
Balanced Risk Set Matching
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A new form of matching—optimal balanced risk set matching—is applied in an observationa l study of a treatment, cystoscopy and
hydrodistention, given in response to the symptoms of the chronic, nonlethal disease interstitial cystitis. When a patient receives the
treatment at time t, that patient is matched to another patient with a similar history of symptoms up to time t who has not received
the treatment up to time t; this is risk set matching. By using a penalty function in integer programming in a new way, we force the
marginal distributions of symptoms to be balanced in the matched treated and control groups. Among all balanced matchings, we pick
the one that is optimal in the sense of minimizing the multivariate pretreatment covariate distance within matched pairs. Under a simple
model for the treatment assignment mechanism, we study the sensitivity of the � ndings to hidden biases. In particular, we show that a
simple, conventiona l sensitivity analysis is appropriate with risk set matching when the time to treatment follows a proportional hazards
model with a time-dependent unobserved covariate.
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1. MATCHING TO ACHIEVE
COMPARABLE HISTORIES

1.1 Observational Study of Interstitial Cystitis

With chronic, symptomatic diseases, medical intervention
often is given to patients in response to severe, perhaps
recently intensi� ed, symptoms. Ideally, the effects of such an
intervention would be studied in a controlled trial in which
subjects were randomly assigned to treatment or control, so
that treated and control subjects would be comparable before
treatment. Without random assignment, treated patients may
be more severely ill than untreated patients, or they may have
received the treatment in response to a transient but acute bout
of symptoms. However, randomized trials in such settings are
not always possible for ethical or practical reasons.

An example of this occurs in interstitial cystitis (IC),
whose symptoms are bladder pain and irritative voiding, which
resemble the symptoms of a urinary tract infection, but there
is no evidence of infection. Although IC was described more
than 80 years ago (Hunner 1918), knowledge of its causes and
natural history are limited (Curhan et al. 1999).

We examine the effects of a surgical intervention, cys-
toscopy and hydrodistention, on the symptoms of IC by using
data from the Interstitial Cystitis Data Base (ICDB), a mul-
ticenter cohort study sponsored by the National Institute of
Diabetes, Digestive, and Kidney Diseases (Simon et al. 1997;
Propert et al. 2000). Patients began enrolling in the database
in 1993. To be eligible for the database, a patient must have
exhibited, for at least 6 months before entry, symptoms of uri-
nary urgency, urinary frequency, or pelvic pain and so would
have been considered to have IC (Hanno et al. 1999). Patients
were evaluated at entry into the database and at intervals of
approximately every 3 months thereafter for up to 4 years.
Three quantities were measured repeatedly over time: pain,
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urgency, and nocturnal frequency of voiding. Pain and urgency
are subjective appraisals on a scale from 0 to 9, with higher
numbers signifying greater intensity. Patients were treated by
usual clinical practice with no speci� c treatments required
by the study protocol. At some point after enrollment, some
patients were treated by cystoscopy and hydrodistention, per-
haps in response to acute symptoms.

1.2 Risk Set Matching

If patient m received the treatment at time Tm after entry
into the study, one would like to compare the response of this
patient to a patient who did not receive the treatment up to
time Tm but who otherwise appeared similar during that pre-
treatment interval, that is, who had a similar history of symp-
toms. Or, at least, one would like treated and control groups
whose aggregate distributions of symptoms were similar. Our
new matching algorithm, described in Section 2 and applied
in Section 3, works at both goals, that is, it aims for simi-
lar patients in each pair and balanced groups in aggregate. In
the end, we will have S matched pairs, s D 11 : : : 1 S, contain-
ing 2S distinct patients, such that the treated patient in pair
s received the treatment at time Ts, and the control in pair s
either did not receive the treatment at all or received it strictly
after Ts.

The term “risk set matching” refers to the risk set that arises
in the partial likelihood associated with Cox’s (1972, 1975)
proportional hazards model. Recall that this partial likelihood
compares an individual who experiences an event at time t to
all other individuals at risk of the event at time t, thereby elim-
inating a nuisance parameter of in� nite dimension describ-
ing variations in risk over time. The matching method used
here pairs a patient treated at time Ts with a similar patient
untreated at time Ts but at risk of treatment at time Ts , that is,
to a similar patient in the risk set. Sampling or matching from
a risk set was discussed by Prentice and Breslow (1978) as a
model for case-control studies, by Prentice (1986) as a model
for case-cohort studies, and by Oakes (1981) as a computa-
tional simpli� cation; see Langholz and Goldstein (1996) for a
survey. Unlike these authors, we build a model for the time
to treatment, not the time to an outcome event. Like Prentice

© 2001 American Statistical Association
Journal of the American Statistical Association

September 2001, Vol. 96, No. 455, Applications and Case Studies

870



Li, Propert, and Rosenbaum: Balanced Risk Set Matching 871

and Breslow (1978, sec. 2) but unlike most applications of
risk sets, because our algorithm yields nonoverlapping samples
from the risk set, we obtain a conditional distribution rather
than a partial likelihood; see Section 4. Also, the sensitivity
analysis model in Section 4 involves an unobserved time-
dependent covariate that could not be controlled by matching.

Notice that we match only on past data, never on future
data. This is why a patient treated at time Ts is matched to a
patient not yet treated at time Ts rather than to a patient who
was never treated. To make this clear, consider an extreme
hypothetical but straightforward illustration. Imagine a strict
rule that assigned patients to treatment whenever their symp-
toms became acute. In this hypothetical case, to know that a
patient never received treatment is to know the patient’s symp-
toms never became acute, that is, to know that the patient
had a relatively favorable outcome. If the control group con-
sisted of all patients who never received treatment, then it
would contain only patients with favorable outcomes, because
any patient whose symptoms later became acute received the
treatment. In sharp contrast to this case, our algorithm would
immediately reveal that there is no matching that balances
covariates in the treated and control groups at the time of treat-
ment, thereby clearly warning of the extreme biases that are
present. We must compare a patient treated at time Ts with
a similar patient not yet treated at time Ts, but we must not
use future data on either patient in deciding whether this is a
good match. In Section 4, we develop formally the issues in
this sort of risk set matching, and we consider the possibility
of bias due to an unobserved time-varying covariate that was
not controlled by the matching.

Risk set matching differs from matching on baseline vari-
ables in two ways. First, when a potential control is considered
as a possible match to patient m, who was treated at time Tm,
the relevant covariates for matching are from baseline to time
Tm, but when this same control is considered as a possible
match to patient m0, who was treated at a different time Tm0 ,
the relevant covariates are from baseline to time Tm0 . Second,
a patient m treated at time Tm can enter the study in exactly
one of two ways—as a treated patient at time Tm or as a not-
yet-treated control for a patient treated strictly before Tm.

