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Abstract. Balanced ring is defined and related to Thrall's QF-1 rings. Several
theorems are obtained which show that balanced rings enjoy strong homological and
chain conditions. The structure of commutative balanced rings is determined. Also,
the structure of commutative artinian QF-1 rings is gotten. This is a generalization
of a theorem of Floyd.

Introduction. If M is a right £-module, then M is a natural left module over its
endomorphism ring S. We call £=Ends M the BiEndomorphism ring of M, and
the elements of Tare called BiEndomorphisms (notation BiEnd M). The mapping:

r¡: R -> BiEnd MR,       r¡: a^-aa,   where (x)ad = xa, Vx 6 M

is a ring homomorphism and ker 77 is the annihilator of M (notation ker r¡ = annB M).
The elements of BiEnd MR of the form ad are called right multiplications of M.
Every element of BiEnd MR is a right multiplication iff the natural map
7;: £ -> BiEnd M is surjective, that is, a ring epimorphism. In this case, following
Faith [2], we say M is balanced. If M is balanced, we have a complete description
of BiEnd MB, namely BiEnd MR^RjannRM. Naturally, this is not always the
case, as is well known. In this paper we study rings for which every right £-module
is balanced, and call £ right balanced in this case.

It appears that balanced rings have not been studied in this generality. Thrall [13]
proposed the classification of finite dimensional algebras, called QF-1 algebras,
having the property that every finitely generated faithful right £-module is
balanced. The problem remains unsolved at the present, but there are results in
special cases (Floyd [5], Fuller [7] and Morita [9]).

The point of departure of this paper, and the idea which led to our main results
is the observation that first, the QF-1 hypothesis, when assumed for general rings
and their quotients, actually implies chain conditions, and second that the deter-
mination of BiEnd MR is what we want, for a general £-module M, not merely
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144 V. P. CAMILLO [May

the faithful ones. If we generalize Thrall's problem to an arbitrary ring R, and call
R right QF-1 if every faithful right Ä-module is balanced, then our work aims
at the classification of the rings R such that Rjl is QF-1 for every factor ring of
R. In this case, R is said to be balanced.

Some of our main results are :

16. Theorem. IfiR is balanced, then:
1. rad R is nil.
2. R is semiperfiect.

17. Theorem. IfiR is balanced and noetherian then R is artinian.

20. Theorem. If R is balanced and commutative then R is artinian.

21. Theorem. If R is a commutative artinian ring then the following three con-
ditions are equivalent:

A. Every finitely generated faithful module is balanced.
B. Every faithful module is balanced.
C. R is QF (quasi-Frobenius).
22. Theorem. If R is commutative then the following three statements are

equivalent :
A. R is balanced.
B. R is a product of a finite number of local artinian principal ideal rings.
C. R/I is QF-l for every ideal I.
Theorem 21 is closely related to a theorem of Floyd who proved that a com-

mutative finite dimensional algebra R is QF-1 (in the sense of Thrall) if and only
if R is QF. Theorem 21 has also been independently proved by Fuller and Dickson,
using different techniques. The author was required to use the hypothesis that
1 ¡2 e R until he learned of the result in its full generality from Fuller. He then
saw that his own techniques also gave the complete theorem.

The artinian hypothesis is important in 21, since as Faith has observed, every
finitely generated abelian group is balanced.

The notions of generator and QF ring are important in the study of QF-1 rings.
This is true because every generator is balanced [3], and over a QF ring every
faithful module is a generator [14], thus every QF ring is QF-1 [13].

I. In this section we obtain some preliminary results. Rings are commutative, non-
commutative, balanced, or QF-1, as indicated. All Ä-modules are right .R-modules.
We abbreviate M1 = annB M, and if m e M, mL ={r e R \ mr=0}.

1. Lemma. Let R = Yliet Ru where the R¡ are rings, and I is an infinite set. Let
•S'=2ie/© Ri and let S<=M<=R, where M is a maximal right ideal of R. Then,
Horn« (R/M, S)=0 and Horn« (S, R¡M) = 0.

