 . Note that since a

finite-state Markov chain is used, effectively, (2.2) can be written as

d

dt
x(t) =

m∑
i=1

A(i, t)x(t)I{α(t)=i} +
m∑

i=1

B(i, t)u(t)I{α(t)=i}, x(t0) = x0,

y(t) =
m∑

i=1

C(i, t)x(t)I{α(t)=i},

where IS is the indicator function of the set S. In what follows, if a square matrix D is

positive definite (resp. nonnegative definite), we often write it as D > 0 (resp. D ≥ 0).

For D1 ∈ Rι×` for some ι, ` ≥ 1, D′
1 denotes its transpose. Throughout the paper, for each

i ∈M and a suitable function f(t, i), we denote

Qf(t, ·)(i) =
m∑

j=1

qijf(t, j) =
∑

j 6=i

qij(f(t, j)− f(t, i)) for each i ∈M.

To proceed, we assume condition (A1) holds.
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(A1) For each i ∈ M, A(i, ·), B(i, ·), C(i, ·) are bounded and continuously differentiable

functions.

Definition 2.1. For each t ≥ 0 and i ∈M, a realization (A(i, t), B(i, t), C(i, t)) is said to be

uniformly completely controllable if and only if there is a δ > 0 such that for some positive

Lc(δ) and Uc(δ),

∞ > Uc(δ)I ≥ Gc(t− δ, t, i) ≥ Lc(δ)I > 0, (2.3)

where Gc is the controllability Grammian

Gc(t− δ, t, i) =

∫ t

t−δ

Φ(t, λ, i)B(i, λ)B′(i, λ)Φ′(t, λ, i)dλ, (2.4)

and Φ(t, λ, i) is the state transition matrix (see [2, p. 349]) of the equation
dz(t)

dt
= A(i, t)z(t).

Definition 2.2. For each t ≥ 0 and i ∈ M, a realization (A(i, t), B(i, t), C(i, t)) is said to

be uniformly completely observable if and only if there is a δ > 0 such that for some positive

Lo(δ) and Uo(δ),

∞ > Uo(δ)I ≥ Go(t, t + δ, i) ≥ Lo(δ)I > 0, (2.5)

where Go is the observability Grammian

Go(t, t + δ, i) =

∫ t+δ

t

Φ′(λ, t, i)C ′(i, λ)C(i, λ)Φ(λ, t, i)dλ. (2.6)

As noted in [9, p. 316], if uniform complete observability and controllability hold for δ

then it also holds for all δ̂ > δ. Although the balancing condition depends on δ, the results

to be developed does not depend on the δ selection. For notational simplicity, we suppress

δ and write Gc(t− δ, t, i) as Gc(t, i) and Go(t, t + δ, i) as Go(t, i) in what follows.

Definition 2.3. The system (2.2) is said to have a balanced realization (or canonical realiza-

tion) if there are nonsingular coordinate transformations T (t, i) with P (t, i)
def
= T ′(t, i)T (t, i) >

0 such that

P (t, i)Gc(t, i)P (t, i) = Go(t, i) + QP (t, ·)(i), i = 1, 2, . . . , m. (2.7)

Our objective is to find balanced realizations of the regime-switching linear systems. To

simplify the notation, we write (2.7) in a matrix form. To proceed, introduce the following

notation:

P (t) = diag(P (t, 1), . . . , P (t,m)),

Gc(t) = diag(Gc(t, 1), . . . , Gc(t,m)),

Go(t) = diag(Go(t, 1), . . . , Go(t,m)),

(2.8)
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where diag(·) denotes a diagonal block matrix with appropriate dimensions. Note that in

view of the notation above, P (t) = diag(P (t, 1), . . . , P (t,m)) > 0 since P (t, i) > 0 for each

i ∈M. Thus, we can rewrite the system of algebraic Riccati equations (2.7) as

P (t)Gc(t)P (t) = Go(t) + diag
( m∑

j=1

q1jP (t, j), . . . ,
m∑

j=1

qmjP (t, j)
)
. (2.9)

A regime-switching linear system has a balanced realization if (2.9) holds. By a first glance,

(2.9) can be solved for each fixed t. As a result, the problem seems to be largely resolved.

In fact, it barely begins. The reason is that we need to solve (2.9) for all t not just a fixed t

or finitely many t. Directly solving this system is not feasible for all t. Besides, compared to

the deterministic counter part, it is a coupled system of equations, which adds another fold

of difficulty. To overcome the difficulties, we approximate the algebraic system by a system

of differential equations.

To proceed, we rewrite the last term of (2.9) in terms of P (t). Denoting by In the n× n

identity matrix, Îmn = (In, . . . , In)′ ∈ R(mn)×n, and using Q⊗ In, the Kronecker product [7,

p. 21], we have

Q⊗ In =




q11In q12In . . . q1mIn

q21In q22In . . . q2mIn

. . . . . .
qm1In qm2In . . . qmmIn


 ∈ R(mn)×(mn),

and

(Q⊗ In)P (t)Îmn =
( m∑

j=1

q1jP (t, j), . . . ,
m∑

j=1

qmjP (t, j)
)′

def
= Pmn(t) ∈ R(mn)×n.