2. OPTIMAL BALANCED MATCHING

2.1 Matching by Minimum Cost Flow in a Network

Stated abstractly, the optimal pair matching problem
involves a � nite set ¡ D 8�11 : : : 1 �M 9 called units, a subset
´ ¡ called treated units, and a subset of their direct prod-
uct ¥ ´ ¡ called edges. If the pair e D 4�p1 �q5 is an edge
e 2 ¥, then it is permitted to match �p to �q , but if e 62 ¥, then
this match is forbidden.

In our study, ¡ consists of 400 patients randomly sampled
from the IC database, and ´ ¡ consists of all patients in the
sample who eventually received the treatment. The pair e D
4�p1�q5 is an edge e 2 ¥ if �p received the treatment, say, at
time Tp , and �q either never received the treatment or received
it strictly after time Tp . In principle, the set ¥ may exclude
certain pairs for additional reasons, such as being too far apart
on an important covariate, but that was not done in the current
study. Notice also that the abstract statement may be applied

without a risk set in a study in which everyone receives either
treatment or control immediately at baseline; then, ´ contains
the treated subjects, ¡ƒ´ contains the controls, and ¥ ´
4¡ ƒ ´ 5 requires treated subjects to be matched to untreated
controls.

For each e 2 ¥, there is a nonnegative distance „e 0.
A commonly used distance in matching is the Mahalanobis
distance; see Rubin (1980). Suppose 4�p1�q 5 D e 2 ¥, and �p

received the treatment, say at time Tp , and �q received the
treatment later or not at all. Then, in our study, the distance „e

is the Mahalanobis distance between subject �p and control
�q on a six-dimensional covariate describing the three symp-
toms at baseline and at time Tp when �p received treatment.

A pair matching of size S is a subset M ¥ with —M — D
S edges such that each unit �q 2 ¡ appears in at most one
matched pair, possibly as 4�p1 �q5 2 M or as 4�q1 �p5 2 M
but not as both. A pair matching is optimal of size S if it
minimizes the total distance within pairs,

P
e2M „e over all pair

matchings M of size S obtainable with the given structure ¡,
´ , ¥. In our study, we picked —M — D S D 100 matched pairs
of a treated patient and a not-yet-treated control.

In the � elds of operations research and computer algo-
rithms, there is a large literature on optimal matching by min-
imum cost � ow in a network, and fast algorithms are avail-
able. Textbook discussions were given by Papadimitriou and
Steiglitz (1982, sec. 11.2) and Bertsekas (1991, sect. 1.1).
Optimal pair matching in observational studies was discussed
by Rosenbaum (1989) and Gu and Rosenbaum (1993), and
an implementation in the computer package SAS was dis-
cussed by Bergstralh, Kosanke, and Jacobsen (1996). Optimal
matching with multiple controls was illustrated by Ming and
Rosenbaum (2000) in a study of mortality following surgery.

In a clinical trial, Pocock and Simon (1975) used a multi-
variate sequential procedure to approximate covariate balance.
Their goal was similar in some respects to our goal, but their
method was quite different, because patients entered the trial
gradually and treatment assignment was under experimental
control.

Because of the structure of the IC database, time is mea-
sured in discrete 3-month intervals, so if e D 4�p1�q 5 is an
edge in ¥ connecting �p treated at time Tp to �q not yet treated
at Tp , then �q was untreated until at least Tp C 3. Hence, a
comparison of two paired subjects 3 months after treatment
is always a comparison of a treated subject and an untreated
subject. In contrast, 6 months after treatment, a few not-yet-
treated controls will have received treatment after measure-
ments are taken at 3 months. In general, at all time points,
the effect under study is the effect of treating now versus not
treating now but possibly treating later, that is, the effect of
delaying treatment, and of course that is the treatment choice
that patients and surgeons keep facing.

Some implementation decisions merit brief mention.
Although for balancing we divide covariates at quantiles,
when using the Mahalanobis distance „e, we use the covari-
ates themselves without division. A single covariance matrix
for the Mahalanobis distance was computed from all base-
line measurements and all later measurements for all patients
in ¡. More precisely, the six-dimensional variable containing
the baseline and current pain, urgency, and frequency mea-
surements is found for every patient at every time point, and
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the six-by-six covariance matrix is computed from all these
measurements, so most patients count several times when the
covariance matrix is computed. Other de� nitions of the covari-
ance matrix with time varying covariates are possible, and, at
this time, we lack a � rm basis for advocating any one def-
inition. We excluded from ¥ any edge e D 4�p1�q 5, which
would pair individuals who were missing needed data at rel-
evant time points; therefore, all our � nal pairs have complete
data. However, an assessment of a patient is always recorded
before the patient is treated, so pretreatment measurements are
always available for treated patients.

2.2 Balanced Pair Matching

Associated with each treated unit �p 2 ´ are K binary vari-
ables Bpk D 1 or Bpk D 0 for k D 11 : : : 1K. For instance, Bpk

might describe the gender of the pth treated subject. Alterna-
tively, Bpk might describe the status of a time-varying attribute
at the time �p receives the treatment or at some other time
before treatment. In addition, associated with each poten-
tial pairing 4�p1�q5 D e 2 ¥, there are K binary variables,
Bek D 1 or Bek D 0 for k D 11 : : : 1K. In the simplest case, with
4�p1�q 5 D e, the binary variable Bek might describe a base-
line measure of potential control �q , such as gender; however,
with a time-varying attribute, Bek might describe the status
of potential control �q at the moment that treated subject �p

received treatment.
This notation is necessary but unusual, and it is help-

ful to emphasize the sense in which it is unusual. For
4�p1�q 5 D e 2 ¥, the variable Bpk describes just the treated
patient �p a moment before she received treatment. In con-
trast, Bek is not just a description of the not-yet-treated con-
trol patient �q . Rather, Bek describes the potential pairing,
4�p1�q 5, and depends on information for both patients; specif-
ically, it describes �q a moment before �p received the treat-
ment. In a different potential pairing, say e0 D 4�p0 1�q5, this
same control �q often would have a different value for Be0k,
because �q is now being described at the moment �p0 received
treatment, not the moment at which �p received treatment.

A pair matching M is balanced with respect to these K
variables if

X

4�p 1 �q 52M

Bpk D
X

e2M

Bek for k D 11 : : : 1 K0

Notice that both sums refer to the same matched pairs in M ;
however, the � rst sum describes treated patients, and the sec-
ond sum describes their matched controls at times determined
by attributes of the treated subject. For instance, if the � rst
binary variable indicates gender, then in a balanced match-
ing, the total number of males in the treated group equals the
total number of males in the matched control group, although
individual pairs may not be matched for gender. For a con-
tinuous covariate such as age, one can de� ne, say, three addi-
tional binary variables indicating whether a subject is older
than each of the quartiles in the treated group. Then a bal-
anced matching for these four binary variables would produce
matched controls with the same number of males and the same
age quartiles as the treated group. For a time-dependent binary
variable, say, fever above 101�F, a balanced matching might

insist that the number of patients with fevers above 101�F at
the time of treatment equals the number of controls with fevers
above 101�F at the times treated subjects were treated.

