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Abstract

Compressed sensing has shown to be promising to accelerate magnetic resonance imag-

ing. In this new technology, magnetic resonance images are usually reconstructed by en-

forcing its sparsity in sparse image reconstruction models, including both synthesis and

analysis models. The synthesis model assumes that an image is a sparse combination of

atom signals while the analysis model assumes that an image is sparse after the application

of an analysis operator. Balanced model is a new sparse model that bridges analysis and

synthesis models by introducing a penalty term on the distance of frame coefficients to the

range of the analysis operator. In this paper, we study the performance of the balanced

model in tight frame based compressed sensing magnetic resonance imaging and propose

a new efficient numerical algorithm to solve the optimization problem. By tuning the balanc-

ing parameter, the new model achieves solutions of three models. It is found that the bal-

anced model has a comparable performance with the analysis model. Besides, both of

them achieve better results than the synthesis model no matter what value the balancing

parameter is. Experiment shows that our proposed numerical algorithm constrained split

augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B) converges

faster than previously proposed algorithms accelerated proximal algorithm (APG) and alter-

nating directional method of multipliers for balanced model (ADMM-B).

Introduction

Magnetic resonance imaging (MRI) is an important imaging modality in clinical diagnosis to

investigate anatomy and function of the body [1–6]. It is non-radioactive, non-invasive, and

has rich contrast information such as T1 and T2. However, the data acquisition speed in MRI

is fundamentally limited by physical (gradient amplitude and slew-rate) and physiological

(nerve stimulation) constraints [2].
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Compressed sensing (CS) MRI has shown its strong ability to reduce the data acquisition

time and earned a lot of attentions over the last few years [2, 3, 7–9]. This new technology, de-

noted as CS-MRI, reduces the number of measurements required by Nyquist sampling criteria

and tries to reconstruct an image that is sparse or can be sparsely represented in some trans-

form domains, e.g. wavelets and finite difference [2, 3]. According to the CS theory, under

some conditions, the number of required Fourier samples for an N-dimensional signal with S

non-zeroes (sparsity) in some transform domain to be successfully recovered with a dominant

probability is governed by O(SlogN). This condition is much less than N when the interested

signal is very sparse (S� N) [10, 11].

Orthogonal wavelets (orthogonal systems) are usually used in traditional compressed sens-

ing MRI and is simple and effective [2, 12, 13]. However, orthogonal wavelets may lead to

blocky artifacts in image reconstruction [14–17]. On the contrary, redundant wavelets, such as

X-let [18–24] and others [25–31], can significantly improve the image quality [14–17]. Some of

these transforms, e.g. contourlet [18] and patch-based directional wavelet (PBDW) [14], a sim-

plified form of bandelet, have been investigated in CS-MRI and shown advantages on edge re-

construction and noise removal [14, 32]. Besides, researchers have utilized the wavelet

coefficients’ structure and significantly improve the image quality in CS-MRI [33, 34]. But how

to investigated these property under tight frame wavelet is unsolved and needs careful investi-

gation which is beyond the scope of this paper.

There are two different data models for general signal or image processing, namely, the

analysis and synthesis models with different prior assumptions [35, 36]. Elad et al. studied

these two models and offered a geometric explanation of the relation between them [35]. Al-

though the synthesis model has attracted more attention than the analysis model in the past,

recent studies show that the latter has its own advantage over the former both theoretically [37,

38] and empirically [36]. In the field of CS-MRI, Qu et al. [14, 15] and Yang et al. [39, 40] have

modeled their problems as analysis models and achieved satisfying results.