To obtain the last term in (2.9), note that

(Q⊗ In)P (t)ÎmnI0 =




∑m
j=1 q1jP (t, j) 0n · · · 0n

∑m
j=1 q2jP (t, j) 0n · · · 0n

· · · · · · · · · · · ·
∑m

j=1 qmjP (t, j) 0n · · · 0n



∈ R(mn)×(mn),

where 0n is an n × n zero matrix, and I0 = (In, 0n, . . . , 0n) is an n × (mn) matrix. Let Eij

be a block matrix that has dimension (mn)× (mn) with the (i, j) element being In and all

other elements being 0n. The reason for introducing Eij is that it enables us to write the
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equations of interest in a more manageable form and to carry out desired calculations more

easily. Then we have

Eii[(Q⊗ In)P (t)(ÎmnI0)]E1i =




0n 0n · · · 0n

0n 0n · · · 0n

· · · · · · ∑m
j=1 qijP (t, j) · · ·

· · · · · · · · · · · ·
0n · · · 0n 0




∈ R(mn)×(mn),

and hence

m∑
i=1

[Eii(Q⊗ In)]P (t)[(ÎmnI0)E1i] = diag
( m∑

j=1

q1jP (t, j), . . . ,
m∑

j=1

qmjP (t, j)
)
.

Therefore, (2.9) can be written as

P (t)Gc(t)P (t) = Go(t) +
m∑

i=1

[Eii(Q⊗ In)]P (t)[(ÎmnI0)E1i]. (2.10)

Write

Gi = Eii(Q⊗ In), Hi = ÎmnI0E1i.

The use of Eij enables us conveniently to rewrite equation (2.10) as

P (t)Gc(t)P (t) = Go(t) +
m∑

i=1

GiP (t)Hi. (2.11)

Use λ(Â) to denote the eigenvalue of the matrix Â and use the induced matrix norm

|Â| = sup|x|=1 |Âx| =
√

λmax(Â′Â). We need the following assumption.

(A2) For i ∈M, (A(i, t), B(i, t), C(i, t)) is uniformly completely controllable and observable.

Following the idea in [9], introduce the system of Riccati equations to approximate the

exact solutions of (2.9)

d

dτ
Pρ(τ : t, t0, i) = −ρPρ(τ : t, t0, i)Gc(t, i)Pρ(τ : t, t0, i) + ρGo(t, i) + ρQP (τ : t, t0, ·)(i),

Pρ(t0 : t, t0, i) > 0, for i ∈M,

(2.12)

where ρ > 0 is an arbitrary constant gain. The rationale here is to constructing ρ-balancing,

or a ρ-approximated canonical realization, where ρ indicates the degree of approximation of

balancing.
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Under conditions (A1) and (A2), similar to [27], we can prove that there exists a unique

positive definite solution Pρ(τ : t, t0, i). Write Pρ(t : t, t0, i) = Pρ(t, t0, i), we now consider

the following system of Riccati differential equations parameterized by ρ > 0,

d

dt
Pρ(t, t0, i) = −ρPρ(t, t0, i)Gc(t, i)Pρ(t, t0, i) + ρGo(t, i) + ρQP (t, t0, ·)(i),

Pρ(t0, t0, i) > 0, for i ∈M.
(2.13)

It can be shown that the limit

P̂ρ(t, i)
def
= lim

t0→−∞
Pρ(t, t0, i) (2.14)

exists and satisfies the following system of Riccati differential equations

d

dt
P̂ρ(t, i) = −ρP̂ρ(t, i)Gc(t, i)P̂ρ(t, i) + ρGo(t, i) + ρQP̂ (t, ·)(i), i ∈M. (2.15)

Definition 2.4. Given a realization (A(i, t), B(i, t), C(i, t) : i ∈M) with Grammians (Gc(t, i),

Go(t, i) : i ∈M), the transformation (Tρ(t, i) : i ∈M) is ρ-balancing if P̂ (t, i) = Tρ(t, i)Tρ(t, i)

satisfies (2.14) for all t ∈ (−∞,∞) and i ∈M.

To proceed, we state a lemma, whose proofs is relegated to an appendix in order to keep

the flow of presentation.

Lemma 2.5. Consider (2.2) and suppose conditions (A1) and (A2) hold. Let P (t) be the

solution of (2.11). Then there exist some constants γι > 0 (for ι = 1, . . . , 5) such that for

t ∈ [0,∞),

γ2I ≥ P (t) ≥ γ1I,

λmin(P (t)Gc(t)) ≥ γ3,

λmax(P (t)Gc(t)) ≤ γ4,

−γ5I ≤ Ṗ (t) ≤ γ5I.

(2.16)

2.2 Error Bounds of ρ-Balanced Realizations

Although (2.9) provides an exact system of balancing equations, since it is time-varying, the

solution must be obtained for all t. Although it is possible to solve the system at some fixed

time t, there is virtually no feasible procedure that can carry out the desired task for all t.

As a remedy, in light of [9], we approximate the exact solution of the balancing equation

(2.9) by its dynamic system counter part. Compared with [9], another difficulty arises since

we have to deal with a coupled system of Riccati equations. The main result here is on the

approximation error bounds, which are presented in the next two theorems.
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Theorem 2.6. Suppose conditions (A1) and (A2) hold. Denote

Pρ(τ : t, t0) = diag(Pρ(τ : t, t0, 1), . . . , Pρ(τ : t, t0, m)),

4Pρ(τ : t, t0) = Pρ(τ : t, t0)− P (t),

where P (t) is defined in (2.8). Then for any ρ > 0,

| 4 Pρ(τ : t, t0)| ≤ | 4 Pρ(t0 : t, t0)|e−ρeγ3(t−t0), for t, τ ∈ [t0,∞). (2.17)

Proof. Using matrix form (2.12) and (2.11), we have

d

dτ
[Pρ(τ : t, t0)− P (t)] = ρ

[
− P (t)Gc(t)(Pρ(τ : t, t0)− P (t))

−(Pρ(τ : t, t0)− P (t))Gc(t)Pρ(τ : t, t0)

+
m∑

i=1

Gi((Pρ(τ : t, t0)− P (t)))Hi

]
.