An optimal balanced matching is a balanced pair match-
ing M that minimizes the total distance

P
e2M „e over all bal-

anced pair matchings. A simple form of optimal balanced
matching, in which the binary variables code the categories
of a single nominal variable, remains a network � ow prob-
lem (Rosenbaum 1989); however, in general, optimal balanced
matchings must be found by integer programming methods,
which are described in the Appendix.

We wanted to balance the three symptom variables at two
times: pain, urgency, and frequency at baseline and at the
time at which a treated subject received treatment. That is,
we wanted to balance a 6 D 2 3 dimensional variable. We
divided each of these 6 variables into three groups of equal
sizes, that is, at the one-third and two-thirds percentiles, and
we introduced 2 binary variables indicating the group, mak-
ing 12 binary variables in total. As a result, our matching
perfectly balances the one-third and two-thirds quantiles of
the six symptom covariates. In addition, we used these same
covariates, without the division into coarse groups, in de� ning
the Mahalanobis distance „e. As a result, among all perfectly
balanced matches, ours minimizes the total distance within
matched pairs.

A few of our implementation decisions merit brief discus-
sion. We very much wanted to produce a simple comparison
that would be perceived as compelling by urologists treating
interstitial cystitis. Cystoscopy and hydrodistention is not a
new and experimental treatment; rather, it is the most standard
surgical intervention for interstitial cystitis. A negative eval-
uation of this treatment, should it occur, must be compelling
to its audience if it is to have any chance to change current
practice. A paired comparison of 200 similar patients at sim-
ilar moments, half treated, half not yet treated, seemed to us
to be the simplest reasonable comparison. This yields treated
and control groups that are easily checked for comparability
and permits a simple, conventional analysis. We could, as an
alternative, have used all 400 patients by matching with a vari-
able number of controls (Ming and Rosenbaum 2000) or by
full matching (Rosenbaum 1991; Gu and Rosenbaum 1993).
Matching with sets of unequal size is not dif� cult in a techni-
cal sense, but it requires a weighted de� nition of comparability
or covariate balance, so a nontechnical audience may not eas-
ily be persuaded that comparable patients are being compared.
In a different medical context, we might prefer the larger
study, despite its greater complexity. For the same reason, we
were content to partition risk sets into comparable pairs, rather
than to compare every treated measurement to every untreated
measurement. See Rosenbaum (1995, sec. 10) for a discus-
sion of trade-offs of this kind. Unlike a well-conducted clin-
ical trial, our observational study may be biased by a failure
to control for important unobserved covariates; however, our
study’s sampling variability should be comparable to that of
a clinical trial with 200 patients in 100 pairs, and there is no
study of cystoscopy and hydrodistention of comparable size.
Notice also that we did not decide who would be treated and
who would be not yet treated; rather, the algorithm consid-
ered all possible balanced pairings of 100 pairs and picked the
closest one.
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In the ICDB, time is measured from entry into the cohort
study. In chronic, nonprogressive diseases such as IC, although
symptoms may wax and wane over time, there are few differ-
ences in overall symptom severity between newly diagnosed
patients and those who have had the disorder for many years
(Propert et al. 2000; Rovner et al. 2000). In contrast, in pro-
gressive diseases such as cancer, time typically would be mea-
sured from the date of diagnosis.

3. EFFECTS OF CYSTOSCOPY AND
HYDRODISTENTION

3.1 Quality of the Matching

Recall that we balanced the one-third and two-thirds quan-
tiles of pain, urgency, and frequency at baseline and at the
time of treatment, and then we minimized the Mahalanobis
distance among matched samples that balanced these quan-
tiles. These variables are discrete, so the thirds are not exactly
33%; however, they are exactly matched. For instance, for pain
at baseline, 37% of the 100 matched treated patients had pain
scores of 3 or lower, and 37% of the 100 matched controls
had pain scores of 3 or lower. Similarly, in both groups, 44%
had baseline pain scores strictly above 3 and no more than
6, and in both groups, 19% had baseline pain scores strictly
above 6. The other � ve variables are also perfectly balanced
at their thirds.

Among all such balanced matchings, the algorithm found
a match that minimized the Mahalanobis distance within
matched pairs. Before matching, among all potential pairings,
the median Mahalanobis distance was 8.8; after matching, it
was less than .5. Before matching, the upper quartile of the
distances was 14.4; after matching, it was .75. Before match-
ing, the maximum distance was 81.8; after matching, 2.7. As
a standard for comparison, two subjects one standard devia-
tion apart on each of six uncorrelated variables would have
a Mahalanobis distance of 6. In a single homogeneous six-
dimensional multivariate Normal population, Mahalanobis dis-
tances between two independent people have a distribution
that is twice a chi-square on 6 degrees of freedom, so the
expectation is 12. The individual pairs appear to be quite close
before treatment.

3.2 Graphical Comparisons

The boxplots in Figures 1–3 give an informal description
of the results for S D 100 matched pairs. There are three
variables—pain score, urgency score, and nocturnal frequency.
For each variable, there are six pairs of boxplots, two pairs
describing covariates before treatment and four pairs describ-
ing outcomes after treatment. Each pair of boxplots compares
the treated patients to their matched not-yet-treated controls,
labeled “Never/Later Treated” in the plots.

Consider, � rst, the comparability of the groups before treat-
ment. For each variable, the � rst pair of boxplots describes
patients at entry into the study. The second pair describes
patients at the moment the treated patient received treatment.
The matching tried to make the treated patients and their not-
yet-treated controls comparable before the moment at which
the treated patient received treatment. The boxplots indicate
that the distributions of the six pretreatment variables were

closely balanced. For these six observed covariates, treated
and not-yet-treated controls look comparable.

The remaining four pairs of boxplots for each variable
describe patient outcomes after treatment. The plots describe
the outcome 3 and 6 months after treatment, and the change in
the outcome from treatment to 3 or 6 months after treatment.
The plots hint at small bene� ts from treatment for nocturnal
frequency and possibly for urgency at 3 months, but there is
no visible bene� t for pain or urgency at 6 months.

3.3 Inference in the Absence of Hidden Bias

In this section, differences in patient outcomes are estimated
by using simple methods that would be appropriate in a paired
randomized experiment. In contrast, in Section 3.4, the sensi-
tivities of these � ndings to departures from randomization are
examined. Formal conditions under which these analyses are
appropriate are developed in Section 4.