To bridge analysis and synthesis models, Cai et al. [41–44] proposed a balanced model. The

balanced model has been applied to image restoration including deblurring, inpainting, and as-

tronomy image reconstruction and solved by a proximal forward-backward splitting (PFBS) al-

gorithm [45]. Furthermore, Shen et al. proposed an accelerated proximal gradient (APG)

algorithm to solve the balanced model in image inpainting and deblurring [46] with an acceler-

ating scheme that is much similar to a fast iterative shrinkage-thresholding algorithm (FISTA)

[47]. Unlike these two iterative shrinkage algorithms, Xie et al. proposed an alternating direc-

tion method of multipliers algorithm to solve the balanced model called ADMM-B in image

inpainting and deblurring [48]. By using Sherman-Morrison-Woodbury matrix inversion

lemma, their experiments showed the much faster speed of ADMM-B than APG. Another ben-

efit of ADMM-B is that it allows the balancing parameter β to change from 0 to +1 without

any influence on the convergence speed.

The motivation of this paper comes from three aspects: 1) a tight frame usually outperforms

its corresponding orthogonal transform in CS-MRI, but many researchers in CS-MRI are not

aware of the difference between the analysis and synthesis models when tight frame is used; 2)

it is still unknown how the performance changes during the transition from the analysis model

to the synthesis model in CS-MRI; 3) there is no unified view of which model is better in gener-

al, and our observation found that the analysis model always has the best performance in

CS-MRI.

The contribution of this paper is two folded. First of all, we will explore the performance of

the balanced model for tight frame based CS-MRI, which, to the best of our knowledge, has

never been investigated before. We will discuss the impact of the balancing parameter on the

reconstruction error. Secondly, we will propose a new efficient numerical algorithm for solving
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the balanced model. The proposed algorithm has a faster convergence than existing algorithms

for the balanced model such as APG [46] and ADMM-B [48]. Besides, the proposed balanced

model provides a unified framework to explore the performance of three sparse models in spe-

cific applications of CS-MRI, in which case the comparison results are not known yet before.

Methods

Ethics Statement

All human images were acquired from healthy subjects under the approval of the Institute Re-

view Board of Xiamen University and written consent was obtained from the participants. The

data were analyzed anonymously.

The k-space data undersampling in CS-MRI can be formulated as

y ¼ UFxþ η; ð1Þ

where U 2 C
M×N withM< N is an undersampling operator, F 2 C

N×N represents the discrete

Fourier transform, and η 2 C
M is the noise. CS-MRI aims at reconstructing an image x 2 C

N

from the undersampled data y 2 C
M. This image reconstruction problem is an under-deter-

mined linear inverse problem that has infinite solutions. Additional constraints should be in-

troduced to obtain a unique solution that meets the realistic magnetic resonance (MR)

image priors.

Related Work

Synthesis model in compressed sensing. According to CS theory [10, 11, 49], a fine re-

construction of (1) is achievable by solving the following ℓ1-norm based optimization problem

x̂ ¼ Dâ; â ¼ arg min
a

kak
1
; s:t: k y�UFDa k2

2
� s2; ð2Þ

where D is a synthesis dictionary, α is the corresponding coefficient, x̂ is the reconstructed MR

image. σ2 is related to the noise variance of the measured data. The performance of (2) is gov-

erned by

k â�a k
2
� C

0

k a� aSk1
ffiffiffi

S
p þ C

1
s; ð3Þ

provided that restricted isometry property (RIP) constant δ2S of UFD obeys d
2S <

ffiffiffi

2
p

� 1 [49].

Here αS is the best approximation to α by using at most S nonzeroes. To let UFD satisfy RIP,

the undersampling matrix U is chosen randomly, and, more importantly, the columns of D

should have a small mutual coherence in the sense of a small RIP constant [50]. Equation (3)

implies that a good reconstruction can be obtained from (2) if a MR image is a sparse combina-

tion of atom signals which are columns ofD. Models like (2) that directly solves α are called a

synthesis model.

Analysis model in compressed sensing. The analysis model is

x̂ ¼ arg min
x

k Cx k
1
; s:t: k y�UFx k2

2
� s2 ð4Þ

whereC is an analysis operator to sparsify the image. It is clear that the solution of (4) is an

image. The theoretical guarantee of an analysis model becomes

k x̂�x k
2
� C

0

k Cx� ðCxÞSk1
ffiffiffi

S
p þ C

1
s; ð5Þ
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provided that the rows ofC form a (tight) frame and U F satisfiesC�-RIP with constant δ2S<

0.08 [29]. Note that there is no incoherence restriction on the rows of the analysis operatorC.