Thus, we obtain

Pρ(τ : t, t0)− P (t)

= exp(−ρ(P (t)Gc(t))(τ − t0))(Pρ(t0 : t, t0)− P (t))

−ρ

∫ τ

t0

exp(−ρ(P (t)Gc(t))(s− t0))(Pρ(s : t, t0)− P (t))Gc(t)Pρ(s : t, t0)ds

+ρ

∫ τ

t0

exp(−ρ(P (t)Gc(t))(s− t0))
m∑

i=1

Gi((Pρ(s : t, t0)− P (t)))Hids.

Noting the positive definiteness of Gc(·) and Pρ(τ : t, t0) and by virtue of (2.16), we have

λmin(Pρ(τ : t, t0)Gc(t)) ≥ λmin(Pρ(τ : t, t0)λmin(Gc(t)) = λmin(Pρ(τ : t, t0)Lc := γ̂3.

Therefore,

| Pρ(τ : t, t0)− P (t)|
≤ | exp(−ρ(P (t)Gc(t))(τ − t0))||(Pρ(t0 : t, t0)− P (t))|

+Kρ

∫ τ

t0

| exp(−ρ(P (t)Gc(t))(s− t0))||(Pρ(s : t, t0)− P (t))|ds,

(2.18)

where

K = γ̂3 +
m∑

i=1

|Gi||Hi|.
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By virtue of the Gronwall inequality, we obtain

|Pρ(τ : t, t0)− P (t)| ≤ Kρ| exp(−ρ(P (t)Gc(t))(τ − t0))||(Pρ(t0 : t, t0)− P (t))|
× exp(

∫ τ

t0

| exp(−ρ(P (t)Gc(t))(s− t0))|ds)

≤ Kρ| exp(−ρ(P (t)Gc(t))(τ − t0))||(Pρ(t0 : t, t0)− P (t))|
≤ Kρ exp(−λ3ρ(τ − t0))|(Pρ(t0 : t, t0)− P (t))|
≤ exp(−λ̃3ρ(τ − t0))|(Pρ(t0 : t, t0)− P (t))|,

(2.19)

where 0 < λ̃3 < λ3. 2

Theorem 2.7. Suppose conditions (A1) and (A2) hold. Then ∆Pρ(t, t0) = Pρ(t, t0)− P (t)

is bounded by

|∆Pρ(t, t0)| ≤ |∆Pρ(t0, t0)|e−ρeγ3(t−t0) +
γ5

ργ̃3

, for t ∈ [t0,∞) (2.20)

Moreover, ∆P̂ρ(t) = P̂ρ(t)− P (t) has the following properties

|∆P̂ρ(t)| ≤ γ5

ργ̃3

, for t ∈ (−∞,∞),

lim
ρ→∞

∆P̂ρ(t) = 0 uniformly for t in any compact interval.
(2.21)

Proof. To facilitate the proof, we first use a piecewise constant approximation to the

Grammian, which will enable us to derive the desired error bound relatively easily. Note

that these piecewise constant functions only serve auxiliary machinery; they are not used in

the actual realizations.

To this end, let the Grammians a constant on a small interval (ti, ti+1) with ti+1 −
ti = η and η > 0 is sufficiently small. We denote them with a tilde and require G̃c(ti) =

Gc(ti), G̃o(ti) = Go(ti). By virtue of (2.16) the maximal change over any discontinuity is

γ5η. Then we obtain

|∆Pρ(t1, t0)| = |P̃ρ(t1, t0)− P̃ (t1)|
≤ |P̃ρ(t1, t0)− P̃ (t0)|+ |P̃ (t0)− P̃ (t1)|
≤ e−ρeγ3η|∆Pρ(t0, t0)|+ γ5η.
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Similarly, we have

|∆Pρ(ti, t0)| = |P̃ρ(ti, t0)− P̃ (ti)|
≤ e−ρeγ3η|∆Pρ(ti−1, t0)|+ γ5η

≤ e−iρeγ3η|∆Pρ(t0, t0)|+
i−1∑
j=0

e−jρeγ3ηγ5η

≤ e−iρeγ3η|∆Pρ(t0, t0)|+
∞∑

j=0

e−jρeγ3ηγ5η

≤ e−iρeγ3(t−t0)|∆Pρ(t0, t0)|+ γ5η

1− e−ρeγ3η
.

Next, we consider the above estimate on the interval [ti, ti+1),

|∆Pρ(t, t0)| = |P̃ρ(t, t0)− P̃ (ti)|
≤ e−ρeγ3(t−ti)|P̃ρ(ti, t0)− P̃ (ti)|
≤ e−ρeγ3(t−t0)|∆Pρ(t0, t0)|+ γ5η

1− e−ρeγ3η
.

(2.22)

For piecewise constant Grammians with possible jumps at ti, and t ∈ [ti, ti+1),

|P̃ρ(t, t0)− P (t)| ≤ e−ρeγ3(t−t0)|∆Pρ(t0, t0)|+ γ5η

1− e−ρeγ3η
.

Since P (t) and Pρ(t, t0) are continuous, and piecewise constant functions are dense in the

class of continuous functions, using standard approximation arguments we can show that

P̃ρ(ti, t0) → P̃ (t) and P (ti) → P (t) as ti+1 − ti → 0. Finally, we obtain

|Pρ(t, t0)− P (t)| = lim
η→0

|P̃ρ(ti, t0)− P̃ (ti)|

≤ |∆Pρ(t0, t0)|e−ρeγ3(t−t0) +
γ5

ργ̃3

for all t ∈ (t0,∞).