Table 1 compares the 100 matched pairs for the measures
frequency, pain, and urgency. The baseline measure describes
patients on entry into the study, and the treatment measure
describes them a moment before the treated patient in the
pair received treatment; these are pretreatment measures con-
trolled by matching. The 3-month measure is 3 months after
the time the treated patient received the treatment but before
the matched not-yet-treated control received treatment. The
boxplots indicate some extreme observations, so a robust esti-
mator, the trimean, is used as a measure of location in Table 1.
Recall that the trimean is twice the median plus the quar-
tiles divided by four; see Andrews et al. (1972, p. 8) for dis-
cussion. Notice that, as groups, the treated patients and the
not-yet-treated controls look quite comparable on all three
measures at baseline and before treatment. As the boxplots
suggest, 3 months after treatment, the treated responses appear
slightly lower (better) than the control responses.

Each pair yields one value of the variable contrast, which
is formed as an interaction contrast of six measurements in
that pair, three from the treated patient and three from the
not-yet-treated control. Speci� cally, the average of the two
pretreatment measures is subtracted from the 3-month measure
for the treated and the control patient in each pair, and then
the treated-minus-control difference of these quantities is the
contrast; i.e., the contrast is

Treated3 ƒ
Treatedbase C Treated0

2

ƒ Control3 ƒ
Controlbase C Control0

2

where base refers to baseline, 0 refers to the time immedi-
ately before the treated patient received treatment, and 3 refers
to 3 months after that. There is one contrast for each pair,
and Table 1 reports the trimean of these 100 contrasts. The
value of ƒ0050 for the trimean of the 100 contrasts for fre-
quency suggests that treated patients improved slightly more
than controls did, reducing their frequency of nocturnal void-
ing by about half a trip a night. The signi� cance levels are
based on the signed rank statistic applied to the contrasts.

For each measure, the signed rank test was applied to the
contrast to test the hypothesis of no treatment effect. There is
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Figure 1. Pain Score.

a signi� cant difference at the .05 level for frequency but not
for pain or urgency. On the basis of the Bonferroni inequal-
ity, the difference in frequency would remain signi� cant if
allowance were made for the testing of three hypotheses. Keep
in mind that the point estimate of the magnitude of the gain
is about half a visit to the washroom per night for patients
whose trimean was two trips before surgery.

Because we hope for improvement in all three outcomes,
another approach is to perform a single multivariate test
formed by adding the three separate signed rank tests, as

discussed in Rosenbaum (1997), where technical details of this
simple test may be found. When this is done, the standardized
deviate is ƒ1062, just missing signi� cance in a large-sample,
one-sided .05 level test. A different multivariate nonparamet-
ric test was proposed by Wei and Lachin (1984).

Although we have not found strong evidence of dramatic
effects of delay of this surgery, one might reasonably ask
whether we have found strong evidence against dramatic
effects. To answer this, we performed a type of equiva-
lence test. In such a test, the null hypothesis asserts that the
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Figure 2. Urgency Score.

treatment has been quite effective, and the alternative says the
effects are small or nonexistent, so rejecting the null is strong
evidence of the absence of large effects; see, for instance, Hsu
et al. (1994). We de� ned two null hypotheses, asserting that
the treatment has an additive effect and is either moderately
effective or quite effective. Additive effects are the simplest
and most common models of effect, and they are familiar from
experimental design (e.g., Cox 1958, sec. 2) and nonparamet-
ric shift models (e.g., Hollander and Wolfe 1999, sect. 3); see
Rosenbaum (1999a, 2000) for alternative models. For each of

the three outcomes, the smallest improvement for one patient
that can be recorded on the scales used is a one-unit improve-
ment. This is our � rst null hypothesis of effectiveness, which
states that every treated patient improves on each outcome
by one unit. A patient who experienced such an effect would
have experienced the smallest simultaneous improvement in
all three outcomes that can be recorded for one patient on this
measurement scale. (Of course, smaller typical improvements
are possible if the improvements affect some patients but not
others or some outcomes but not others.) We again used the
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Figure 3. Nocturnal Frequency.

sum of the three signed rank statistics to test this hypothe-
sis, yielding a standardized deviate of 3.57 and a signi� cance
level of .00018. This test assumed that there is no hidden bias,
so methods for a randomized experiment may be used. If this
assumption is correct, then it would not be plausible that the
treatment produced a one-unit improvement in all three out-
comes.

Our second hypothesis of effectiveness, called half iqr
improvement, states that each patient improved by half of the
interquartile range at baseline for each of the three measures.

In a standard Normal distribution, half of the interquar-
tile range is .674, or about two-thirds a standard deviation,
whereas about 95% of the data fall in a range that is four
standard deviations in length, so this is a substantial improve-
ment. For the Normal, the interval that includes 95% of the
data can be transversed in about six steps, each of which has
length equal to half the interquartile range. Visually, in a pair
of boxplots, a half iqr improvement would place the endpoint
of the box in one group at the center of the box in the other,
thereby aligning the median in one group with a quartile in the
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Table 1. Trimeans of Pretreatment and Posttreatment Measures

Measure Group Baseline Treatment 3 Months Contrast P-value

Frequency Treated 2.00 2.00 1.19 ƒ0.50 .0032
Not yet 2.00 2.00 2.00

Pain Treated 4.50 4.75 3.19 .12 .78
Not yet 4.50 4.69 3.25

Urgency Treated 5.25 5.25 4.00 ƒ.22 .26
Not yet 5.25 5.25 4.75

NOTE: Baseline is upon entry into the study, Treatment is the pretreatment measure at the
time at which the treated patient in a pair received treatment, and 3 Months is the outcome
3 months after treatment. For each pair, the interaction Contrast of the six measures in the
pair is the treated-minus-control difference between 3 months posttreatment and the average
of the two pretreatment measures. A trimean is twice the median plus the quartiles divided
by four. The P-value is the two-sided signi cance level from Wilcoxon’ s signed rank statistic
applied to the contrasts.

other. At baseline, that is, at entry into the study, in both the
treated and matched control groups, the interquartile ranges
for pain, urgency, and frequency were 4, 3, and 2, respec-
tively. We considered the hypothesis that the treatment has the
effect of reducing each of the three outcomes by half of the
interquartile range at baseline, that is, by 2 for pain, by 1.5 for
urgency, and by 1 for frequency. An improvement of this mag-
nitude would be clinically important. The standardized deviate
for the sum of signed rank statistics is 5.18 with signi� cance
level <000001, so that, again, in the absence of hidden bias,
there would be strong evidence against such a large treatment
effect.

We now consider how these conclusions might be altered
by hidden biases of various magnitudes.