The analysis model is also theoretically studied in [38] where the model is called cosparse

analysis model.

Analysis model versus synthesis model. For an invertible analysis operatorC, if we

choose the synthesis dictionary as D =C
−1, then the analysis and synthesis models are equiva-

lent in the sense that the optimal solutions are the same [35, 36, 38]. However, for a redundant

C, meaning that D 6¼C
−1, these two models are totally different [35]. The difference comes

from the fact that a signal can be synthesized from not only one but infinite number of coeffi-

cients by a redundant dictionary [36]. However, applying the analysis operator directly to the

signal, one can get a unique coefficient called the canonical coefficient denoted as αc =C x

[51]. In a sense, there is a one-to-one correspondence between the image and its canonical co-

efficient even in a redundant dictionary. Fig. 1 illustrates the relation between coefficients and

the canonical coefficient of a signal. Synthesis model assumes that MR images can be synthe-

sized from sparse coefficients by the dictionary, while analysis model assumes that the canoni-

cal coefficients of MR images are sparse. With different assumptions, analysis and synthesis

models are searching for solutions in different domains, i.e. the coefficient domain and the ca-

nonical coefficient domain, respectively [35]. Fig. 2 provides a visual illustration of this point.

Turning to the performance of these two models, we can not find a unified view in a general

case. More researchers prefer to say that these two models fit different types of datasets and it is

hard to say which one is better in a general case [25, 35, 36, 52, 53]. Nonetheless, the analysis

model is reported to outperform the synthesis model when certain systems are used, and the

former is the suggested in these papers.

Fig 1. Difference between the coefficients and the canonical coefficient of a signal.

doi:10.1371/journal.pone.0119584.g001
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Balanced model. To bridge the gap between analysis and synthesis models, Cai et al. pro-

posed a balanced model [41–44] for tight frame systems. LetC andC� be the analysis and syn-
thesis operators associated with a tight frame system. In other words, we haveC�

C = I, and

generallyCC
� 6¼ I. Then, the balanced model in [41–44] is as follows

x̂ ¼ C
�â; â ¼ arg min

a
k a k

1
þ b

2
k ðI�CC

�Þa k2
2
; s:t: k y� AC

�a k2

2
� s2; ð6Þ

where A stands for a linear degrading operator. SinceCC
� is the projection onto the range of

C, the term b

2
kðI�C C

�Þak2
2
is the squared distance of α to the range ofC (or to the canoni-

cal frame coefficient), and β is a balancing parameter.

When β = 0, (6) becomes

x̂ ¼ C
�â; â ¼ arg min

a
k a k

1
; s:t: k y� AC

�a k2
2
� s2;

which is exactly in the form of synthesis model in (2). When β!1, (6) imposes that

k ðI�CC
�Þa k2

2
¼ 0 () a ¼ CC

�a

which means α is a canonical coefficient. Thus, (6) becomes

x̂ ¼ C
�â; â ¼ arg min

a
k CC

�a k
1
; s:t: k y� AC

�a k2
2
� s2:

Letting x =C
�
α leads to

x̂ ¼ arg min
x

k Cx k
1
; s:t: k y� Ax k2

2
� s2;

which is exactly in the form of analysis model in (4). Thus, for 0< β< +1, (6) is a balance be-

tween the analysis model and the synthesis model. Fig. 2 presents the relationship of these

three models.

Fig 2. The relation of analysis, synthesis, and balancedmodels.

doi:10.1371/journal.pone.0119584.g002
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Proposed work

To the best of our knowledge, how the balanced model performs in CS-MRI has never been in-

vestigated. More specifically, how the balancing parameter affects the reconstruction is still un-

known. Besides, there are also needs to develop an efficient algorithm to solve the balanced

model based CS-MRI.