Sending t0 → −∞, we obtain the first part of (2.21). Letting ρ →∞ we obtain the second

part of (2.21). 2

3 Large-scale Systems: Further Reduction of Com-

plexity

This section is concerned with balanced realizations for regime-switching systems when the

underlying Markov chain has a large state space. Even if we construct ρ-balancing systems

of equations, the large-scale nature of the systems can render the computation task infeasible
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due to the large dimensionality. Alternative methods must be designed. We suggest to treat

the problem by using a two-fold approximation. That is, in addition to the ρ-balancing,

we introduce a two-time-scale model, and examine two-time-scale ρ-balancing systems of

equations. The two-time scale is represented using a small parameter ε > 0. Using inherent

fast and slow time scales, first let ε → 0, we obtain a limit ρ-balancing system, and then we

can use the ρ-balancing to approximate (2.9) as in the last section.

3.1 Two-time-scale Setup

This section focuses on reduction of computational complexity. As observed in [18], there

are certain hierarchical structures in every large-scale and complex system. Not all the

components or subsystems in a large-scale model vary at the same rate. Some of them

change rapidly, whereas others evolve slowly. It is advantageous to bring out the hierarchical

structure. One way of doing this is to introduce a model involving multiple time scales.

Studying applications in queueing and computer systems, the so-called nearly completely

decomposable models came into being (see [4]). The main idea lies in the utilization of time-

scale separation, which enables us to decompose the underlying system into subsystems and

to aggregate the states in such subsystems into one state, leading to substantial savings in

terms of computational effort. In this section, we suppose that the generator of the Markov

chain has the following form

Qε =
1

ε
Q̃ + Q̂ = (qε

ij), (3.1)

where both Q̃ and Q̂ are themselves generators of continuous-time Markov chains, and ε > 0

is a small parameter. The matrix Q̃ represents the rapidly changing part and Q̂ describes

the slowly varying part. A reader may consult [23, Section 3.6] to see how a practical

system may be reduced to the form (3.1). The rationale is that the Markov chain is almost

decomposable into l ergodic classes of states. Nevertheless, due to the weak interactions

resulted from the generator Q̂, there are still infrequent transitions from one ergodic class

Mi to another ergodic class Mj for i 6= j. In a way, the state space of the Markov chain is

only nearly separated into l ergodic classes. This is more realistic than the formulation of

completely separable classes. For convenience, in what follows, we relabel the states so that

Mk = {sk1, . . . , skmk
}, and the state space of Markov chain α(·) is M = M1 ∪ · · · ∪Ml.

Now, we have the similar equations as in (2.11) and (2.13) indexed by ε. Suppose the

rapidly changing generator Q̃ has the form Q̃ = diag(Q̃1, . . . , Q̃l) where Q̃k ∈ Rmk×mk are

irreducible, for k = 1, 2, . . . , l and
∑l

k=1 mk = m. The state spaces of Q̃k is Mk. By

aggregating the states in Mk as one state k, we obtain an aggregated process {αε(·)}, i.e.,
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αε(t) = k if α(t) ∈Mk. It is shown in [23] that the process αε(t) is not necessarily Markovian

but αε(·) converges weakly to α(·), a Markov chain with generator

Q = diag(ν1, . . . , ν l)Q̂diag(11m1 , . . . , 11ml
), (3.2)

where νk is the stationary distribution of Q̃k, for k = 1, . . . , l, and 11ι = (1, . . . , 1)′ ∈ Rι.

Moreover, for any bounded deterministic β(·),

sup
0≤t≤T

E

(∫ t

0

[I{αε(s)=skj} − νk
j I{αε(s)=k}]β(s)ds

)2

= O(ε). (3.3)

If the original Markov chain has m states and the limit of the aggregated process has l states,

and if l ¿ m, then substantial reduction of complexity is achieved.

Remark 3.1. Before proceeding further, to put this work in perspective, we compare our

results with that in the literature. Our formulation is motivated by the nearly completely

decomposable matrix models of [4, 18]. It has the same goal–reduction of complexity. Nev-

ertheless, there are certain differences. (a) The models considered in [4, 18] are in discrete

time. In these references,

P ε = P + εC, (3.4)

where P is a transition matrix that consists of a number of irreducible transition matrices

and C, containing some negative entries, is a matrix that together with P makes P ε a

transition matrix. In contrast, our formulation is in continuous time. Although Q̃ has similar

decomposition form as that of [4, 18], Q̃ and Q̂ are generators (with row sums being 0) instead

of transition matrices (with row sums being 1). In lieu of small perturbations, we consider

large perturbations. (b) Our model puts more emphases on the probabilistic structure. Note

that both Q̃ and Q̂ are generators, which facilitate the analysis as well as interpretation of

the results. (c) The reference [4] presents procedures for computing stationary distribution

or steady state probabilities. Computing the overall stationary distribution of the large

Markov chain is not our main concern. We aim at bring out the dynamic structure of the

limit system. For a Markov chain having a large state space (with m elements and m being

a large number), using the results of last section, it is readily seen that the ρ-approximate

realization results in a system of differential equations. The total number of the equations

is m. By using a two-time-scale approach, we obtain a limit or reduced order system, which

has only l equations. When l ¿ m, a substantial reduction of computation effort is achieved.

In a nutshell, the coefficients of the limit or reduced order system are that of the original

system averaged out with respect to the stationary measures associated with the Q̃i’s for

13



i = 1, . . . , l. (d) Our recent work [24] examines discrete-time model as in (3.4). However, in

our setup C is a generator of a continuous-time Markov chain. This enables us to precisely

describe the associated limit or reduced order systems.

To proceed, for any k = 1, . . . , l, and any function onMk, we define F (k) =
∑mk

j=1 νk
j F (skj).