Proof. This is immediate from the fact that S is a two-sided ideal such that
S2 = Sand(R/M)S=0.
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1970] BALANCED RINGS AND A PROBLEM OF THRALL 145

The next lemma is one we use repeatedly in the text.

2. Lemma. If M is a faithful R-module, N arbitrary and not zero, and if M @ N
is balanced then either there is a nonzero f: M -> A' or a nonzero fi: N' -*■ M.

Proof. If there are no such maps then EndB (M ® N) = Ends M x Ends N.
This implies that the projection from M © jV onto N is a BiEndomorphism,
which must be given by right multiplication by an element r e R. But then Mr=0,
a contradiction.

3. Lemma. Let £=n¡£7 £., where R is QF-l. Then I is. finite.

Proof. Let 5=2ie/ © £(. If S^R, then S^M^R where M is a maximal right
ideal of £. Clearly S is a faithful £-module. But, by 2 either HomB (£/M, S)^0,
or HomB iS, £/M)#0. By Lemma 1 this is impossible, so S=R and / is finite.

4. Lemma. Let R=Uî-i Ri- Then R is balanced iQF-l) iff each £, is.

Proof. Let M for instance be an £i-module (faithful). We must show that every
BiEndomorphism of M is given by right multiplication. Let N=MxJ~[?=2 £¡.
Then N is an £-module (faithful). Let £=EndBl (M, M). Then EndB(Af, AT)
=£xT]{l=2 £( = £. Let /: PM->PM. Then t is extendable to a map /: SN->SN
given by (777, x2,..., x„) -> (777/, 0,..., 0). This is a BiEndomorphism of N, hence
is given by right multiplication, so obviously / is.

Conversely, let MR be an £-module and e¡, /= 1,..., 77 the central orthogonal
idempotents which are the unit elements of £¡. Then M=2?=i 0 Mef. If M is a
faithful £-module, then Me¡ is a faithful £¡-module, for if iMe)e¡s=0 then iM)e{s=0
so efS = 0. Now let t be a BiEndomorphism of M. Then /: Me(—^ Meu since t
must preserve components, and is a BiEndomorphism of Met. By hypothesis there
is an e¡s¡ such that ixe)t = ixe)efs¡. Let s = 2?=i ^i- Then if me M,

im)t = Í 2 meAt = 2 ("""¡O = 2 (we.)e.J. = (2 we')(2 ^'j = ms'

and the lemma is proved.

5. Proposition. IfR is QF-l andJ=rad R=0, then R is semisimple.

Proof. Let V= 2¡e/ © V¡ be a direct sum of the nonisomorphic simple right
£-modules. Since J=0, V is faithful. Clearly, HomB(F, V) = TJiej Ft where
£( = HomB ( Vt, V) is a division ring. Then £ = \~[leI £, where the £¡ are full linear
rings. By Lemma 3, £=n?=i A f°r some integer 77. We need only show that each
Vt is finite dimensional.

By Lemma 4 each £¡ is QF-1. Let St = socle £¡, and suppose £(í¿£¡. Let Si^Mt
<=£( where Mf is a maximal right ideal of £,. We note first that 5, is projective since
each simple right ideal of £¡ is generated by an idempotent and a direct sum of
projective modules is projective. Now, £i/M, cannot be projective or else the map
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146 v. p. camillo [May

L¡ -> L,IMt -*■ 0 splits, and L¡ = /1 © M¡ where A is a simple right ideal of L¡ not
contained in M¡. But, 5¡ is faithful, so by 2 there is a nonzero map Z,¡/A/¡ -h>- S¡ or a
map Sx -> Lx\Mx. In the first case L(/Af( is a summand of a projective module since
S¡ is semisimple, and in the second case the kernel is a summand, and the comple-
mentary summand is isomorphic to LX\MX. So in either case LX\MX is projective, a
contradiction that proves that V, is finite dimensional and that R is therefore
semisimple.

It will be revealed later in the study of balanced rings that local rings play a
significant role. We now prove a result in this direction for QF-1 rings. But first
we have a lemma.

6. Lemma. If R is a commutative ring, M a maximal ideal of R, and E(R/M) the
injective hull of R\M, then E(R\M)^ ={r e R | r-L «J:M}.