Constrained balanced model in tight frame based CS-MRI. Orthogonal wavelets (or-

thogonal systems) are usually used in traditional compressed sensing MRI [2]. However, or-

thogonal wavelets may lead to blocky artifacts in image reconstruction [14–17]. On the

contrary, redundant wavelets, e.g. shift-invariant wavelets, can significantly improve the image

quality [14–17]. Examples of such tight frames are framelet [24], curvelet [20], translation in-

variant discrete cosine transform [2], and patch-based directional wavlelets [14]. LetC 2 C
D×N

with D> N be the analysis operator of a tight frame, and then its adjointC� is the associated
synthesis operator. The tight frame property implies thatC�

C = I. Because D> N, the opera-

torCC
� is not the identity but the orthogonal projector onto the range ofC. Motivated by the

balanced model presented in previous sections, we propose the following constrained balanced

model in tight frame based CS-MRI

x̂ ¼ C
�â; â ¼ arg min

a
l k a k

1
þ b

2
k ðI�CC

�Þa k2
2
; s:t: k y�UFC

�a k2
2
� s2; ð7Þ

By tuning the balancing parameter β, one has the chance to achieve a balance between the anal-

ysis model and the synthesis model.

Constrained split augmented Lagrangian shrinkage algorithm for balanced model

(C-SALSA-B). A popular method for solving the analysis model (4) and the synthesis model

(2) is the alternating direction method of multipliers (ADMM) [54], which has various origins

in imaging sciences and was proposed by several authors independently under different names,

e.g., the split Bregman algorithm [36, 55] and the split augmented Lagrangian shrinkage algo-

rithm [56].

When ADMM is applied to solve the minimization arising from the proposed balanced

model (7), there are a couple of different formulations available. One formulation is to convert

the constraint minimization (7) to an unconstraint one. By Lagrangian multiplier theory, there

always exists a positive number δ so that (7) is equivalent to an unconstrained minimization

min
a

l k a k
1
þ b

2
k ðI�CC

�Þa k2
2
þ d

2
k y�UFC

�a k2
2
: ð8Þ

By introducing an auxiliary variable z = α, this minimization is further converted to

min
a

l k z k
1
þ b

2
k ðI�CC

�Þa k2

2
þ d

2
k y�UFC

�a k2

2
; s:t z ¼ a:

Then one can apply ADMM to the above minimization to get an approach for solving the bal-

anced model (7). This method was studied in [48] and is referred to ADMM-B throughout this

paper. ADMM-B has shown in [48] faster than other algorithms for the balanced model such

as the APG method [46] for many digital image processing tasks.

However, it is generally hard to determine the regularization parameter δ in (8). Larger or

smaller δ will cause over or under fitting of the sampled data y. Motivated by this, we propose

to, instead of the unconstrained minimization (8), solve the constrained minimization (7) di-

rectly. We introduce an auxiliary variable z = α and obtain

min
a

l k z k
1
þ b

2
k ðI�CC

�Þa k2
2
; s:t k y�UFC

�a k2
2
� s2; z ¼ a: ð9Þ
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Following [36, 55–57], we propose to solve (9) by applying ADMM to the following minimiza-

tion

min
a

l k z k
1
þ b

2
k ðI�CC

�Þa k2
2
; s:t y ¼ UFC

�a; z ¼ a: ð10Þ

with an early stopping criteria ky � UFC �ak2

2
� s2. This method is referred to constrained

split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B), following

[56]. According to [36, 55–57], C-SALSA-B produces better quality of reconstructed image

than ADMM-B. The convergence of C-SALSA-B is studied [36, 57].