To proceed, we device a two-stage approximation scheme. First, for a fixed ρ, we show that

a system of Riccati equations involving a small parameter ε converges to a limit system as

ε → 0. Then we use the results obtained in the last section to link the original system and

the balanced system. Similar to the last section, with ε used, define P ε(t, skj) analogous to

P (t, i) in the last section, and define P ε
ρ (t, t0, skj) analogous to Pρ(t, t0, i) in the last section.

Theorem 3.2. For k = 1, . . . , l and j = 1, . . . , mk,

(i) P ε
ρ (t, t0, skj) → P ρ(t, t0, k) uniformly on [t0, T ] where P ρ(t, t0, k) is the unique solution

of the following system of Riccati differential equations

d

dt
P ρ(t, t0, k) = −ρP ρ(t, t0, k)Gc(t, k)P ρ(t, t0, k) + ρGo(t, k) + ρQ P ρ(t, t0, ·)(k),

(3.5)

(ii) P ε(t, skj) → P (t, k), where P (t, k) satisfies

P (t, k)Gc(t, k)P (t, k) = Go(t, k) + Q P (t, ·)(k), (3.6)

with

Gc(t, k) =

mk∑
j=1

νk
j Gc(t, skj) and Go(t, k) =

mk∑
j=1

νk
j Go(t, skj),

and Q being given by (3.2).

Remark 3.3. It is easily seen that the total number of equations to be solved in both the

balancing equation and dynamic Riccati equations are substantially reduced if l ¿ m. In

what follows, we will verify only (i) in the above theorem and obtain the limit Riccati

equations. The algebraic equations (ii) can be obtained in a similar fashion with simpler

argument. As a preparation, we first state several lemmas.

Lemma 3.4. The systems of Riccati equations (2.13) with Q replaced by Qε admit a unique

solution P ε
ρ (t, t0, i). Moreover, the solution is positive definite for i ∈M and t0 ≤ t ≤ T .

Proof. The proof is similar to [27], and we omit the details. 2
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Lemma 3.5. For fixed ρ, the solution P ε
ρ (t, t0, i) is uniformly bounded in ε and t ∈ [t0, T ].

Proof. Rewriting (2.13) in vector form, we have

d

dt
P ε

ρ (t, t0) = ρQεP ε
ρ (t, t0) + ρGo(t)− ρP ε,′

ρ (t, t0)G0(t)P
ε
ρ (t, t0), (3.7)

where

P ε
ρ (t, t0) = (P ε

ρ (t, t0, 1), . . . , P ε
ρ (t, t0,m))′, Go(t) = (Go(t, 1), . . . , Go(t,m))′.

Introducing a new variable τ = t/ε, then τ0 = t0/ε and (3.7) can be written as

d

dτ
P ε

ρ (τ, τ0) = ρQεP ε
ρ (τ, τ0) + ρG0(ετ)− ρP ε,′

ρ (τ, τ0)G0(ετ)P ε
ρ (τ, τ0).

It follows that

P ε(τ, τ0) = P ε
ρ (τ0, τ0) exp(ρQ̃τ)

−ρ

∫ τ

τ0

exp(ρQ̃(τ − s))P ε,′
ρ (s, τ0)G0(εs)P

ε
ρ (s, τ0)ds

+ρ

∫ τ

τ0

exp(ρQ̃(τ − s))G0(εs)ds

+ερ

∫ τ

τ0

exp(ρQ̃(τ − s))Q̂P ε
ρ (s, τ0)ds.

(3.8)

Recall that we use K to represent a generic positive constant; its value may change for

different usages. Note that

∣∣∣∣
∫ τ

τ0

exp(ρQ̃(τ − s))G0(εs)ds

∣∣∣∣
≤

∣∣∣∣
∫ τ

τ0

[exp(ρQ̃(τ − s))− ρν]G0(εs)ds

∣∣∣∣ + ρ

∣∣∣∣ν
∫ τ

τ0

G0(εs)ds

∣∣∣∣
≤ K

∫ τ

τ0

exp(−ρκ0(τ − s))|G0(εs)|ds + Kρ

∫ τ

τ0

|G0(εs)|ds

≤ K + Kρ

∫ t

t0

|G0(s)|ds ≤ K.

(3.9)

Note also that

∣∣∣P ε
ρ (τ0, τ0) exp(ρQ̃τ)

∣∣∣ ≤
∣∣∣P ε

ρ (τ0, τ0)[exp(ρQ̃τ)− ρν]
∣∣∣ + |P ε

ρ (τ0, τ0)ρν| ≤ K, (3.10)

and that ∣∣∣∣ρε

∫ τ

τ0

ρνQ̂ds

∣∣∣∣ ≤ Kρ2ε
t− t0

ε
≤ Kρ2T. (3.11)

15



Moreover, taking trace in (3.8), we arrive at

trP ε(τ, τ0) ≤ tr[P ε
ρ (τ0, τ0) exp(ρQ̃τ)]

+ρtr

[∫ τ

τ0

exp(ρQ̃(τ − s))G0(εs)ds

]

+ερtr

[∫ τ

τ0

exp(ρQ̃(τ − s))Q̂P ε
ρ (s, τ0)ds

]
.

(3.12)

Using (3.9)–(3.11), an application of the Gronwall’s inequality leads to

|trP ε
ρ (τ, τ0)| ≤ K exp

(
ερ

∫ τ

τ0

ds

)
≤ K,

where K is a generic positive constant that may depend on ρ and T but is independent of

ε. The desired result follows. 2

Lemma 3.6. P ε
ρ (t, t0, i) is uniformly Lipschitz continuous on [t0, T ] for i ∈M.