3.4 Sensitivity to Hidden Bias

A sensitivity analysis asks how hidden biases of various
magnitudes might alter the conclusion of an observational
study (Rosenbaum 1995, sect. 4). In a paired, randomized
experiment, a coin � ip decides the treatment assignment inde-
pendently in each pair, and the two patients in a pair have the
same chance, one-half, of receiving the treatment. In an obser-
vational study, even after matching on the observed covari-
ates, one patient in a matched pair may be more likely than
the other to receive the treatment because that patient differed
before treatment in some important but unobserved way.

The sensitivity analysis involves a parameter, â , that
describes the magnitude of the departure from a randomized
experiment; speci� cally, two matched subjects may differ in
their chances of receiving the treatment by at most a factor of
â 1. For â D 1, there is no hidden bias, the treatment assign-
ment probabilities equal one-half, and the test is the conven-
tional randomization test, reported in Section 3.3. For â D 2,
two matched subjects may differ in their chances of receiving
the treatment by a factor of 2, so one might be twice as likely
to receive the treatment as the other; that is, within a pair, the
treatment assignment probabilities might range from one-third
to two-thirds, and there is a corresponding range of plausible
inferences. If small departures from â D 1 alter the qualitative
conclusions of the study, then the study is sensitive to hidden
bias, but if only large values of â can alter the conclusions,
then the study is insensitive. For example, Hammond’s (1964)
study of heavy smoking and lung cancer became sensitive at

â D 6, and Herbst, Ulfelder, and Poskanzer’s (1971) study of
DES and vaginal cancer became sensitive at â D 7, so these
studies are quite insensitive to hidden bias. In contrast, the
study by Jick et al. (1973) of coffee and myocardial infarc-
tion is sensitive at â D 103. See Rosenbaum (1995, sec. 4) for
details. Sensitivity to small hidden biases does not imply that
such biases are present but implies only that small biases, if
present, could materially alter the conclusions.

Table 2 is a sensitivity analysis for the combined analy-
sis in Section 3.3 using the sum of the three signed rank
statistics. The easy computational details of the procedure are
described in Rosenbaum (1997). The signi� cance level tabu-
lated in Table 2 is the largest possible one-sided signi� cance
level for treatment assignment probabilities compatible with
the given value of â . If this largest signi� cance level is less
than or equal to .05, then every possible set of treatment
assignment probabilities compatible with this â yields a one-
sided signi� cance level less than .05. The bounds in Table 1
are sharp—they are attained for particular treatment assign-
ment probabilities compatible with the stated value of â . In
particular, they are attained for an unobserved usi strongly
associated with improved outcomes. For example, usi might
represent a patient attribute of prognostic value, visible to the
attending physician but not recorded in the medical record.

In the combined, three-variable test, the null hypotheses of
no treatment effect is just barely plausible, even in the absence
of hidden bias, â D 1, where the one-sided signi� cance level
is .052, as in Section 3.3. The hypothesis of no treatment
effect is entirely plausible in the presence of a small hidden
bias, â D 101, where the signi� cance level is .11, which is not
recorded in Table 2. The hypothesis of a half-quartile effect,
de� ned in Section 3.3, is insensitive to a bias of â D 205,
where signi� cance level is .046, but it is sensitive to â D 3.
The hypothesis of a one-unit effect is insensitive to â D 105
but sensitive to â D 2. In short, the null hypothesis of no treat-
ment effect is sensitive to small biases, â D 101, whereas the
null hypothesis of a fairly large half-quartile effect is rejected
even in the presence of moderately large biases, â D 205. Small
biases, â < 105, could create the false impression that an inef-
fective treatment is slightly effective, but biases of that small
size could not, in this study, create the false impression that a
highly effective treatment was ineffective.

Consider the one variable, nocturnal frequency, for which
a signi� cant improvement was found in Section 3.3 by using

Table 2. Sensitivity Analysis for the Combined Test

Null hypothesis

G No effect One-unit effect Half iqr effect

1.0 .052 .00018 <.00001
1.5 .5 .029 .00020
2.0 .218 .0066
2.5 .046
3.0 .15

NOTE: The tabulated values are sharp upper bounds on one-sided P-values for testing the
three null hypotheses. The null hypothesis of no effect is tested against the alternative that
treatment is bene cial. The hypotheses of a one-unit effect and a half iqr effect are tested
against the alternative that the treatment has either no effect or a smaller effect than stated
by the null hypothesis. The blank entries are not signi cant and are larger than the largest
displayed P-value in the column.
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the randomization distribution of the signed rank statistic. For
nocturnal frequency, in the absence of hidden bias, â D 1, the
one-sided signi� cance level is .0016; however, the bound on
the signi� cance level is .059 for a bias of â D 104, so the
ostensible improvement in nocturnal frequency is sensitive to
a bias of modest size. In the absence of hidden bias, â D 1, a
one-unit effect on nocturnal frequency is rejected as too large,
with signi� cance level of .0011; however, the bound on the
signi� cance level is .078 for â D 105. For nocturnal frequency,
both tests—the test to detect an effect and the test to detect
near equivalence—are quite sensitive to hidden bias. If a mod-
est hidden bias of â D 105 is plausible, then the observed data
for nocturnal frequency are consistent with either no treatment
effect or a substantial one-unit effect, although neither hypoth-
esis is plausible in the absence of hidden bias, â D 1.

Although this analysis suggests that the effects of treatment
on nocturnal frequency are sensitive to moderate biases due to
an unobserved covariate usi, participants in the ICDB believe
that the most important determinants of treatment and the
best predictors of later symptoms are symptoms before treat-
ment. In particular, there is tangible evidence that neither prior
treatment nor bladder biopsy results are of incremental value
(Propert et al. 2000, Rovner et al. 2000). Sensitivity to hidden
bias is not evidence that bias is actually present but rather a
measure of the magnitude of unobserved bias that would have
to be present to alter conclusions.

The analyses in this section applied conventional methods
for matched pairs to matches formed from risk sets. The for-
mal discussion in Section 4 shows that these simple analy-
ses are appropriate although the matching is based on time-
dependent covariates.

4. INFERENCE IN RISK SET MATCHING

4.1 Risk Set Matching and Permutation Inference

In risk set matching, a treated patient is compared to an
as-yet-untreated control who appeared similar in terms of
observed covariates up to the moment before the treated
patient received the treatment. Earlier sections depended on
the informal, intuitive sense that such a comparison is reason-
able. In this section, we show formally that risk set matching
justi� es simple, conventional permutation inferences under a
general model for the decision to apply the treatment at a
particular moment in response to time-varying symptoms. In
other words, this section shows that the informal, intuitive
sense that risk set matching produces reasonable comparisons
is formally justi� ed in terms of a model and speci� c meth-
ods of inference. To borrow a felicitous phrase from Susser
(1973, sec. 7), optimal balanced risk set matching “simpli� es
the conditions of observation,” comparing ostensibly compa-
rable individuals at comparable moments, permitting simple
comparisons and appropriate analyses by elementary methods.