More precisely, the augmented Lagrangian of (10) is

Lm;rða; z; h; dÞ ¼ l k z k
1
þ b

2
k ðI�CC

�Þa k2
2
þm

2
k UFC

�a� y� h k2
2
þr

2
k a� z� d k2

2
:

Then, ADMM for solving (10) can be written as
(

anþ1
¼ argmina Lm;rða; zn; hn; dnÞ;

znþ1
¼ argmina Lm;rðanþ1

; z; hn; dnÞ;
hnþ1

¼ hn � dhðUFC
�anþ1

� yÞ;
dnþ1

¼ dn � ddðanþ1
� znþ1

Þ:

ð11Þ

The sub minimization problem w.r.t. α in the first line of (11) has an analytical unique solution

anþ1
¼ m

mþ r
CF�U

�ðyþ hnÞ þ gðzn þ dnÞ þCF� ð1� gÞI� m

mþ r
U

�
U

� �

FC
�ðzn þ dnÞ; ð12Þ

where

g ¼ r

rþ b
: ð13Þ

The proof of (12) is presented in S1 Appendix. When β goes from 0 to +1, γ changes from 1

to 0, and the model changes from the synthesis one to the analysis one. The sub minimization

problem w.r.t. z in the second line of (11) is solved by a soft-thresolding

znþ1
¼ T l=rðanþ1

� dnÞ;

where Tλ(�) is the soft-thresholding operator satisfying

T lðxÞ ¼max fjxj � l; 0g � sgnðxÞ ¼

x þ l; if x � �l;

0; if x � �l < x < l;

x � l; if x � l;

8

>

>

>

<

>

>

>

:

for each entry of x. The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 C-SALSA-B

Input: y, λ, γ, ρ, μ, δh, δd, h1, d1, z1

1: n = 1

2: repeat

3: anþ1
¼ m

mþr
C F�U

�ðy þ hnÞ þ gðzn þ dnÞ þC F� ð1� gÞI � m

mþr
U

�
U

h i

FC �ðzn þ dnÞ
4: zn+1 = Tλ/ρ(αn+1 − dn)

5: hn+1 = hn − δh(UF Ψ
� αn+1 − y)

Balanced Sparse Model in Compressed Sensing MRI
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6: dn+1 = dn − δd(αn+1 − zn+1)

7: n = n+1

8: until converge

Output: x̂ ¼ C
�an

Results

Experimental setup

The brain image of size 256 × 256 in Fig. 3 (a) is acquired from a healthy volunteer at a 3T Sie-

mens Trio TimMRI scanner using the T2-weighted turbo spin echo sequence (TR/TE = 6100/

99 ms, FOV = 220 × 220 mm2, slice thickness = 3 mm). Fig. 3 (b) is acquired from a healthy

volunteer at a 1.5T Philips MRI scanner with sequence parameters (TR/TE = 1700/390 ms

with 230 × 230 mm2 field of view, 5 mm slice thickness). Fig. 3 (c) is a water phantom image

acquired at 7T Varian MRI system (Varian, Palo Alto, CA, USA) with the spin echo sequence

(TR/TE = 2000/100 ms, 80 × 80 mm2 field of view, and 2 mm slice thickness).

Fig 3. Images used in simulations. (a) is a T2- weighted brain image, (b) is a T1- weighted brain image, (c)
is a water phantom image, (d) is a k-space undersampling pattern with 40% data are sampled.

doi:10.1371/journal.pone.0119584.g003
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The relative ℓ2-norm error (RLNE) defined as

RLNE :¼ k x̂�x k
2

k x k
2

is adopted to measure the difference between the reconstructed image x̂ and the fully sampled

image x [14]. Shift-invariant discrete wavelet transform (SIDWT) from Rice Wavelet Tool-

box [58] is used as a typical tight frame.

We will compare our proposed C-SALSA-B algorithm with APG [46] and ADMM-B [48].

Parameters for these algorithms are listed in Table 1. These parameters are chosen empirically

so that each algorithm reaches the smallest RLNE while maintaining convergence speed as fast

as possible. All the experiments are done on a desktop with four Intel Cores i7-2600 CPU at

3.4GHz and 16GB of memory. All CPU time presented in this paper are the average of 5 runs

for each experiment.