Proof. By multiplying both sides of (3.7) by the stationary distribution ν = (ν1, . . . , ν l),

νQε = ν

(
Q̃

ε
+ Q̂

)
= νQ̂,

and rewriting (3.7) in integral form, we have

P ε
ρ (t, t0)− P ε

ρ (s, t0) =

∫ t

s

[−ρP ε,′
ρ (r, t0)Go(r)P

ε
ρ (r, t0) + ρGo(r) + ρQεP ε

ρ (r, t0)]dr. (3.13)

Multiplying the above equation by ν = (ν1, . . . , ν l), we have

ν(P ε
ρ (t, t0)−P ε

ρ (s, t0)) =

∫ t

s

[−ρνP ε,′
ρ (r, t0)Go(r)P

ε
ρ (r, t0)+ρνGo(r)+ρνQ̂P ε

ρ (r, t0)]dr. (3.14)

By virtue of the uniform boundedness of P ε
ρ , Gc, and Go, we obtain

|ν(P ε
ρ (t, t0)− P ε

ρ (s, t0))| ≤
∫ t

s

[∣∣∣− ρνP ε,′
ρ (r, t0)Go(r)P

ε
ρ (r, t0)

∣∣∣ +
∣∣∣ρνGo(r)

∣∣∣

+
∣∣∣ρνQ̂P ε

ρ (r, t0)
∣∣∣
]
dr

≤ K|t− s|.

(3.15)

Then it follows

|P ε
ρ (t, t0, i)− P ε

ρ (s, t0, i)| ≤ K|P ε
ρ (t, t0)− P ε

ρ (s, t0)|
≤ K|ν(P ε

ρ (t, t0)− P ε
ρ (s, t0))|

≤ K|t− s|.
(3.16)
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The proof is completed. 2

Proof of Theorem 3.2. By virtue of Lemmas 3.5 and 3.6, for any i = skj ∈ Mk,

P ε
ρ (t, t0, skj) is uniformly bounded and equicontinuous. By the Arzela-Ascoli Theorem, for

any sequence indexed by ε, we can extract a subsequence still indexed by ε (for notational

simplicity) such that P ε
ρ (t, t0, skj) converges uniformly on [t0, T ] to a continuous function

denoted by P 0
ρ (t, t0, skj). First, we claim that P 0

ρ (t, t0, skj) is independent of j. Rewriting

the Riccati equations in the integral form, we obtain

P ε
ρ (t, t0, skj) = P ε

ρ (t0, t0, skj) +

∫ t

t0

[ −ρP ε
ρ (r, t0, skj)Gc(r, skj)P

ε
ρ (r, t0, skj) + ρGo(r, skj)

+ρQεP ε
ρ (r, t0, ·)(skj)]dr.

(3.17)

Since Qε is given by (3.1) and P ε
ρ (·) is uniformly bounded, we multiply both sides of (3.17)

by ε to obtain

lim
ε→0

∫ t

t0

Q̃kP ε
ρ (r, t0, ·)(skj)dr =

∫ t

t0

Q̃kP 0
ρ (r, t0, ·)(skj)dr = 0, for t ∈ [t0, T ].

Since P 0
ρ (t, t0, skj) is continuous in t, we obtain

Q̃kP 0
ρ (t, t0, ·)(skj) = 0 for t ∈ [t0, T ]. (3.18)

By virtue of the irreducibility of Q̃k, we obtain P 0
ρ (t, t0, skj) = P 0

ρ (t, t0, k), i.e., it is inde-

pendent of j. Next, we obtain the limit of the Riccati equations. Multiplying both sides of

(3.17) by νk
j and summing over the index j lead to

mk∑
j=1

νk
j P ε

ρ (t, t0, skj) =

mk∑
j=1

νk
j P ε

ρ (t0, t0, skj)

−ρ

∫ t

t0

[

mk∑
j=1

νk
j P ε

ρ (r, t0, skj)Gc(r, skj)P
ε
ρ (r, t0, k)]dr

+ρ

∫ t

t0

[

mk∑
j=1

νk
j Go(r, skj) +

mk∑
j=1

νk
j QεP ε

ρ (r, t0, ·)(skj)]dr.

Letting ε → 0, and using P ε
ρ (t, t0, skj) → P 0

ρ (t, t0, k) uniformly, we obtain

mk∑
j=1

νk
j Q̂11mk

P 0
ρ (t, t0, ·)(k) = QP 0

ρ (t, t0, ·)(k).

Noting
∑mk

j=1 νk
j = 1, we have

P 0
ρ (t, t0, k) = P 0

ρ (t0, t0, k)− ρ

∫ t

t0

[P 0
ρ (r, t0, k)Gc(r, k)P 0

ρ (r, t0, k)]dr

+ρ

∫ t

t0

[Go(r, k) + Q̂P 0
ρ (r, t0, ·)(k)]dr.
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By virtue of the uniqueness of the solution, we obtain P 0
ρ (t, t0, k) = P ρ(t, t0, k). 2

As a consequence of the above theorem and the result in Section 2, we obtain the following

result.

Theorem 3.7. Under the conditions of Theorem 3.2, for each k = 1, . . . , l and j = 1, . . . , mj,

lim
ε→0

|P ε
ρ (t, t0, skj)− P (t, t0, k)| ≤ |P ρ(t0, k)− P (t0, k)|e−ργ3,0(t−t0) +

γ5,0

ργ3,0

, (3.19)

and the estimate is uniformly for t in any compact interval.

Proof. The proof is a combination of the argument used in the last section and Theorem 3.2.

We merely note that by the familiar triangle inequality,

|P ε
ρ (t, t0, skj)− P (t, k)| ≤ |P ε

ρ (t, t0, skj)− P ρ(t, t0, k)|+ |P ρ(t, t0, k)− P (t, k)|.