Proof. If r e E(R¡M)1- then we must have r±c\zM, for otherwise we have a
map /: rR -> R/M given by f(r) = 1 + M. But / may be extended to a map
f: R-> E(R/M), and if/(l) = x we have:

l+M=f(r) =fi(r) =fi(l)r = xr # 0.

On the other hand, if r is contained in the right hand side and E(R¡M)r=£0,
the simplcity of R/M and the definition of the injective hull implies that there is
an x e E(R/M) such that xr= 1 + M, and this implies that r^^M. The lemma is
thus established.

7. Theorem. If R is a commutative ring such that there are no nonzero maps
between injective hulls of distinct simple modules, then R is QF-l if and only if R
is a product of a finite number of local QF-l rings.

Proof. The sufficiency follows from Lemma 4.
Conversely, let F=2ie/ © E(R¡Mt) where the MX are the complete set of maxi-

mal ideals. Since R is commutative, R/M^R/M, if and only if /=/ Now, V must
be faithful, since Vx = C]iet E(R¡M,)-s-={r e R \ r^M¡, V/e/} by Lemma 6.
But, this says that if Vr = 0, then rx is not contained in any maximal ideal, a clear
impossibility unless r = 0. Thus, Kis faithful.

We may now apply the same technique used in the proof of Theorem 5. Since V
is faithful, our hypothesis gives that /?£ BiEnd V. But the fact that there are no
nonzero maps between E(R\MX) and E(R¡M,), i+j gives us that BiEnd Vx
riisi Kt where K¡ = BiEnd E(R¡Mi) (see the proof of Theorem 5).

But then, Lemma 3 gives us that ÄÄF]r=i Kx, and counting simple modules on
each side it is easy to see that each K¡ must be local.

Remark. The condition that there be no maps between injective hulls of non-
isomorphic simple modules may be fairly general, and the reader may verify that
it is true for Z-modules where Z is the ring of integers.

8. Corollary. Let R be commutative. If R¡J is regular, and idempotents lift
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1970] BALANCED RINGS AND A PROBLEM OF THRALL 147

modulo Jie.g., ifRR is injective [8] or [4]), then R is QF-l if and only ifR is a product
of a finite number of local QF-l rings.

Proof. We need only show that there are no maps between injective hulls of
nonisomorphic simple modules. To this end, let M and N be distinct maximal
ideals. Then there is an idempotent e e M—N. For, if x e M—N, then there is an
re£ such that x—xrxeJ, and since xr is idempotent modulo / the hypothesis
implies that there is an idempotent ee R such that xr — eeJ. Now, since J<=M
and x e M we have xr — ee M and xr e M so ee M. But e $ N or else we get
xr e N, or xrx e N or x e N, a contradiction.

Next, let £(£/M¡) be the injective hull of each simple £-module £/M( where
M( is a maximal ideal of £. We claim that if i¥=j there are no nonzero maps be-
tween £(£/M¡) and £(£/My). For, suppose /: £(£/M,) -> EiRjMj) and / is not
zero. Then, R¡M¡<=- Im fi so there is an x e £(£/M¿) such that/(x) = 1 + M¡. However,
from the above there is an idempotent e¡ e M^-Mj. Then e^^M, so £(£/M()ei=0
by 6, and 0=/(xe¡) = (l + Mj)ei = ei + Mj. But this says that e¡ e M, contrary to the
construction.

Now let £ be commutative injective and QF-1. Then by the above, we have that
£=riin=i Pi, where each £( is local injective and QF-1. It would be nice to know
that in fact every faithful module is a generator. Rings which have this property
are called PF rings. We have a proposition.

9. Proposition. If Rr is commutative injective andJ=rad R is finitely generated,
then R is QF-l if and only if R is PF.

Proof. Utumi [14] has characterized PF rings. These are rings with the following
properties : RR is injective, R¡J is semisimple, socle RR is essential. (A right ideal
is essential if and only if it has nonzero intersection with every nonzero right ideal.)
It is known [8] that if £ is injective then :

J = {re R\ rL is essential}.