CS-MRI reconstructions using analysis, synthesis and balanced models

Using the proposed model in (7), one can easily obtain analysis, synthesis, or balanced models

by setting the balancing parameter γ in (13) to 0, 1 or an arbitrary value in the range (0,1) for

CS-MRI. If not specified, the balanced model refers to γ = 1/2 without loss of generality

throughout this section.

The simulation results are shown in Fig. 4. We see that the reconstructed image using the

balanced model is similar to that using the analysis model, and both of them can remove the ar-

tifacts better than using the synthesis model. The reconstruction errors RLNE indicate that the

analysis model achieves error slightly smaller than the balanced model. The synthesis model is

the worst in this experiment.

Empirical convergence of C-SALSA-B algorithm

The convergence curve of the C-SALSA-B is predicted in Fig. 5, and the comparison of the con-

vergence of C-SALSA-B with APG and ADMM-B is plotted in Fig. 6. From Fig. 5, we see that

The objective function and the value of the constrained term in (7) approach to a stable state

after certain initial iterations, which is consistent to C-SALSA algorithm in [56] (Fig. 4(a)). As

shown in Fig. 6, intermediate reconstruction error RLNEs of the proposed C-SALSA-B drops

faster than that of APG and ADMM-B. Table 2 shows the computation time of APG,

ADMM-B and the proposed C-SALSA-B using T2 weighted brain image dataset in Fig. 3(a).

Obviously, the proposed C-SALSA-B algorithm converges faster than the other

two algorithms.

Table 1. Parameters for algorithms used in this paper.

Algorithms APG ADMM-B C-SALSA-B

λ = 0.05

λ = 0.005 λ = 0.01 γ = 0.5(β = 1)

Parameters κ = 1(β = 1) α = 0.5(β = 1) ρ = 1

L = κ+1 = 2 μ = 1 μ = 1

δd = 1 δk = 1

δd = 1

doi:10.1371/journal.pone.0119584.t001
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Fig 4. Reconstructed T2 weighted brain images using analysis, balanced and synthesismodels. (a) the fully sampled image; (b)-(d) are reconstructed
images using analysis, balanced and synthesis models, respectively; (e)-(g) are 6 times scaled reconstruction errors for images in (b)-(d), respectively. The
RLNEs for (b)-(d) are 0.114, 0.122 and 0.128.

doi:10.1371/journal.pone.0119584.g004

Fig 5. Empirical convergence of C-SALSA-B solving Equation (12). Left is the objective function, right is
the value of the constrained term.

doi:10.1371/journal.pone.0119584.g005
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Discussion

Impact of the balancing parameter on reconstructed errors

Since the balanced model includes all γ 2 (0,1) in (7), it is necessary to explore the impact of

the balancing parameter γ defined in (13) on the reconstructed errors. The results are shown in

Fig. 7. It implies that RLNE increases monotonically as γ goes from 0 (analysis model) to 1

(synthesis model) except one singular point at 0.95.

Reconstructed errors for different acceleration factors

We variate the percentage of sampled data goes from 15% to 100% and plot in Fig. 8 the curve

of RLNEs by different models against the sampling ratio. We observe that the analysis model

always achieve the lowest errors and the synthesis model leads to the highest ones. Reconstruc-

tion errors using the balanced model is between other two models.

Fig 6. Reconstruction error RLNEs in the iterations using different algorithms.

doi:10.1371/journal.pone.0119584.g006

Table 2. Comparison of different algorithms. The number of iterations in each algorithm is chosen to
reach the stable state of RLNE according to Fig. 6.

Algorithm # of iterations CPU time in seconds RLNE

APG 80 16 0.119

ADMM-B 100 13 0.128

C-SALSA-B 30 6 0.123

doi:10.1371/journal.pone.0119584.t002
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Fig 7. Impact of the balancing parameter γ on reconstructed errors for datasets in Fig. 3.

doi:10.1371/journal.pone.0119584.g007

Fig 8. Comparisons of three models for different percentages of acquired k-space data.

doi:10.1371/journal.pone.0119584.g008
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Experiments on other tight frames