Taking limit as ε → 0, the desired result follows. 2

4 Numerical Examples

In this section, we present two numerical examples, which demonstrate how our algorithms

perform. Suppose we have a two-state Markov chain with generator (3.1), where

Q̃ =


 −0.5 0.5

0.5 −0.5


 , Q̂ =


 −1 1

2 −2


 . (4.1)

Set t0 = 0 and T = 6.

Consider (2.2) satisfying conditions (A1) and (A2) with the Grammians,

Gc(t, 1) = 4 + sin t, Gc(t, 2) = 3 + cos(2t);

Go(t, 1) = 2 + cos2 t, Go(t, 2) = 6 + 2 cos t.
(4.2)

Choosing an initial point far away from the balanced realization, Figure 1 shows that

the results obtained by solving the algebraic equations and the coupled Riccati differential

equations are quite close for large t. We plot P ε(t, 1), P ε(t, 2), P ε
ρ (t, t0, 1), and P ε

ρ (t, t0, 2),

using solid line, dashed line, dotted line, and dash-dot line, respectively. With the increase

in ρ, the results improve. Figure 2 illustrates that if the Markov chain changes rapidly, the

system of Riccati equations can be replaced by an averaged system, in which the coefficients

are averaged out with respect to the stationary measures. We plot P ε
ρ (t, t0, 1), P ε

ρ (t, t0, 2),
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and P ρ(t, t0, k) using dotted line, dash-dotted line, solid line, respectively. Different ε are

used; they all show similar results.

Next, consider another system that is nearly uncontrollable at t = (3π)/2 with the

following Grammians,

Gc(t, 1) = 1.01 + sin t, Gc(t, 2) = 1.01 + cos(2t)

Go(t, 1) = 2 + cos2 t, Go(t, 2) = 6 + 2 cos t.
(4.3)

In Figure 3 and Figure 4, we find that our algorithm still works well for this nearly uncon-

trollable case.

5 Concluding Remarks

This work developed a framework for balanced realizations of linear systems modulated by a

continuous-time Markov chain with a finite state space. To reduce computational complex-

ity, we used a ρ-balanced realization. When the state space of the Markov chain is large, we

introduced an additional two-time-scale formulation. Decomposition and aggregation meth-

ods were used and averaging techniques were utilized. With the balancing developed in this

paper, there can be a model reduction by working with diagonally balanced versions of the

systems and setting the smallest singular values to zero. This idea is very useful to treat

the case when these singular values are not exactly zero but small and close to zero, which

is one of the key reasons for the balanced realization.

A Appendix

To prove the desired result, we first state a preliminary result. Then the lemma is proved

A.1 Preliminary Result

Recall that a square matrix B̂ is similar to another square matrix Â with the same dimension,

if there is a nonsingular transformation Γ such that Â = Γ−1B̂Γ.

Lemma A.1. For any real square matrix Â, with real eigenvalues and nonsingular, we have

If Â is a real symmetric matrix and |Â| ≥ b > −∞, then Â ≥ bI or Â ≤ −bI. If Â is a real

symmetric positive definite matrix, and 0 ≤ a ≤ |Â| ≤ b < ∞, then

aI ≤ Â ≤ bI. (A.1)
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If Â is a real symmetric matrix, positive definite, and 0 < Â ≤ bI for some b > 0, then

|Â| ≤ b. (A.2)

Proof. The proof is elementary and is omitted. 2

We remark that Lemma 3.1 in [9, p. 317] still holds. This together with Lemma A.1

serves as preliminary for the subsequent development.

A.2 Proof of Lemma 2.5

By virtue of (2.11) and the triangle inequality, we obtain

|Gc(t)||P (t)|2 ≥ −
m∑

j=1

|Gj||Hj||P (t)|+ |Go(t)|.

Since the quadratic equation

|Gc(t)||P (t)|2 +
m∑

j=1

|Gj||Hj||P (t)| − |Go(t)| = 0

has one positive and one negative root,

|P (t)| ≥
−∑m

j=1 |Gj||Hj|+
√

(
∑m

j=1 |Gj||Hj|)2 + 4|Gc(t)||Go(t)|
2|Gc(t)| . (A.3)

On the other hand, using (2.11), we have

P (t)Gc(t)P (t) = Go(t) +
m∑

j=1

GjP (t)Hj := Z.

It is easy to see that

|Z| ≤ |Go(t)|+
m∑

j=1

|Gj||Hj||P (t)|. (A.4)

Thus by conditions (A1) and (A2), we have

P (t) = G
−1/2
c [G

1/2
c ZG

1/2
c ]1/2G

−1/2
c , (A.5)

and

G
1/2
c ZG

1/2
c ≤ Gc|Z| ≤ Uc|Z|I.

By virtue of [12, Theorem 9, p. 15], λ(AB) = λ(BA) for nonsingular matrices A and B, we

have

P (t) ≤ G
−1/2
c [Uc|Z|I]1/2G

−1/2
c = U

1/2
c |Z|1/2G−1

c ≤ U
1/2
c L−1

c |Z|1/2I.
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Noticing that U
1/2
c L−1

c |Z|1/2 is a scalar, by virtue of (A.2) and (A.4), we obtain

|P (t)| ≤ U1/2
c L−1

c |Z|1/2 ≤ U1/2
c L−1

c (|Go(t)|+
m∑

j=1

|Gj||Hj|)|P (t)|)1/2,

i.e.,

|P (t)|2 ≤ UcL
−2
c (|Go(t)|+

m∑
j=1

|Gj||Hj|)|P (t)|). (A.6)