The model says that the chance that patient m will receive
the treatment at time t if the treatment has not been given up to
time t—that is, the hazard of treatment—combines, in a pro-
portional hazards model, an arbitrary function of the patient’s
observed symptom history with a multiple of an unobserved
time-varying covariate describing this patient. The unobserved
covariate expresses the possibility of hidden bias because the

covariates we recorded are an incomplete record of the symp-
toms that determine treatment assignment.

Under this model, we obtain two conclusions. First, if hid-
den biases are absent so the unobserved covariate is irrele-
vant, then risk set matching produces matched pairs in which
treatment assignments follow a randomization distribution. In
this case, conventional methods, such as the signed rank test,
produce appropriate inferences. Second, if hidden biases are
present as expressed by the unobserved covariate, then the dis-
tribution of treatment assignments in matched pairs follows a
familiar model for sensitivity analysis in observational stud-
ies, and this model may be applied directly. In other words,
although the treatment was given in response to time-varying
symptoms, risk set matching has simpli� ed and restructured
the problem in such a way that simple, conventional methods
for matched pairs may be used. Because these conventional
methods are standard and are described in existing journals
and texts, it suf� ces here to show that risk set matching repro-
duces the distribution of treatment assignments which justi� es
their use. See Lehmann (1998) for discussion of nonparamet-
ric methods in randomized experiments, and see Rosenbaum
(1995, sec. 4) for discussion of sensitivity analyses in obser-
vational studies.

This section is organized as follows. The model for treat-
ment assignment in the unmatched population is de� ned in
Section 4.2. The matched sampling of this population is
de� ned in Section 4.3. The key result is Proposition 1 in
Section 4.4. It says the distribution of treatment assignments
in matched sets has a simple form, justifying simple, con-
ventional permutation inferences. Although our study used
matched pairs, the description permits matching with multi-
ple controls. The ideas in this section bene� t from and are
related in spirit to those of Robins et al. (1992), Joffe et al.
(1998), Robins (1999) and Keiding et al. (1999). However, the
ideas developed here differ in several technical speci� cs, and
because of the simpli� cations resulting from risk set match-
ing, the methods are simpler and more conventional.

4.2 Notation: Effects of Treatment Delay

The population contains M patients, m D 11 : : : 1M , where
patient m entered dm months ago and may be treated at any
one time Tm 2 601dm7 or not at all, signi� ed by Tm D c, where
c is censored. Following Neyman (1923) and Rubin (1974,
1977), each patient m has a potential response rtvm that would
be observed from patient m at time t if the patient received
the treatment at time v 2 601dm7 [ 8c9. In Section 3, rtvm was
three-dimensional and described pain, urgency, and frequency.
To say that delaying treatment for patient m until v D 6 months
would cause a one-unit increase in the response at t D 9
months in each of three coordinates of a trivariate response
compared to starting treatment immediately with v D 0 is to
say that r96m ƒ r90m D 4111115T . Because for each t, only
one of the potential responses rtvm is observed for patient m,
namely, Rtm D rt1 Tm1 m , causal statements depend on inference
about responses that would be observed under treatments not
received. The null hypothesis of no treatment effect asserts
that the response patient m exhibits at time t is the same as
the control response, no matter when v the patient receives the
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treatment; that is, it asserts

Ho 2 rtvm D rtcm for all t 2 601dm71 v 2 601 dm7[ 8c91

m D 11 : : : 1M0

As emphasized by Robins et al. (1992), a treatment applied
at time v may have an effect at time v or after, but it has no
effect at times t before v, so that rtvm D rtcm for v > t. For this
reason, time plays a unique role in structuring a study of this
sort, a role quite different from that of covariates.

In randomization inference (Fisher 1935), patient m’s poten-
tial responses, namely, “rtvm1 t 2 601 dm71 v 2 601dm7[8c9”, are
� xed, but the treatment assignment Tm is a random variable, so
patient m’s observed response at time t, namely, Rtm D rt1Tm1 m,
is also a random variable. To motivate the later discussion of
observational studies of treatment delay, consider two possi-
ble randomized experiments. The simplest design for a study
of treatment delay is to randomly assign half the patients
to treatment immediately and half to a � xed delay, say, a
delay of 6 months. This simplest design is a conventional
clinical trial for which conventional randomization inference
might be used. A less conventional randomized trial might
randomly and independently pick treatment times for differ-
ent patients from a single continuous distribution of treatment
times, say, an exponential distribution with hazard ‹. In both
these randomized experiments, the � xed responses “rtvm1 t 2
601dm71 v 2 601dm7 [ 8c9” that subject m might exhibit under
different treatments do not alter the chances of receiving the
treatments—that is the essence of random assignment.

The hazard of receiving treatment is modeled in terms of
a proportional hazards model with time-varying covariates
(Cox 1972), where some covariates are observed and recorded
and one covariate is unobserved. For each t 2 601 dm7, write
Atm for all the accumulated observed information about patient
m until the instant before time t, and write atm for all the
information that would have been observed about patient m
before t if patient m had been assigned to control through-
out the interval t 2 601dm7, so Atm D atm whenever Tm t or
Tm D c. In addition to this observed information, there is a sin-
gle unobserved variable Utm whose value under control would
have been utm, so also Utm D utm whenever Tm t or Tm D c.

Treatment decisions for distinct patients are assumed to be
mutually independent, and are orderly in the sense that no two
patients start treatment at exactly the same instant. Write htm

for patient m’s hazard of receiving treatment at time t given
that patient m has not received treatment just before t, that
is, htm D lim„!0 prob4t C „ Tm t—Tm t5/„, provided this
limit exists. The following model is assumed:

htm D exp8�t4atm5 C ƒutm91 (1)

where �t4 5 is an unknown function for each t and ƒ is an
unknown scalar parameter, called the sensitivity parameter.
Notice that the hazard at time t describes someone with
Tm t, and for such a person atm D Atm is observed. Because
the function �t4 5 can be any function at all, when ƒ D 0,
the hazard of treatment at time t is any unknown function
of observed data up to time t1 that is, of atm. Hence, when
ƒ D 0, model (1) is the same as the model of no unmeasured

confounders in the sense of Robins et al. (1992), which is
the time-dependent version of Rubin’s (1977) “randomization
on the basis of a covariate” and of “strong ignorability” as
discussed by Rosenbaum and Rubin (1983). Because ƒ need
not equal 0, model (1) is more general than the model of no
unmeasured confounders . When ƒ 6D 0, the unobserved time-
dependent covariate utm may introduce an unobserved or hid-
den bias, as discussed by Rosenbaum (1987, 1995).