If £ is PF then £ is always QF-1. This is true because every faithful £-module is
a generator and every generator is balanced (see introduction).

Suppose £ is QF-1. Then by 7, £ = ri"=i Pi where each £f is local. An examina-
tion of the three conditions which must be satisfied reveals that we may, without
loss of generality, assume that £ is local. Since £ is assumed to be injective, and
RjJ is in fact simple, we must only show that socle £B is essential. Since £ is in-
jective, J={r e R | rx is essential}. The intersection of any finite number of essential
right ideals is never zero, and since J is finitely generated, J has nonzero annihilator.
If xJ=0 then x£ is simple, so £ has nonzero socle. But the injectivity of £ actually
implies that x£ is essential. For, let reR. Then there is a well defined map
/: rR ->■ x£ where /(r)=x. Extend/to all of £ and call the new map fi also. Then
if a=/(l) we have ra=x, so x£ is essential, and this proves the theorem.

It is interesting to note that in the above situation, if we consider the local ring
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case with maximal ideal M, we have that M+M2 by Nakayama's Lemma. But
even if M is not finitely generated we may still have a proper descending sequence
M=>M2,..., for if M contains no simple ideal, that is if R is not PF, then M is
faithful. So there is a nonzero map M -> RI M or R¡M -^ M by 2, and if the latter
is ruled out, then the former must hold. Thus, M has a maximal submodule, and
M^M2. By induction, we have Mny=Mn + 1.

Before proceeding to the next chapter, we have one more word about QF-1
rings without chain conditions. The following proposition is somewhat reminiscent
of the local ring case, where every projective module is free.

10. Proposition. IfiR is a QF-l ring with zero socle, then every faithful projective
module is a generator.

Proof. Let P he a projective module. Then we have RU)xP ® K for some index
I and module K. In particular, this implies that P has zero socle. Now, by 2, if V
is any simple Ä-module, there is either a nonzero map/: V-^P or g: P-> V.
Since the former is ruled out, the latter must hold and thus there is an epimorphism
from P onto every simple module. As is well known [2], this implies that P is a
generator.

We will have a little more to say in this direction in the next chapter (see Pro-
position 13).

11. In this section we begin the study of balanced rings, and QF-1 rings with chain
conditions. We shall begin by determining certain BiEndomorphisms of direct
sums of modules. We know that if A is an arbitrary A-module, and r e R then the
map ya: a \-> arVa e A is a BiEndomorphism of A. Suppose we have a direct
sum of modules A = 2,eJ © Ax, and a collection of elements r, e R,ie I. Then one
might want to know when the map/ defined by (ax,a2,.. .,an, 0,.. .)r=(a1r1,...,
*Vn» 0,...) is a BiEndomorphism. Note that this is a generalization of the usual
situation. The lemma below is of central importance to our work.

By T(M, N) we denote the trace of M in N. This is the submodule of N generated
by images of elements of M under elements of HomB (M, N). We have the following
lemma:

11. Lemma. Let {A, \ i el} be R-modules, A = Jiie¡, © Ax, and let {x¡ | i el} be
elements of R. Then the map t defined by (ay, ■ ■ -, an, 0, 0,.. .)r = (a1x1,..., anxn,
0,...) is a BiEndomorphism if and only ifiT(Ax, A])(xl — xj) = 0 for every i andj.

Proof. Necessity. Let x e T(At, A,), say x = J.filflt), ^eA,, and fiu e Horn (Ah A¡).
We must show that filai)xi=fi¡(ai)xj. Let/: A -» A be defined by requiring that
/on A¡ be contained in A¡ and equal to fi, and that/be zero elsewhere. Let (am)
be that element of A which is am at the mth coordinate and zero elsewhere. Let
f(at) = aj. Then [f(ax)]t = (aj)t = (a,)xi and f[(ai)t]=f((ai)xi) = (a,)xi. So we have
T(AX, 4X*-*j) = 0, since [M)l'=/[(«•)']•
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1970] BALANCED RINGS AND A PROBLEM OF THRALL 149

Conversely, to show that / is a BiEndomorphism it is sufficient to check elements
of the form (<z¡), for if (a) = (ai;..., an, 0,...) then

[fi(a)]t = 2 ft*)t = 2 t/w-
(The additivity of / is clear.) If [fia)]t=f[\a)t] then [fia)]t =fi[ia)t].