We also observe that the following equation

|P (t)|2 − UcL
−2
c

m∑
j=1

|Gj||Hj||P (t)| − UcL
−2
c |Go(t)| = 0,

has one positive and one negative roots. Therefore, solving the corresponding quadratic

inequality, we obtain

|P (t)| ≤
UcL

−2
c

(∑m
j=1 |Gj||Hj|

)
+

√
U2

c L−4
c (

∑m
j=1 |Gj||Hj|)2 + 4UcL−2

c |Go(t)|
2

. (A.7)

Combining (A.3) and (A.7),

γ2 ≤ |P (t)| ≤ γ1, (A.8)

where

γ1 =
UcL

−2
c

(∑m
j=1 |Gj||Hj|

)
+

√
U2

c L−4
c (

∑m
j=1 |Gj||Hj|)2 + 4UcUoL−2

c

2
,

γ2 = inf
x∈[Lc,Uc],y∈[Lo,Uo]

−∑m
j=1 |Gj||Hj|+

√
(
∑m

j=1 |Gj||Hj|)2 + 4xy

2y
.

Since the above function is continuous on compact sets, the positive constant γ2 is well

defined. It follows that

λmin(P (t)Gc(t)) ≥ λmin(P (t))λmin(Gc(t)) = γ2Lc := γ3,

λmax(P (t)Gc(t)) ≤ λmax(P (t))λmax(Gc(t)) = γ1Uc := γ4.

Next, we want to estimate Ṗ = Ṗ (t). By differentiating (2.11), we have

ṖGcP + PGcṖ + (PĠcP − Ġo)−
m∑

j=1

GjṖHj = 0, (A.9)

i.e.,

ṖGcP + PGcṖ + (PĠcP − Ġo) =
m∑

j=1

GjṖHj. (A.10)
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Using the Vec operator and Kronecker product [7] and noting V ec(AXB) = (B′ ⊗A)V ecX

and V ec(AX + XB) = (Im ⊗ A + B′ ⊗ In)V ecX, we have

(Im ⊗ (PGc) + Im ⊗ (GcP ))V ecṖ + V ec(PĠcP − Ġo) =
m∑

j=1

(H ′
j ⊗Gj)V ecṖ . (A.11)

We obtain

(Im ⊗ (PGc) + Im ⊗ (GcP )−∑m
j=1(H

′
j ⊗Gj))V ecṖ = V ec(Ġo − PĠcP ).

It follows that

|Ṗ |2 = |V ecṖ |2 ≤ |V ec(Ġo−PĠcP )|2|(Im⊗(PGc)+Im⊗(GcP )−
m∑

j=1

(H ′
j⊗Gj))

−1|2, (A.12)

where | · |2 denote the Euclidean norm (|v|2 =
√∑r

i=1

∑l
j=1 v2

ij for any v ∈ Rr×l). Thus

|Ṗ | ≤ |(Ġo − PĠcP )||(Im ⊗ (PGc) + Im ⊗ (GcP )−
m∑

j=1

(H ′
j ⊗Gj))

−1| := γ5. (A.13)

Using a similar argument as in [9], we can show that |(Ġo − PĠcP )| is bounded. Write

X = (Im ⊗ (PGc) + Im ⊗ (GcP )−∑m
j=1(H

′
j ⊗Gj)).

By virtue of Cayley-Hamilton theorem, we obtain

X−1 = c0I + c1X + · · ·+ cn−1X
n−1, (A.14)

where ci are some constants. Note the eigenvalues of A ⊗ B are λi(A)λj(B), where λi(A)

and λj(B) denote the eigenvalues of A and B, respectively. Thus, we obtain

|X| ≤ 2|PGc|+
∑m

j=1 |(H ′
j ⊗Gj)| < ∞.

By (A.14), using the triangle inequality together with Lemma A.1, we have

|Ṗ | < γ5.

By virtue of (A.1), we have

−γ5I ≤ Ṗ (t) ≤ γ5I.

The proof is completed. 2
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(a) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.1, ρ = 1
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(b) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.1, ρ = 10
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(c) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.01, ρ = 1
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(d) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.01, ρ = 10

Figure 1: {P ε(t, i)} is the solution of system of coupled algebraic equations and {P ε
ρ (t, t0, i)}

is the solution of the system of coupled Riccati differential equations.
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(a) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.01, ρ = 1
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10

0 1 2 3 4 5 6
0.9

1

1.1

1.2

1.3

1.4

1.5

(c) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.001, ρ = 1
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(d) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.001, ρ =

10

Figure 2: {P ε
ρ (t, t0, i)} is the solution of the system of coupled Riccati differential equations

and P ρ(t, t0, k) is the solution of the Riccati differential equation whose coefficients are
averaged out with respect to the stationary measures.
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(a) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.1, ρ = 1
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(b) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.1, ρ = 10
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(c) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.01, ρ = 1
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(d) P ε(t, i) vs. P ε
ρ (t, t0, i) with ε = 0.01, ρ = 10

Figure 3: For the nearly uncontrollable system, {P ε(t, i)} is the solution of the system of
coupled algebraic equations and {P ε

ρ (t, t0, i)} is the solution of the system of the coupled
Riccati differential equations.
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(a) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.01, ρ = 1
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(b) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.01, ρ =
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(c) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.001, ρ = 1
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(d) P ε
ρ (t, t0, i) vs. P ρ(t, t0, k) with ε = 0.001, ρ =

10

Figure 4: For nearly uncontrollable system, {P ε
ρ (t, t0, i)} is the solution of the system of

coupled Riccati differential equations and P ρ(t, t0, k) is the solution of the Riccati differential
equation whose coefficients are averaged out with respect to the stationary measures.
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