If the value of ƒ is to have meaning, the scale of the
unobserved utm must be speci� ed in some way. We assume
1 utm 0, so (1) asserts that two subjects with identical
observed covariate histories atm up to time t may differ in their
hazards of treatment at time t by at most a multiplicative fac-
tor of â D exp4ƒ5. For instance, utm might be an unobserved,
time-varying, binary attribute. Other scale restrictions are dis-
cussed by Rosenbaum (1987), and they produce only small
changes in the sensitivity analysis.

4.3 Matching on Observed Histories

At � rst, all patients are unmatched. At time t, let Lt4a5 be
the set of unmatched patients who have a history of observed
information equal to a up to time t and who did not receive
the treatment an instant before t; that is, Lt4a5 is the sub-
set of 81121 : : : 1M9 such that m 2 Lt4a5 implies Tm t
and atm D Atm D a, and m is unmatched at time t. Under
model (1) for the hazard, if someone in Lt4a5 receives the
treatment at time t, then the chance it is patient m 2 Lt4a5
is exp4ƒutm5/

P
j2Lt 4a5 exp4ƒutj5, in parallel with Cox (1972).

Matching will entail a partitioning of the risk set Lt4a5.
If a patient in Lt4a5 receives the treatment at time t, a

matched set is formed, say, set number s with treatment
time Ts , containing this newly treated patient and ns as-yet-
untreated patients also in Lt4a5. In our paired study, ns D 1 for
s D 11 : : : 1100. Because all patients in Lt4a5 have identical
observed covariate histories atm D Atm D a a moment before
t, the ns matched controls are selected at random from Lt4a5.
Patients in Lt4a5 have identical observed covariate histories
but may differ in terms of the unobserved covariate utm which
cannot be controlled by matching.

The ns C 1 patients in matched set s are randomly assigned
a second subscript i from i D 11 : : : 1 ns C 1, so i carries no
information. Write Zsi D 1 if the ith patient in matched set
s is the treated patient, and write Zsi D 0 otherwise, so 1 DPns C1

iD1 Zsi for each s. Write as for the value of atm common
to all patients in matched set s, and write usi for value of
the unobserved covariate at the time Ts for the ith patient in
matched set s, where the subscript t is dropped, because Ts is
� xed within set s. Notice that when matched set s is formed
at time t, as described in the previous paragraph, the ns C 1
patients who form this matched set are taken out of Lt4a5;
that is, for all ˜ > 0, the set LtC˜4a5 does not include the
ns C 1 patients who were just matched. In this sense, Lt4a5
behaves differently from the risk set in Cox’s proportional
hazards model, which would exclude the newly treated patient
at time t C ˜ but not the ns matched controls.

Write Z D 4Z111 Z121 : : : 1Z11 n1C11Z211 : : : 1 ZS1 nS C15
T . Then

let º be the set containing the —º— D
QS

sD141 C ns5 possible
values of Z, that is, z 2 º if and only if z D 4z111 : : : 1 zS1 nS C15

T

with zsi D 0 or zsi D 1, 1 D
Pns C1

iD1 zsi for each s.
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4.4 Treatment Assignment in Matched Sets

The following proposition says two things based on model
(1) and the matching procedure described earlier. First, if
there is no hidden bias in the assignment of treatments, in
the sense that ƒ D 0, then the conditional distribution of treat-
ment assignments within matched sets is a permutation or ran-
domization distribution, and conventional methods of analy-
sis, such as the signed-rank test or McNemar’s test, may be
used. Second, if there is hidden bias, then (1) leads directly
to the sensitivity analysis model in Rosenbaum (1988, sec. 3;
1995, sec. 4), given by (2) to follow, which may again be used
with the signed-rank or McNemar statistics. In other words,
Proposition 1 asserts that, under model (1), conventional meth-
ods of analysis, such as those used in Section 3, may be used
with pairs formed from risk set matching.

The form of expression (2) is commonly associated with
the partial likelihood for Cox’s proportional hazards model.
However, here, because of the removal from the risk set of
matched individuals, expression (2) is actually a conditional
distribution as distinct from a partial likelihood; see Prentice
and Breslow (1978, sec. 2) for a related conditional distribu-
tion. Write L for the set-valued stochastic function Lt4a5 of
two arguments, t and a.

Proposition 1. Under model (1), for each z 2 º,

prob4Z D z—L5 D
SY

sD1

exp4ƒ
Pns C1

iD1 zsiusi5Pns C1
iD1 exp4ƒusi5

0 (2)

In particular, when there is no hidden bias from the unob-
served covariate usi, that is when ƒ D 0, for each z 2 º,

prob4Z D z—L5 D
1

—º—
0 (3)

Proof. The information in L provides exactly two types of
information about the ns C 1 patients in matched set s. First,
it provides complete information about these ns C 1 patients
up to the instant before one of them received the treatment.
Second, for all ˜ > 0, these ns C 1 patients are absent from
LtC…4a5 for all a. So L indicates that these ns C 1 patients
were matched at time Ts and that exactly one of these ns C 1
patients received the treatment at time Ts, but L provides no
other information about what happened to these ns C1 patients
at time Ts and no information at all about these ns C1 patients
after time Ts . Moreover, the treatment assignment at time Ts

for these ns C 1 patients is governed by (1). Matched set s
contains one patient who received the treatment at time Ts

and ns other patients randomly sampled from Lt4a5, so the
conditional probability that the ith patient in set s received
the treatment given that one did is exp4ƒusi5/

Pns C1
jD1 exp4ƒusj5.

Moreover, given L, the treatment assignment vectors Zs for
different matched sets s are independent.

The matching discussed in the proposition differs from the
matching actually performed in Section 2.2, and the rela-
tionship between these two matchings merits brief discus-
sion. Consider, for simplicity, the case of matched pairs, as in
Section 2.2. The matching in the proposition would pair two
individuals with identical covariate histories—one just treated,

the other not yet treated. This type of matching is not practical
with covariates of high dimension, but it permits a theoretical
analysis. The matching in Section 2.2 was the closest matching
that balanced marginal distributions of the covariates. Notice
that exact matching on covariate histories, if feasible, would
both balance the marginal distributions of covariates and be
the closest matching in terms of these covariates. Speaking
very informally, the matching in Section 2.2 is as close as we
can get to the idealized exact matching discussed in Section 4.