So, let fia) = ibx,..., bn, 0,...) where fie EndB A. Then bt,e TiA¡, Aj) for
/=1,..., n. Then the hypothesis implies that Z>/x(—x¡) = 0. Thus we have

U(a)]t = [(bx,..., bn, 0,...)]/ = (¿iXi,..., bnxn, 0,...) = ibxx¡,..., bnxh 0,...)

= [f(a)]xt = fiiO,..., 0.x,, 0,...) = f[ia)t]

which proves the lemma.
We now state a consequence to Lemma 11, and prove some results related to the

previous section.

12. Lemma. Ifi A ® B is balanced, then TiA, B)± n £(£, A)1- =A-1 +£x.

Proof. Clearly A^+B^<=TiA, B)^ n TiB, A)±. Let w=l -x e TiA, £)x n
£(£, A)L. Let (a, b)t = ia, bx). By Lemma 11 this is a BiEndomorphism, so there
is an seR such that (a, bx) = ias, bs), whence l—se A1- and s — xeB^. So
h>=1— x=l — s+s—x e AL + BL. This proves the lemma.

13. Proposition. If R is QF-l and I is an ideal of R such that I2 = I and I1 n I
= i/ni=0, then I is a summandfor R as a right R-module.

Proof. Consider I © Rjl. This is a faithful £-module since I1 nl=0. Since
I2 = I, Til, £/£) = 0, since / n -L/=0, £(£//, /)=0. Now, £(/, £/£)J- n £(£//, £)-l
= 0-l n 0-L =£, so by 12, £ = /x © /.

14. Proposition. Ifi R is a commutative QF-l ring then every faithful projective
module P is a generator.

Proof. Let £=£(£,£). Then as is well known, £2 = £ and ££=£ [2]. The
faithfulness of £ implies that £x = 0 and commutativity gives x T= 0, so the hypoth-
eses of Lemma 13 are satisfied and we have £ = £©£-■-, but T1 =0 so £ = £.

Combining this with Proposition 9, we have that if £ is QF-1 and is either
commutative or has zero socle, every faithful projective module is a generator.

We now investigate the structure of balanced rings in more detail, and using the
techniques to follow we characterize commutative artinian QF-1 rings.

Let £ be any ring and /=rad £. Then / is said to be right £-nilpotent if, given
any sequence {a) where a¡ ej, there is an integer 77 such that an-an-x- ■ ax = 0. A
module M is said to have a projective cover if there is a projective module £ and an
exact sequence 0-^5->£-^M^0 where S is a superfluous submodule of £.
The notion is dual to injective hull, but not every module has a projective cover. If
every module in the category of modules over a ring £ has a projective cover, then
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£ is said to be perfect, and if every finitely generated £-module has a projective
cover, £ is said to be semiperfect. Bass [1] has given necessary and sufficient internal
conditions on a ring £ that £ be perfect or semiperfect. Some of these are :

A. £ is perfect if and only if R/J is semisimple and J is right £-nilpotent.
B. £is semiperfect if and only if £/Jis semisimple and idempotents lift modulo/.
Below, we show that commutative balanced rings are perfect, and noncommuta-

tive balanced rings are semiperfect. Bass has shown that if every right £-module
contains a maximal submodule then J is right £-nilpotent. We first obtain a result
similar to this where every module contains either a maximal or a minimal sub-
module.

To do this we consider sequences {a), i e Z, indexed by the integers, positive,
negative and 0. We say that an ideal / is bi-£-nilpotent if, given any such sequence
of elements from /there are integers 77 and m, n^O^m such that an- ■ am=0.

15. Proposition. If R has the property that every R-module contains a maximal
or a minimal submodule then J is bi-T-nilpotent.