The behaviors of these three models might depend on the tight frame in use. Here, we compare

the performance of the three models on a patch-based directional wavelets (PBDW) [14], con-

tourlets [18, 32] and a translation invariant discrete cosine transform (TIDCT) [2]. The recon-

structed image using PBDW is shown in Fig. 9. The same phenomenon was observed that

reconstructed images using the analysis and balanced models are comparable and both of them

contain less artifacts than using the synthesis model. The RLNE criteria also indicates that the

analysis model and the balanced model are comparable and these two models achieve lower

error than the synthesis model. How the balancing parameter affects the reconstructed errors

in PBDW, contourlets and TIDCT are shown in Fig. 10. The trends are similar to that of

SIDWT in Fig. 7 but the shapes are a little bit different.

Comparisons of C-SALSA-B to APG and ADMM-B for more MR images

In this section, we compare our proposed C-SALSA-B to APG and ADMM-B algorithms for

more T2 MR images which are different slices of the same dataset as Fig. 3 (a). From Fig. 11,

the same phenomenon was observed that the proposed C-SALSA-B converges faster than

ADMM-B and APG.

Fig 9. Comparisons on PBDW-based reconstructed images for three models. (a) the fully sampled image; (b)-(d) are reconstructed images using
analysis, balanced and synthesis models, respectively; (e)-(g) are 6 times scaled reconstruction errors for images in (b)-(d), respectively. The RLNEs for (b)-
(d) are 0.085, 0.086 and 0.114.

doi:10.1371/journal.pone.0119584.g009
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Fig 10. Impact of the balancing parameter γ on reconstructed errors when PBDW, contourlets and
TIDCT are used as tight frames.

doi:10.1371/journal.pone.0119584.g010

Fig 11. Comparisons of C-SALSA-B to APG and ADMM-B for more MR images.

doi:10.1371/journal.pone.0119584.g011
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Comparison of C-SALSA-B to Fast Composite Splitting Algorithm
(FCSA)

In this section, we conduct another experiment to compare our proposed C-SALSA-B algo-

rithm for analysis (γ = 0), synthesis (γ = 1) and balance (γ = 1/2) models to Fast Composite

Splitting Algorithm (FCSA) proposed in [13]. Fig. 12 shows that while FCSA converges faster

than proposed C-SALSA-B algorithm, C-SALSA-B reaches to the lower RLNE error. Note that

the parameter β in FCSA has been tuned to be 0.001, which fits for tight frame wavelet and

leads to the lowest reconstruction error RLNE. The code of FCSA used in the experiment is

downloaded from Dr. Junzhou Huang's website at http://ranger.uta.edu/huang/.

Experiments on orthogonal wavelets

For an orthogonal transform, the analysis, synthesis and balanced models yield the same results

in theory [35]. To testify this, we conduct an experiment for the orthogonal wavelets archived

in the Rice Wavelet Toolbox. The result in Fig. 13 shows reconstruction error is not affected by

the balancing parameter, indicating the same results are obtained by synthesis, analysis and

balanced models.

Conclusion

A balanced model for tight frame based compressed sensing MRI (CS-MRI) and an efficient

numerical algorithm to solve it are proposed in this paper. This new model provides a unified

framework to discuss the performance of the analysis and synthesis sparsity models as well as

solutions between them. The impact of the balancing parameter on the reconstructed error has

been extensively explored. Experiments on magnetic resonance images show that the balanced

model can be no better than the analysis model whatever a balancing parameter is optimized.

This observation does not change with different forms of tight frame tested in this paper.

Fig 12. Comparison of FCSA and C-SALSA-B.

doi:10.1371/journal.pone.0119584.g012
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Results indicate that the analysis model is preferred for tight frames based CS-MRI modelings

unless the advantages of the balanced or synthesis model are observed in practice. The pro-

posed C-SALSA-B algorithm is observed to converge faster than typical APG and ADMM-B al-

gorithms in our experiments. However, our tests are limited by certain sparsifying transforms

or magnetic resonance images. The power of balanced model for other frames or even other ap-

plications needs further investigation.
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