Inspection of the proof of Proposition 1 shows that exact
matching on the entire covariate history is not needed to obtain
the result, for reasons that closely parallel permutation dis-
tributions obtained by using propensity scores (Rosenbaum
1984). Speci� cally, suppose patients were matched who did
not have identical untreated multidimensional covariate histo-
ries atm up to time t, but instead had identical, unidimensional
hazard components �t4atm5 from these covariates; then the
same distributions (1) and (2) are obtained by the same argu-
ment. In the proof, identical covariate histories served only to
ensure identical hazard components �t4atm5. For instance, in
the absence of hidden bias, with ƒ D 0, it suf� ces to match
patients with the same chance or hazard of receiving the treat-
ment, exp8�t4atm59, even if that same hazard re� ects different
covariate histories atm.

4.5 Models for Effects

The discussion so far in this section emphasized testing
the hypothesis of no treatment effect stated in Section 4.2. In
the conventional way, as illustrated in Section 3, one can test
hypotheses about additive effects by subtracting the hypothe-
sized effects from treated subjects and testing that no effect
remains. We did this in our equivalence tests, but the same
approach yields con� dence intervals by inverting the test; see
Rosenbaum (1999b) for an example of such con� dence inter-
vals in sensitivity analysis. Additive models are reasonable in
our application at 3 months because the not-yet-treated con-
trols are still untreated at 3 months.

In some other study with a different structure, if many not-
yet-treated controls had switched to treatment, then one might
want to incorporate this information in modeling the treatment
effect—that is, the constant effect model might be less rea-
sonable than a model that used subsequent information about
treatment. In this case, one might use the treatment decision at
the time of matching as an instrument for the actual treatment
received and would perform an instrumental variable analy-
sis. In an instrumental variable analysis, the assigned treat-
ment and the received treatment are not the same, and both
variables play distinct roles in the inference. See Sheiner and
Rubin (1995) and Angrist, Imbens, and Rubin (1996) for a
conceptual discussion, and see Rosenbaum (1996, 1999b) for
discussion of exact permutation inference and sensitivity anal-
ysis with an instrumental variable.

APPENDIX: OPTIMAL MATCHING AS
INTEGER PROGRAMMING

This appendix writes the optimal balanced matching problem as
a particular integer programming problem, that is, as a problem of
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minimizing a linear function of integer variables, actually binary vari-
ables, subject to linear equality and inequality constraints. Unlike lin-
ear and network programming, where very fast algorithms exist, the
speed at which a large integer programming problem is solved can
depend, in a delicate way, on the way the problem is formulated. The
formulation we describe has performed well for us in a substantial
number of simulated and actual examples. The balance conditions are
treated not as linear constraints but rather as penalty in the objective
function. Expressed in this way, the solution to the integer program-
ming problem is either an optimal balanced matching or a demon-
stration that no optimal balanced matching exits. With it expressed in
this way, we used the package GAMS to obtain a solution. Speci� cs
follow.

For each edge, 4�p1�q5 D e 2 ¥, introduce a binary � ow vari-
able fe D 1 if �p is matched to �q and introduce fe D 0 otherwise,
and write f for the vector of —¥— � ows fe , e 2 ¥. For each balance
condition, introduce two gap variables, the positive gap gkC and the
negative gap gkƒ , and write g D 4g1C1 g1ƒ1 g2C1 : : : 1 gKC1 gKƒ5. The
gap variables will soon measure the degree of positive or negative
departure from balance for the kth binary variable, and when perfect
balance is obtained, gkC D gkƒ D 0. Let ‹k > 0 be a penalty, typically
a large number, that will be paid when the kth binary variable is out
of balance by 1. Speci� cally, take ‹k >

P
e2¥ „e , so the penalty for

each binary variable is larger than the total of all the distances within
pairs. Consider the following integer programming problem, called
IP, and notice that motivation for this problem follows immediately
after its statement:

min
f 1 g

X

e2¥

fe „e C
KX

kD1

‹k4gkC Cgkƒ5 (A.1)

subject to

S D
X

8e 2 2¥9

fe1 (A.2)

1
X

8e2¥ 2 eD4�p 1 �q 5 or eD4�q 1 �p59

fe for �q 2 ¡1 (A.3)

gkC
X

eD4�p 1�q 52¥

fe Bpk ƒ
X

eD4�p 1�q 52¥

fe Bek for k D11: : : 1K1

(A.4)

gkƒ
X

eD4�p 1�q 52¥

fe Bek ƒ
X

eD4�p 1�q 52¥

fe Bpk for k D11: : : 1K1

(A.5)

gkC 01 gkƒ 0 for k D11: : : 1K1 fe 2 80119 for e 2¥0
(A.6)

Notice the following. The objective function (A.1) is linear in the
variables f , g, and (A.6) requires each � ow fe to be 0 or 1. Condition
(A.2) says that there are S matched sets. Condition (A.3) says that
for each � xed unit �q 2 ¡, at most one edge e D 4�p1 �q5 2 ¥ or
e D 4�q1�p5 2 ¥ has fe D 1; i.e., each unit is either unmatched or
in a single matched pair. Inequalities (A.4) and (A.5) imply that if
gkC D gkƒ D 0, then the kth binary variable is perfectly balanced.
Because (A.6) requires gkC 0 and gkƒ 0, if gkC C gkƒ is made
smaller, the imbalance in binary variable k is made smaller. Because
we picked the penalties ‹k so that ‹k >

P
e2¥ „e for k D 11 : : : 1K,

it follows that even a single imbalance, gkC Cgkƒ D 1, has a greater
impact on the objective function (A.1) than does the distance within
matched pairs.

Proposition A.1. Any solution 4Qf1 Qg5, if one exists, to IP is an
optimal balanced matching if QgkC D Qgkƒ D 0 for k D 11 : : : 1K , and
otherwise no optimal balanced matching exists.

Proof. It is clear that any � ow f describes a pair matching of
size S if and only if conditions (A.2) and (A.3) are satis� ed, so Qf is
indeed a pair matching. It is also clear that any � ow f that describes
a pair matching will be a balanced pair matching if and only if it is
possible to satisfy (A.4), (A.5), and (A.6) by taking gkC D gkƒ D 0
for k D 11 : : : 1K . So any balanced pair matching f can be written
as a satisfying the constraints (A.2)–(A.6) with 4f1g5 D 4f105, in
which case the objective function (A.1) is the total distance within
pairs,

P
e2¥ fe „e . It follows that a solution 4Qf1 Qg5 to IP with QgkC D

Qgkƒ D 0 is a balanced pair matching that minimizes the total distanceP
e2¥ fe „e within pairs. If there is no solution to IP, then there is

no pair matching, because every pair matching, f , no matter how
imbalanced, will satisfy the constraints (A.2)–(A.6) for some choice
of g. If there is a solution 4Qf1 Qg5 to IP but it has QgkC > 0 or Qgkƒ > 0
for some k, then it is imbalanced, and, moreover, any balanced pair
matching would have a smaller value of the objective function (A.1),
proving that no such balanced matching exists.

[Received July 1999. Revised October 2000.]
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