Proof (Following Bass). Let £ be the free £-module on countably many genera-
tors {X(}, i=l,2,..., and let G be the submodule of £ generated by {x(—xi+1a_(}.
Consider £/G. If FjG = 0 then there is an integer «<0 such that an- ■ a_i=0,
and if G is a proper submodule of £ then FjG has no maximal submodules. To
see the latter assertion suppose G<= M<= £ where M is a maximal submodule of £.
If xi+ia_¡ e M then x¡ e M. If x(+iö_j £ M then there is an r e R and an 777 e M
such that xi+ia_(r+m=xi+i. But then 7n = xi+i(l—a_(r) and since a_(e/,
1 — a_¡r is invertible so xl+xe M, whence xt e M, so £= G.

To see the first statement we may write Xi = 2(x¡ — xí+xa-)r„ and using the
fact that the x( are free generators of £we obtain ^=»1, r2 = a_xrx, and in general
r(+i=a_(r(. This implies that ri+i = a_f-a_i and since there is a k such that
rk = 0 we have a.k+x- ■ a_i=0.

Thus, to prove the proposition we are reduced to the case where FjG^O and
FjG has no maximal submodules. This implies that no factor module of FjG has a
maximal submodule and our hypothesis therefore implies that every factor module
of FjG has nonzero socle. So, using the technique that Bass applied to the radical
of the rings, we let N0 = G, Nx be that module such that NxjG is the socle of FjG
and for each ordinal a, if a is a successor, define Ntt to be such that NajNa_x is the
socle of FjNa and if a is a limit ordinal let Na=\JB<aNB. Now £=U Na,
so for each x e F let /t(x) be the least ordinal a such that x e Na. Then /i(x) is never
a limit ordinal and if /i(x)^0, and r e J, /j(xr)</7(x). We wish to show that there
is an integer m such that hixxa0- ■ am)=0. But, this is clear, for if there is no such
777 we obtain a strictly decreasing sequence hixx) > hixxa0) • ■•■ This is an impossi-
bility, so there is an 777 such that Xiîï0 ■ ■ ame G. We may then write Xiû0 -um
= 1,(xi-xi+xa-)ri. We then have ri=a0- ■ am» andr,+1 = a_i- • a_iri. So, picking
77 = 1 where ri+x = 0 we have an- ■ am=0, which is the result sought.
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16. Proposition. Let A be a faithful module over a QF-l ring R. Then every
simple R-module V is either a quotient or a submodule of A.

Proof. This is a direct consequence of Lemma 2.

17. Theorem. If R is balanced, then the following four statements are true of R:
(1) rad R is nil.
(2) If R is commutative then rad R is T-nilpotent.
(3) R is semiperfect.
(4) If R is commutative then R is perfect.

Proof. Proposition 16 implies that every Ä-module has either a maximal or a
minimal submodule. Thus, 15 applies and J=rad R is bi-7"-nilpotent. Considering
cases:

(1) Let ceJand let c = {at} as in 15, and the result follows.
(2) If R is commutative and {c,}, /= 1,2,... is a sequence in J we let a0 = c1,

ax = c3- ■ ■ and a_! = c2, a_2 = c4- • •. Proposition 15 and commutativity then yield
r-nilpotence.

(3) By 5, R/J is semisimple, and since idempotents lift modulo any nil ideal,
R is semiperfect.

(4) y is 7/nilpotent, and R¡J is semisimple; thus R is perfect.

18. Corollary. If R is a balanced noerthian ring, then R is artinian.

Proof. R¡J is semisimple, and as is well known, in a noetherian ring every nil
ideal is nilpotent. Since JkjJk + 1 is finitely generated, we obtain a composition
series for R, so R is artinian.

We now strengthen our results on commutative balanced rings, and show that
not only are they perfect, but in fact are artinian.

19. Lemma. If R is commutative, local, and QF-l, then socle RR is either simple
or zero.

Proof. Let u and v generate distinct simple modules, so that the sum uR + vR is
direct. Let Ax = uR, A2 = (u + v)R, A3 = vR. We claim that T(R¡AX, R\A^J\Aj,
i^j. For example suppose/(l +uR) = a + (u+v)R, where a is a unit. Then we would
have a ue(u + v)R, or since a is invertible ue(u + v)R and thus ve(u + v)R so
uR = vR since (u + v)R is simple. All cases are handled similarly.

We may now apply Lemma 11 with xx=u, x2 = u, x3 = 0. We have that
xf—x, e socle RB, and T(R/AX, RIA,)(xx—x¡)=0. Thus, the map t defined by
(ax + Ax, a2 + A2, a3 + A3)t = (axU+Ax, a2u + A2, a30 + A3) is a BiEndomorphism of
a faithful module. Thus there is an r e R given by the hypothesis, and sit s2, s3e R
such that (1) r — u=usx, (2) r — u = (u+v)s2, (3) r = vs3. The first and the third
equations give vs3 — u = us, and linear independence gives that vs3=0. Using
equations (2) and (3), we have — u = (u + v)s2. But then, vs2 = 0, so us2=0 since
j2 £J, so k=0. This contradiction proves the lemma.
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We now apply a lemma of Osofsky [12] to obtain the result we want. This
lemma was generalized by Ornstein [11].

20. Lemma (Osofsky). If R is a perfect ring with J\J2 finitely generated, then
R is artinian.

21. Lemma. (See Theorem 22 to follow.) If R is balanced and commutative, then
R is artinian.

Proof. By 17, R is perfect, and it is well known that R is a product of a finite
number of local rings, each with T-nilpotent radical [1]. It is thus sufficient to show
that each factor is artinian. But, since each of these rings R¡ is balanced, R./Jf
is QF-1, where Jx is the radical of Rt. Proposition 19 then implies that Jx\J2 is
finitely generated, so Osofsky's lemma implies that each R¡ is artinian.

At this point, we are able to prove a converse, and obtain a solution to a problem
of Thrall for commutative rings. Recall that a ring R is quasi-Frobenius (QF) if
R is right artinian and RR is injective. A quasi-Frobenius ring R is QF-1, for R
satisfies the three conditions of Utumi's theorem characterizing those rings for
which every faithful module is a generator. Since every faithful module is a genera-
tor and since every generator is balanced, R is a QF-1 ring. Thrall's problem is to
determine all finite dimensional QF-1 algebras, and he has shown that not every
QF-1 algebra is QF, cf. [13]. His example is not commutative, but here we show
that in the commutative case, one is able to drop the algebra structure, requiring
only that the rings involved be artinian, and still prove that the two concepts are
equivalent for a large class of commutative rings. Floyd [5] proved the same
theorem for commutative finite dimensional algebras. We have:

22. Theorem. If R is a commutative artinian ring, then the following three state-
ments are equivalent :

A. Every finitely generated faithful module is balanced.
B. Every faithful module is balanced.
C. R is QF.

Proof. A => C. Since R is commutative and artinian, we may write R as a product
of a finite number of local rings. By 4 every factor has the property that every
finitely generated faithful module is balanced, and since a finite product of QF
rings is QF, it is sufficient to assume that R is local. If R is commutative, artinian,
and local, then R is QF if and only if socle RB is simple, cf. [2]. But this is a state-
ment of Lemma 19. The fact that C => B follows from the remarks previous to the
theorem, and B => A is trivial.

Using the same techniques as above we are able to characterize commutative
balanced rings.

23. Theorem. If R is commutative then the following three conditions are
equivalent:
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A. £ is balanced.
B. £ is a product of a finite number of local artinian principal ideal rings.
C. £// is QF for every ideal I.

Proof. A => B. Suppose £ is balanced. Then, by 21, £ is artinian. Write £ =
nr=i Pi where each £, is local. Each £¡ satisfies the conditions of 22 and in fact
for every ideal /¡c £¡, £//¡ is QF-1. Thus, each £¡//¡ has simple socle, and this clearly
means that £¡ is uniserial, which in this case is equivalent to £¡ being principal.

B => C. The properties of 2 are clearly preserved under homomorphic images,
and each factor is clearly QF.

C => A. If £// is QF for every ideal then Rjl is QF-1, since every QF ring is
QF-1, cf [13].
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